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ABSTRACT
Beyond a practical use in code review, source code change detec-
tion (SCCD) is an important component of many mining software
repositories (MSR) approaches. As such, any error or imprecision
in the detection may result in a wrong conclusion while mining
repositories. We identi�ed, analyzed, and characterized impressions
in GumTree, which is the most advanced algorithm for SCCD. After
analyzing its detection accuracy over a curated corpus of 107 C#
projects, we diagnosed several imprecisions. Many of our �ndings
con�rm that a more language-aware perspective of GumTree can
be helpful in reporting more precise changes.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software maintenance tools;
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1 INTRODUCTION
Adequately characterizing source code changes across multiple
software revisions is an activity essential both in software devel-
opment and in MSR research. For instance, developers routinely
review source code changes before deciding whether to integrate
them, using tools such as pull requests in Git [12]. In MSR research,
approaches based on change data are too numerous to list (Kagdi
provides a summary of early MSR research [16]).

The version control systems commonly used by developers treat
source code as textual �les and thus discard the semantics of the
programming language [23]. As a consequence, a versioning system
such as Git can only express changes in terms of textual content
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whereas a code change may express a complex structural changes,
such as a code refactoring. To address that limitation, the modern
approaches to SCCD [9, 10] instead operate on the source code’s
abstract syntax tree (AST): these approaches compute the di�er-
ences between two successive versions of the code (two ASTs) and
express changes in terms of an edit script, a sequence of operations
to transform the �rst AST into the second.

While these approaches are a vast improvement over text-based
change detection, even the most advanced techniques of AST-based
SCCD su�er from imprecisions, of which some examples are found
in Section 2. As SCCD is an early step in many MSR approaches, im-
precisions during that step have the potential to carry over, leading
to variations in their results [15, 17, 28]. To improve on the state of
the art, developing an understanding of the issues a�ecting SCCD
is crucial (for additional background on SCCD, see Section 3).

The goal of this paper is two-fold: 1) to gain a better understand-
ing of the kind of imprecisions that a�ect SCCD algorithms (Section
4), and 2) to estimate the impact of the said imprecisions by devel-
oping heuristics to detect these imprecisions in a large corpus of
source code (Sections 5–8). The subject of our study is GumTree [9],
a state of the art SCCD algorithm, applied to a corpus of 107 C#
projects. This paper investigates two research questions:

ResearchQuestion #1:What are the issues a�ecting the GumTree
algorithm? In order to better understand the imprecisions that a�ect
GumTree, we �rst analyzed 86 �le revision pairs originating from a
single project. Out of these 86 pairs, we found 23 cases (27%) where
GumTree produces incorrect or sub-optimal results. We also cate-
gorized the imprecisions found in 4 categories: Spurious changes,
Arbitrary Changes, Redundant Changes, and Ghost Changes. This
initial evidence suggests that there is still lots of room to improve
upon the state of the art in SCCD.

Research Question #2: What is the extent of the issues identi-
�ed during RQ1? While the initial evidence gathered in the �rst
part of the paper is enough to give us an intuition on the issues
that a�ect SCCD algorithms and GumTree in particular, it is not
enough. An extensive diagnostic is needed in order to gauge the
relative importance of the issues encountered. Without such a di-
agnostic the improvements depend more of the intuition and will
not necessarily be tackling the most relevant issues. To do so, we
developed heuristics to detect the imprecisions that we identi�ed,
and ran them on a large source code corpus (107 systems, 143,419
�le revision pairs). We then manually evaluated the accuracy of
the heuristics on a subset of the result. This allowed us to: 1) con-
�rm our preliminary �nding that there is room for improvement in
SCCD, and 2) estimate the impact of each issues in the corpus and
get a sense of their relative importance.

Section 9 concludes our diagnostic by summarizing the issues
found and commenting on possible solutions that deserve to be
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studied in a future research e�ort. One of the key reasons for the
issues that we observed is that GumTree under exploits the syntax
and the semantic of the source code. In the same manner that
versioning systems treat source code as “just text”, GumTree treats
source code as “just an AST”. Adding more knowledge about the
syntax and semantics of the programming language to an SCCD
algorithm should allow it to make better decisions.

Finally, we close this paper by documenting the limitations of
this study (Section 10), and presenting related work (Section 11),
before concluding (Section 12).

2 MOTIVATING EXAMPLE
One reason for the suboptimal performance of GumTree is that it
considers the AST as “just a tree”, and ignores most of the domain
knowledge. This domain knowledge includes, for instance, the type
of changes that are likely to occur for each type of source code
element, as well as common programming conventions.

While conducting our exploratory study (Section 4), we encoun-
tered the example shown in Listing I. It highlights parts of pull
request #123 made to project AjaxControlToolkit 1. In this listing as
well as in Listing II, we colored the code according to the AST
changes: deletions, insertions, updates, and moves.

Using GumTree to calculate the di�erences of �le AjaxFileUpload

.cs yields several imprecisions (Listing I, top), compared to the
ideal behavior (Listing I, bottom). In particular, GumTree concludes
that OnInit(EventArgs) was renamed to AreFileUploadParamsPresent().
The latter is in fact a regular method, while the former is an event
handler which is conceptually very di�erent. In fact, the code in
AreFileUploadParamsPresent describes only a substep of the original
event processing logic. To make matters worse, GumTree infers
that a new OnInit(EventArgs) event handler was inserted, instead
of preserving the identity of the event handler accross versions.
The reason for this is that GumTree gives too much weight to the
content of the methods, as opposed to their conceptual type.

GumTree’s behavior (top) contrasts with the expected behavior
(bottom): method AreFileUploadParamsPresent is created, and the logi-
cal step is moved to it. The consequences are that GumTree found
some changes that were unnecessary (the ones colored at top—such
as IsDesignMode being deleted then inserted—, but in black at bottom,
lines 1–3), while others were reported incorrectly (the ones with
di�erent colors at top and bottom). The reduced number of changes
in the expected behavior makes the code actually added (lines 5–6,
bottom right), much easier to spot. Describing the change in this
way might have made the pull request reviewer’s job easier. Indeed,
while reviewing the pull request, the reviewer did mention the code
in lines 5–6 (see the second comment of pull request #123 2). This
clearly indicates that the distinction between regular methods and
event handlers is important; failing to take this into account leads
to a suboptimal description of the changes. Note that Listing II
(Section 4) contains additional examples of imprecisions.

3 BACKGROUND
Source code change detection generally works at the �le level. Con-
sider two �le version pairs (�le revision pairs), the �rst describing

1the entire pull request is available at: http://tinyurl.com/ybbuh67d
2https://tinyurl.com/y9rebqnp

an older version (the original) and a newer version (the modi�ed).
We refer to the ASTs of the original and modi�ed versions, as T1
and T2, respectively.

A conceptual element ti may exist both in T1 and T2 (e.g., the
method call on lines 2 at left and right, Listing I), only in T1 (e.g.,
the IF of line 4 at left), or only in T2 (e.g., the two statements on
lines 5 and 6 at right). The original version of ti (denoted ti1) is its
occurrence inside T1, while ti2 denotes the modi�ed version of ti
inside T2. That is, ti=hti1, ti2i, ti12T1 (or ti1=ú due to ti does not
occur in T1), and ti22T2 (or ti2=ú due to ti does not occur in T2).

If ti does not occur in T1 (i.e., ti= hú, ti2i) its original version
never existed, then ti was inserted. Similarly, if ti does not occur in
T2 (i.e., ti= hti1,úi) its modi�ed version will never exist again, then
ti was deleted. If ti exists both in T1 and T2 (i.e., ti1,ú and ti2,ú),
then ti1 may be exactly or approximately equal to ti2. For example,
lines 2 at left and right are exactly equal, while the IF’s condition in
lines 3 at left and right are approximately equal. In the �rst case, the
conceptual element ti is unmodi�ed, so no change should transform
ti1 into ti2. Otherwise, ti was modi�ed, and part of the reported
changes should transform ti1 into ti2. In addition, when ti1 and ti2
belong to di�erent parents or belong to a same parent but have
di�erent positions, ti was moved (e.g., the condition on line 4, left,
moves to line 9, right).

An edit script is made of element insertions, element deletions,
and transformations (updates, moves) among elements. The edit
script describes how to transform T1 into T2 and consequently the
changes that occurred. The actions that make up the edit script de-
pend on the approach of change detection used. Classical text-based
approaches delete, insert and update textual units, such as lines
(e.g. unix di�), characters, or tokens. Tree di�erencing approaches
delete, update and insert nodes, but also move entire subtrees. We
use the tree di�erencing actions de�ned in Chawathe et al. [4].
GumTree. GumTree [9] is a SCCD approach oriented to the com-
mon sense of the developers. GumTree locates the larger modi�ed
contexts �rst, and later identi�es concrete changes. To do that,
the algorithm prioritizes the matches among bigger subtrees in a
top-down pass (comparing their hashed values and using Dice as a
tie-breaker). Subsequently, it looks for smaller matches in a bottom-
up fashion, in which it also integrates the generic tree di�erencing
algorithm RTED [22] on the smallest subtrees. GumTree works on
any source code represented as an AST, for which it needs an ad
hoc parser. The support of GumTree3 for C# relies on SrcML [5].

4 EXPLORATORY STUDY
4.1 Methodology
Project selection. In order to get a better understanding of the
issues that a�ect GumTree, we started this study by analyzing the
results of 86 �le revision pairs of the AjaxScriptToolkit project. The
analysis of the di�erences produced by GumTree is a time intensive
process, as it requires a degree of understanding of the project’s
speci�cities. In essence the person reviewing the di�erences has
to acquire some domain knowledge about a project to be able to
review it. This is why we limited our exploratory study to a single
project. Preserving domain knowledge is also the reason why this

3We use a snapshot compiled on 25-may-2017
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Listing I: MOTIVATING EXAMPLE (original at left, modi�ed at right)
GumTree’s Behavior: It mistakenly matches one method that handles a web page event (“OnInit”) with other method that is not an event
handler (“AreFileUploadParamsPresent”). This because they share a lot of original code moved there through refactorings. GumTree does
not know about conventions as the event handlers, but it relies on the heuristic that the subtrees are very similar.
1 protected override void OnInit(EventArgs e){
2 base.OnInit(e);
3 if(!IsDesignMode){
4 if(!string.IsNullOrEmpty(Page.Request.QueryString[“contextkey”])

&& Page.Request.QueryString[“contextkey”] ==
ContextKey && Page.Request.QueryString[“controlID”]
== ClientID)

5 IsInFileUploadPostBack = true;
6 }
7 }

But, “OnInit” is still present in the version modi�ed! It could have
been correctly matched by a simple mapping among same named
methods.

1 protected override void OnInit(EventArgs e){
2 base.OnInit(e);
3 if(IsDesignMode | | !AreFileUploadParamsPresent()) return;
4 IsInFileUploadPostBack = true;
5 var processor = new UploadRequestProcessor {...};
6 processor.ProcessRequest();
7 }
8 bool AreFileUploadParamsPresent() {
9 return

!string.IsNullOrEmpty(Page.Request.QueryString[“contextkey”])
&& Page.Request.QueryString[“contextkey”] ==
ContextKey && Page.Request.QueryString[“controlID”] ==
ClientID;

10 }

Expected Behavior: The second IF (line 4, left) was deleted, but its condition was moved to a new method (line 8, right). The �rst IF
(line 3, left) expanded its condition with an OR expression where the new method is called. The line 5 (left) moved to the line 4 (right). The
lines 5-6 (right) were inserted.
1 protected override void OnInit(EventArgs e){
2 base.OnInit(e);
3 if(!IsDesignMode){
4 if(!string.IsNullOrEmpty ... [“controlID”] == ClientID)
5 IsInFileUploadPostBack = true;
6 }
7 }

“OnInit” did not modify its signature, moved the parameter list and
the line 2, nor inserted and deleted the body’s punctuations.

1 protected override void OnInit(EventArgs e){
2 base.OnInit(e);
3 if(IsDesignMode | | !AreFileUploadParamsPresent()) return;
4 IsInFileUploadPostBack = true;
5 var processor = new UploadRequestProcessor {...};
6 processor.ProcessRequest();
7 }
8 bool AreFileUploadParamsPresent(){
9 return !string.IsNullOrEmpty ... [“controlID”] == ClientID;
10 }

work was carried out only by the �rst author of this paper, who
in addition to being an expert in C#, possesses expertise that the
other authors lack.
Corpus selection. AjaxControlToolkit has 466 �le revision pairs, so
we selected a subset of these for inspection. To guide our selection,
we used the intuition that �le revision pairs where GumTree pro-
duces “larger than normal” or “smaller than normal” edit scripts
may highlight cases where the algorithm has issues. This intuition
relies on the existence of a “normal”, i.e., a baseline for comparison.
A natural baseline is a textual di�erence, as opposed to the AST edit
script. Thus we computed the Levenshtein distance between the
466 �le revision pairs as a baseline. We then computed the ratio of
the edit script size divided by the Levenshtein distance to �nd out
which �le revision pairs had AST edit scripts considerably larger
or smaller than their textual edit distance. We then inspected the
24 outliers of this distribution (9 high, 15 low).

We complemented this data with a set of 14 revision pairs that
were within 10% of the median ratio value, and with an additional
random sample of 10% of the �le revision pairs (48 pairs), for a total
of 86 �le revision pairs (18% of all revision pairs).

Analysis. The �rst author then analyzed the edit script produced
by GumTree, using the swingdi� interface supported by GumTree
and going change by change, to determine whether the edit script
produced was optimal (“good”) or if it could be improved (“bad”).
The �rst author also categorized the issue in four categories de-
scribed next, and made notes of the observations about each case.
Preliminary results. Our �rst observation is that in more than
a quarter of the cases (23 out of 86: 27%), GumTree produced sub-
optimal results. The issues varied in severity, from minor issues to
major issues such as the example in Listing I.

We further determined that the vast majority of the issues af-
fecting GumTree were due to mismatches, in which GumTree’s
matching step would fail to recognize that a source code entity in
the original version was still present in the new version of the code,
for a variety of reasons (a missed match). Another, less frequent
type of mismatches is due to GumTree inferring that two distinct
entities are the same entity across versions, while they are not (a
spurious match).

While we have very limited evidence of the e�ectiveness of the
intuition described above, note that the category of high outliers
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(i.e., the edit script was comparatively larger than the textual dis-
tance) is the one for which the proportion of sub-optimal results
was highest (4 out 9, 44%), while the low outlier category had the
lowest proportion of sub-optimal results (2 out of 15, 13%). Further
study is however needed to con�rm whether this intuition holds.

4.2 Imprecisions: Causes and E�ects
Missed and spurious matches. As mentioned above, the main
reason for GumTree’s issues is due to mismatches. Recall (Section
3) that ti1 denotes a conceptual element in the original version
T1, while ti2 denotes the same conceptual element in the modi�ed
version T2. A missed match happens when GumTree does not asso-
ciate ti1 with ti2 as it should. In this case, the algorithm ignores the
existence of the conceptual element ti inT2. A spurious match asso-
ciates version ti1 of conceptual element ti with tj2 that belongs to
a di�erent conceptual element tj (ti,tj ). This means that GumTree
confuses one conceptual element (ti ) with another (tj ).
Isolated mismatches. The simplest cause of imprecision is an
isolated missed match where the algorithm partitions ti in two
versions wrongly disconnected. So, GumTree deletes ti1 and inserts
ti2 (e.g., Listing I, the conceptual IF in the lines 3). The spurious
matches also cause imprecisions themselves. Listing II, case A,
shows a Width property that was spuriously matched to a di�erent
property (UseShadow). As result, several updates are detected instead
of the expected deletion of Width and insertion of UseShadow.
Compoundmismatches. However, inmany cases, themismatches
combine with one another. A conceptual element ti can be both
the source of a missed match, and be at the same time spuriously
matched. Since GumTree failed tomatch ti1 with ti2, it may still seek
to match ti1 or ti2 with a di�erent conceptual element tj=htj1, tj2i.
This can lead to a variety of outcomes:

• If GumTree matches ti1 with tj2, it will infer that ti1 was
updated to tj2 and/or moved to the tj2’s position, and that
ti2 was inserted.

• If GumTree matches tj1 with ti2, it will infer that tj1 was
updated to ti2 and/or moved to the ti2’s position, and that
ti1 was deleted—e.g., Listing I, the method OnInit.

• If GumTree matches ti1 with tj2 and tj1 with ti2, GumTree
will issue multiple updates and/or moves.

In the worst cases, GumTreemay confuse both versions of ti with
two conceptually di�erent elements tj=htj1, tj2i and tk=htk1, tk2i;
this leads it to update ti1 to tj2 and/or move ti1 to the tj2’s position,
and to update tk1 to ti2 and/or move tk1 to the ti2’s position.

4.3 Categories of Imprecisions
The imprecisions are caused by isolated missed matches, isolated
spuriousmatches or the combination ofmissed and spuriousmatches.
By analyzing the e�ect of themismatches at a higher level, we found
four categories of imprecisions that we detail below.
Redundant Changes. Redundant changes are in principle caused
by missed matches. The consequences are a group of changes that
redo what another group of changes undo. A single missed match
may be the cause of a rather large set of redundant changes. Listing
II, case A shows an example. The missed match of Combine leads to:
1) a spurious match between GetFullPath and Combine, 2) a missed
match for outPutDir, and 3) mismatches between parentheses. This

leads to a large number of redundant changes, obscuring the real
ones (e.g. the insertion of Replace).
Spurious Changes. These are caused by spurious matches. They
take the shape of changes that transform two di�erent conceptual
elements into one another. Listing II, case B, shows an example. Two
C# properties were spuriously matched, due to their high source
code similarity. However the similarity is due to the verbose way
that these properties were de�ned. Themost relevant aspects are the
name and type of the property, which are markedly di�erent. The
correct behavior in this case is to treat these conceptual elements
as di�erent, meaning that the �rst one should be deleted, and the
second one inserted. Note that this would likely result in a larger
edit script. This con�icts with a common goal in evaluating SCCD
algorithms, which is to compare the size of their edit scripts (the
shortest one being assumed to be the best).
Arbitrary Changes. These are spurious matches that trigger trans-
formations that are extremely unlikely, as they update very di�erent
source code elements into one another. We see two examples in
Listing II, case C. The �rst is caused by the algorithm matching
two unrelated assignment operators. As a result, GumTree infers
that the operator has moved from one line to another, although
it could not reconcile the very di�erent operator arguments. The
other arbitrary match is between a string literal (a complex regular
expression) and a boolean, resulting in an unlikely update from the
expression to the boolean.
Ghost Changes. These changes involve conceptual elements that
were not modi�ed. They are side-e�ects of other changes. Ghost
changes are the black portions in the expected detection, that are
colored in the algorithm’s output (e.g., Listing I and Listing II case A).
Since they are side e�ects of the other imprecisions, the remainder
of this paper focuses on spurious, arbitrary and redundant changes.

This characterization is not exclusive. In many missed matches
at least one conceptual version is spuriously matched. Arbitrary
changes are spurious by de�nition, while some ghost or redun-
dant changes are additionally spurious. However, we separated
these kinds of imprecision to analyze them following a divide-and-
conquer approach. The next section presents a battery of heuristics
to recognize the e�ects of imprecisions, and evaluate their impact.

5 DETECTING AND QUANTIFYING ISSUES
WITH HEURISTICS

The Corpus. We built our corpus based on several sources. We
started with the projects developed by Microsoft from the .NET
Foundation 4, selecting those that were hosted on Github. We com-
plemented these by a selection of projects from three other sources:
GitHub C# Trending Projects5; Up-for-grabs6; and Open Source Mi-
crosoft 7. In all three cases, we restricted our selection to projects
having at least 1,000 commits, and 1 year of development.

Our corpus contains 143,419 �le revision pairs over 107 projects.
From 292,935 unique pairs initially extracted, we considered those
having real source code modi�cations: 147,945 (50.50%). For in-
stance, simple path renames may originate new but unmodi�ed �le

4 https://dotnetfoundation.org/
5https://github.com/trending/csharp: pp 1–5, order by stars
6http://up-for-grabs.net, tagged “C#” or “.NET”
7https://opensource.microsoft.com/, �rst 9 pages with tag “C#”

https://dotnetfoundation.org/
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http://up-for-grabs.net
https://opensource.microsoft.com/
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Listing II: IMPRECISION EXAMPLES (original at left, modi�ed at right)
Case A (Redundant changes due to missed matches): In the �rst line, the call to “Combine” failed to match, leading to a spurious
match between “GetFullPath” and “Combine”, and several entities being deleted and inserted (“Combine”, “outPutDir”), and others moved
(“�lePre�x”, parentheses). Expected behavior: second lines, left and right. This makes the actual changes (e.g., “Replace”) much easier to
see.
1 var staticFilesDirName = Path.GetFullPath(Path.Combine(outputDir,

�lePre�x));
1 var staticFilesDirName = Path.Combine(“../” + outputDir,

�lePre�x).Replace(“/”,@“\”);
1 var staticFilesDirName = Path.GetFullPath(Path.Combine(outputDir,

�lePre�x));
1 var staticFilesDirName = Path.Combine(“../” + outputDir,

�lePre�x).Replace(“/”,@“\”);

Case B (Spurious changes due to spurious matches): GumTree matches the properties “Width” and “UseShadow” since they involve
several lines of rather repetitive code. Domain knowledge is necessary to recognize which are the most important parts of the AST that
describe a property (i.e., its name). Expected behavior: The Property “Width” was deleted and the property “UseShadow” was inserted.
1 public int Width {
2 get { return GetPropertyValue(“Width”, 300); }
3 set { SetPropertyValue(“Width”, value); }
4 }

1 public bool UseShadow {
2 get { return GetPropertyValue(“UseShadow”, true); }
3 set { SetPropertyValue(“UseShadow”, value); }
4 }

Case C (Arbitrary changes due to spurious matches): Operators “=” (line 2 at left, line 4 at right) should not match, neither the string
literal (line 4 at left) and the boolean literal (line 2 at right). Some elements cannot simply match everywhere. Expected behavior: The
lines 2 and 3 were completely deleted at the left. The lines 2-4 were completely inserted at the right.
1 ... CleanAttributeValues(HtmlAttribute attribute){...
2 attribute.Value = Regex.Replace(...); ...
3 ... Regex.IsMatch(attribute.Value, “\s*e\s*x\s*p\s*r\s*e\s*s\s*s”“\s*i\s*o\s*n\s*”,

...);
4 ...}

1 ... CleanAttributeValues(HtmlAttribute attribute){
2 var hasMatch = true;
3 if(Regex.IsMatch(attribute.Value, ...)
4 hasMatch = true;
5 ...}

revision pairs. However, 4,526 (3.06%) additional revision pairs were
later �ltered out because they had only modi�cations of comments.
The curated corpus represents 48.96% of the initial one.
Heuristics. For each of the 3 categories of imprecisions we de-
scribed, we developed detection heuristics that we ran on the entire
corpus. This allows us to estimate how wide-spread each of the
issues are. We describe the heuristics in the next 3 sections.
Manual Rating. Imprecise heuristics could severely overestimate
the magnitude of the issues. To increase the precision of our es-
timates, we manually investigate a random sample of the issues
highlighted by the heuristics, to gauge their accuracy. This revision
is performed by the �rst author of the paper (a C# expert). The rater
analyzes the revision pairs of the random sample, looking at the
matches of the heuristics, rating them as:

• Correct: The source code location singled out by the heuris-
tic shows a sub-optimal behavior by GumTree, whether di-
rectly or indirectly related to the heuristic.

• Incorrect:The source code location singled out by the heuris-
tic does not show a sub-optimal behavior by GumTree.

Sampling. We calculate sample sizes according to a standard for-
mula [27]. We draw samples from the population of �le revision
pairs where each heuristic found matches, aiming for a con�dence
interval of 10% with a con�dence level of 95%. We use a 10% interval
due to the large amount of heuristics to check, to keep the workload
manageable (the rating process took several months).
Diagnostic. The �rst author took notes of observations about each
case; these are brie�y discussed in the quantitative results.

6 REDUNDANT CHANGES
6.1 Redundancy Checking
To recognize redundancy changes, it is necessary to identify the
conceptual element ti that was implicitly missed by the SCCD
algorithm. However, �guring out the matches hti1, ti2i is precisely
one of the major challenges in change detection. We simpli�ed
the problem: we check for conceptual elements that kept the same
name across the original and the modi�ed versions.

Algorithm 1 checks for redundant changes produced byGumTree.
The entry point is FindRedundantRenames. The algorithm searches
for potentially missed matches in all the changes (the delta) pro-
duced by a SCCD algorithm on a �le version pair (lines 11–12). Then
it checks combinations of changes. The intention is to recognize
names that were deleted, moved out, or updated (i.e., overwritten),
but were later (re)inserted, moved back, or (re)updated with an in-
correct new name (the incorrect new names being rather old names
that should not have been updated). Each combination de�nes one
of 10 redundancy patterns (lines 13–22, see next subsection), that is
checked by MissedNames. In addition, each combination may have
a di�erent way to test name equality, this is the third argument
passed to MissedNames’s calls on lines 13–22.

Given two changes and a way to test for equality of names,
MissedNames performs the actual test. Two conceptual element
versions ei1 and ej2, could describe the same (and hypothetically
missed) conceptual element if:

• (a) they both are of one of the types in Table 2;
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• (b) their names of interest are equal. We assume that develop-
ers rarely eliminate one element type and introduce another
semantically di�erent element with an equal name;

• (c) their names are related by one redundancy pattern pre-
sented in the next subsection;

• (d) they have one common ancestor. The name is unique in
all the well delimited syntactical scopes.

The recognition starts from lower ancestors and goes increasing
the levels until it �nds the �rst symptom of redundancy (line 7).
Matched ancestors (line 6) estimate the conceptual scopes. As they
are traversed bottom-up (line 3), it is expected that the redundancy
symptoms will be encountered on the lower matches (i.e., the small-
est conceptual scopes) delimited by GumTree. If two names are
equal and they were suspiciously changed under a same scope (line
4), they probably represent a missed match for the same conceptual
element. This fact itself is reported as a symptom of imprecision.

Algorithm 1 Redundancy checking
Require: Original and modi�ed subject versions (E1 and E2),

equal (x, �) determines if two conceptual versions are compatible.
1: function M�����N����(E1, E2, equal )
2: R  {}
3: A(z) z’s ancestors ordered bottom-up
4: for each { he12E1, e22E2 i : equal (e1, e2)} do
5: for each a22A(e2) do
6: if 9a12A(e1) such that a1 matches a2 then
7: R  R [ he1, e2 i
8: break
9: return R
10: end function

11: function F���R��������R������(�T1,T2 )
12: I, D, U , M  the elements inserted, deleted, updated, or moved

in �T1,T2, respectively.
13: return M�����N����(D, I, name(x )=name(�)) [
14: M�����N����(D, U , name(x )=newname(�)) [
15: M�����N����(D, M, name(x )=[new ]name(�)) [
16: M�����N����(U , I, oldname(x )=name(�)) [
17: M�����N����(M, I, [old ]name(x )=name(�)) [
18: M�����N����(U , U , oldname(x )=newname(�)) [
19: M�����N����(U , M, oldname(x )=[new ]name(�)) [
20: M�����N����(M, U , oldname(x )=newname(�)) [
21: M�����N����(M, M, oldname(x )=[new ]name(�)) [
22: M�����N����(M, M, oldname(x )=newname(�))
23: end function

6.2 Redundancy Patterns
ASCCD algorithmX maymismatch a conceptual element ti=hti1, ti2i
according to 10 redundancy patterns:

DI)X partitions ti in two false elements tj=hti1,úi and tk=hú, ti2i.
E�ect:X deletes ti1 and inserts ti2. For example, outputDir in Listing
II, case A. The remaining cases must follow more complex trans-
formations, of ti1 into tk2 (tk=htk1, tk2i) and/or of tj1 (tj=htj1, tj2i)
into ti2.

DU) X mismatches ti2 with a tj , where tj1’s value , ti2’s value
(a spurious match). E�ect: X deletes ti1 and updates tj1 to ti2. For
example, Combine in Listing II, case A.

Table 1: REDUNDANT PATTERNS (S: Symptoms, F: File Re-
vision Pairs)

Pattern Population % of TOTAL
S F S F

DI 95445 3922 71.01% 40.48
DU 6030 1560 04.49% 16.10
DM 2069 547 01.54% 05.65
UI 8819 3769 06.57% 38.90
MI 3361 1036 02.50% 10.69
UU 7302 1557 05.44% 16.07
UM 515 326 00.38% 03.36
MU 458 285 00.34% 02.94
MM 3270 232 02.44% 02.39
M 6978 2574 05.20% 26.57

TOTAL 134247 9688

DM) X mismatches ti2 with a tj , where tj1’s position , ti2’s
position. E�ect: X deletes ti1 and moves tj1 to ti2’s position.

UI) X mismatches ti1 with a tk , where ti1’s value , tk2’s value.
E�ect: X updates ti1 to tk2 and inserts ti2. See OnInit in listing I.

MI) X mismatches ti1 with a tk , where ti1’s position , tk2’s
position. E�ect: X moves ti1 to tk2’s position and inserts ti2. For
example, the second ( in Listing II, case A.

UU) X mismatches ti1 with a tk , where ti1’s value , tk2’s value,
and mismatches ti2 with a tj where tj1’s value , ti2’s value. E�ect:
X updates ti1 to tk2 and updates tj1 to ti2.

UM) X mismatches ti1 with a tk , where ti1’s value , tk2’s value,
and mismatches ti2 with a tj where tj1’s position , ti2’s position.
E�ect: X updates ti1 to tk2 and moves tj1 to ti2’s position.

MU) X mismatches ti1 with a tk , where ti1’s position , tk2’s
position, and mismatches ti2 with a tj , where tj1’s value , ti2’s
value. E�ect: X moves ti1 to tk2’s position and updates tj1 to ti2.

MM) X mismatches ti1 with a tk , where ti1’s position , tk2’s,
and mismatches ti2 with a tj , where tj1’s position , ti2’s position.
E�ect: X moves ti1 to tk2’s position and moves tj1 to ti2’s position.

M) X does not mismatch ti but mismatches ti ’s parent, for
instance after a DI pattern. E�ect: X moves ti1 to ti2’s position, a
side e�ect (and a ghost change) of a mismatch among the parents.
In Listing II, case A, filePrefix moves due to the missed match of
Path.Combine.

6.3 Results and Diagnostic
Overall and pattern-level analysis. Table 1 summarizes the re-
dundant names found for each redundancy patterns. The heuristics
�nd matches (S) in 9,688 �le revision pairs (F), or 6.75% of the total.
A large majority (71.01%) of the issues come from the �rst and sim-
plest pattern,DI. Gumtree simply fails to match a large number
of conceptual elements. All other patterns contribute in minor
proportions. The second most common pattern is UI, which af-
fects 6.57% of the total. Note that the amount �le revision pairs
a�ected by UI (38.90%) is almost as signi�cant as the one of
DI (40.48%). A third pattern of interest is the M pattern, a�ecting
5.20% of the elements but more than a quarter of �les (26.57%).
Since these are collateral e�ects of other redundancy patterns, we
see that some of the patterns indeed tend to spread.
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Precision of the heuristics. We evaluated the precision of the
heuristics on a per element type basis to determine whether some
element types need particular attention. Thus we divided the results
according to each (named) element type a�ected, and inspected a
sample of each (or the whole population if small enough). We clas-
si�ed the cases in true bad behaviors (Issues) or not. Table 2 shows
the results. Each column pair describes the counts of symptoms (S)
and a�ected �le revision pairs (F ). Let the accuracy a= bad cases

inspected cases ,
the con�dence interval c , and the total of modi�ed element types
(E) across the entire corpus (Corpus). We estimate imprecisions in
the corpus (%Issues) as b(a�c)/100cCorpus ⇤100 both for S and F.

The accuracy is very high overall: it hovers above 95% for most
categories, with some at 100% (since the whole population was
inspected for those). Two categories have comparatively subpar
accuracy: formal arguments (73.51%) and variables (86.94%), but
both remain high. This increases our con�dence that the heuristics
are not overstating the issue (they may understate them, as we have
no way to account for false negatives).
A�ected elements. Table 2 shows that the most frequent prob-
lems of redundant names in GumTree are in variables, �elds, and
methods. In particular, variable mismatches are widespread at the
�le level. Methods seem to have less potential mismatches, but
these may be actually more worrisome, since a mismatch at that
level may trigger further issues below it, see Listing I.

In general, the size of an element in�uences the matching be-
havior. The larger it is, the more information the algorithm has
to discover a good match. This largely explains the high accuracy
in most of the type de�nitions (classes, structs, interfaces). As the
textual extension decreases, the number of issues increases. For
instance, properties are more challenging than the type de�nitions,
but less challenging than variables or formal arguments. Another
factor is how many potential matches to choose from. There are
usually few classes, constructors, or destructors in a �le. Methods,
�elds, and variables on the other hand are numerous.
Detailed observations. From our notes, we list some particular
situations that foster imprecisions on di�erent element types:

Split or merged declarations: Listing I shows a case where the
original method splits its implementation between its modi�ed
counterpart and a new method. Alternatively, two method’s im-
plementations can be merged in one modi�ed version, while the
other is deleted. The most similar subtrees are not always the same
conceptual element, leading to mismatches.

Stub �rst, implementation later : Some elements start as stubs to
be implemented later, e.g., a method that throws an exception or
returns a constant to show it has still not been implemented. The
concrete implementation may drastically di�er from the stub, lead-
ing to a mismatch between the original and the modi�ed versions.
This mismatch may even propagate up to the ancestors, so that
their container type de�nitions do not match either.

Members moved up across a hierarchy: Due to refactorings, meth-
ods, properties and �elds can move from a subclass to a superclass.
Occasionally, the modi�ed subclass diverges from the original; the
original subclass may even look textually closer to the modi�ed
superclass. As a result, the subclass match is missed, and it may
even by spuriously matched with the superclass.

Textually dissimilar, but conceptually similar : Some changes do
not a�ect the conceptual identity of the statement. For example,
a variable declaration List<string> _parameters = new List<string>()

; may be modi�ed by adding the namespace System.Collections.

Generic to the type, or changing it to an implicit type (var keyword).

7 SPURIOUS CHANGES
Spurious changes are changes between two conceptually di�erent
source code elements. They happen when the algorithm spuriously
matches them, and as a consequences “forces” the conversion of
one source code element into the other.

To detect potential spurious changes, we measure the amount of
changes a�ecting a given entity, and pinpoint entities that change
“too much”. The heuristic computes a transformation coe�cient
for each entity, and for entities that are usually stable (have few
changes), reports outliers that have much more changes.
Transformation Coe�cient. Let the in-actions be the insertions,
updates or moves a�ecting one original conceptual version, and
the out-actions be the deletions or moves from it. We de�ned a
transformation coe�cient as the ratio between in-actions and out-
actions, �ltering out the elements that were entirely inserted or
deleted (i.e., in�actions � 0 and out�actions � 0 is required).
Finding Outliers. Intuitively, in the element types where the trans-
formation coe�cient is stable, coe�cients higher than a certain
threshold may highlight imprecisions. We computed the transfor-
mation coe�cientCi j (tj , hT1i ,T2i i) for each element type tj in each
�le revision pair hT1i ,T2i i. Subsequently, we averaged these coef-
�cients to inhibit the in�uence of large �le revision pairs. To pick
the transformation coe�cient threshold C(t), we used the method
of Oliveira et al. [21] to compute thresholds of the form “80% of the
systems in the corpus should have C(t)  M”.
Results. The results are shown in Table 3. We apply the heuristic
only to elements where the threshold is over 80%. We �nd that
23.78% of �le revision pairs may have spurious change according to
the heuristic. However, a preliminary manual inspection shows that
the accuracy of the heuristic is lower than for redundant changes.
Out of 243 �le revision pairs inspected, 164 were indeed rated as
spurious (67%). Assuming a representative sample, we estimate that
16% of �le revision pairs could be subjected to spurious changes,
still an important portion. While GumTree economizes transforma-
tions by moving subexpressions from deleted statements (e.g., from
method calls), the conceptual expressions moved are not always
good matches, but rather arbitrary updates.

8 ARBITRARY CHANGES
Arbitrary changes are particularly spurious matches that foster
transformations that are particularly hard to believe.While conduct-
ing the exploratory study, we kept notes of particular transitions
between speci�c elements or element types, and systematically
searched for them. We de�ned 9 such heuristics. During our man-
ual inspection, we posed two questions to evaluate the credibility of
a change. First, Does the change express an action a developer would
do? e.g., an operator or a parenthesis moving from one method
to a conceptually di�erent method is rarely credible according to
this criterion. Converting a boolean to another type is also unlikely.
Then, Does the change have a believable semantic? e.g., a rename
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Table 2: REDUNDANT NAMES PER ELEMENT TYPES (S: Symptoms, F: File Revision Pairs)

Types Population Sampling Issues Accuracy ± Con�dence (95%) Corpus %Issues
S F# S F S F S F E F E F

destructors 5 5 5 5 5 5 100% 100% 163 103 03.07% 04.85%
struct 151 13 151 13 151 13 100% 100% 2015 1602 07.49% 00.81%

enum values 278 58 96 36 96 36 100% 100% 4965 1000 05.60% 05.80%
interface 32 26 32 26 32 26 100% 100% 1741 1437 01.84% 01.81%
enum 94 92 94 92 94 92 100% 100% 5146 4794 01.83% 01.92%
class 955 352 133 83 128 81 96.24% ± 03.00 97.59% ± 02.89 120230 100796 00.74% 00.33%

constructors 1100 510 137 85 132 83 96.35% ± 02.94 97.65% ± 02.94 19167 12767 05.34% 03.78%
property 2809 539 961 42 951 40 98.96% ± 00.52 95.24% ± 06.19 37645 13785 07.34% 03.47%
�eld 7737 684 502 73 475 70 94.62% ± 01.91 95.89% ± 04.31 13147 6090 54.55% 10.28%

formal args. 8829 866 268 75 197 53 73.51% ± 05.20 70.67% ± 09.55 145268 40825 04.15% 01.30%
methods 43740 3952 306 115 294 115 96.08% ± 02.17 100% 256648 91631 16.00% 04.31%
variable 25994 4789 245 107 213 104 86.94% ± 04.20 97.20% ± 03.09 43550 14797 49.38% 30.45%
TOTAL 134247 9688 2897 680 2644 654 91.27% 96.18%

Table 3: SPURIOUS CHANGES IN STABLE ELEMENT TYPES (S: Symptoms, F: File Revision Pairs)

Types C(t) Population Sampling Issues Accuracy
p% M S F# S F S F S F

condition 80 - 0.50 3622 2400 40 22 28 18 70.00% 81.82%
init 84 - 0.50 6333 3924 32 28 17 14 53.13% 50.00%

expr_stmt 86 - 0.50 13237 6874 34 23 18 13 52.94% 56.52%
decl 84 - 0.46 12992 7292 45 34 32 26 71.11% 76.47%
name 80 - 0.09 21631 8421 38 24 26 17 68.42% 70.83%

argument 84 - 0.34 24179 10057 34 22 26 17 76.47% 77.22%
method 85 - 0.61 15915 11085 71 45 38 27 53.52% 60.00%
call 85 - 0.34 30514 12255 130 75 71 47 54.61% 62.67%

TOTAL 355441 34110 424 243 256 164 60.38% 67.49%

between two elements should involve elements with semantically
consistent names and capture the intention of developers.
Results. The heuristics are shown in Table 4. Our manual analysis
shows an accuracy of 82% at the �le level, allowing us to estimate
that 8.5% of �le revision pairs may have arbitrary changes pin-
pointed by our heuristisc. Most of the times, these are textually
optimal but semantically imprecise or controversial.

Renames between instance expressions (“this” and “base”) and
simple names (e.g., of variables or methods): The instance expressions
are represented in SrcML’s trees as simple names and they can
match indiscriminately with simple names, for example of variables,
�elds, properties, or methods.

Arbitrary updates, for example between boolean and non-boolean
literals, or null literal and arbitrary names. These literals may even
move among unrelated scopes (e.g., di�erent methods). A surprising
number of built-in types are updated from, or to user types. In prac-
tice, many of them are spurious and arbitrary changes. Classifying
packages might help, but requires C# knowledge.

Arbitrary renames among incompatible element types: The re-
names must respect the semantic relationship between the old
name and the new name. Sometimes, there are updates among
type names that are conceptually incompatible. These violate a gen-
eral rule: two elements should match if at least they are of a same
type. For instance, GumTree may rename a method call with the

name of an accessed property. There are exceptions to this general
rule: some types are compatible, such as a variable switching to a
�eld, but handling these cases however requires knowledge of the
programming language.

9 DISCUSSION
Space for improvement. The estimated extent of our heuristics
show that there is space for improvement over GumTree: more than
6% of �le revision pairs were highlighted by our redundant change
heuristic. Spurious changes could a�ect 16% of �le revision pairs,
and 8.5% of �le revision pairs could be a�ected by arbitrary changes.
These values do not consider false negatives, and a pair may exhibit
several mismatches. Furthermore, methods appear to be a�ected
by redundant changes. These changes to high-level source code
entities could have a larger impact, as shown in Listing I.
Edit scripts are not enough. Spurious and arbitrary changes are
caused by the SCCD algorithm �nding a match between elements
that should not exist. A possible reason for this is that a common
evaluation metric for SCCD algorithm is the size of the edit script
that it produces. In some cases, a spurious match may actually
produce a smaller edit script than a correct absence of match (issu-
ing updates rather than a set of deletions followed by insertions).
Barabucci [2, 3] argues that the edit script is not necessarily the
best metric, and proposes additional metrics.
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Table 4: ARBITRARY UPDATES (S: Symptoms, F: File Revision Pairs)

Between Population Sampling Issues Accuracy
S F# S F S F S F

base and simple names 370 259 40 33 35 29 87.50% 87.88%
false and non-boolean literals 886 540 27 25 25 23 91.67% 92.59%
true and non-boolean literals 865 588 28 21 27 20 96.43% 95.24%

non-boolean but di�erent literals 2833 1238 36 22 36 22 100% 100%
di�erent simple names 2431 1441 33 23 29 21 87.88% 91.30%
this and simple names 3310 1479 65 42 59 39 90.77% 92.86%
null and simple names 2399 1567 61 45 45 36 73.77% 80.00%

system and user type names 17166 7259 161 94 113 70 70.19% 74.47%
operators 17160 7488 169 96 121 73 71.60% 76.04%
TOTAL 47422 14766 620 352 490 289 79.03% 82.10%

Tree-based vs Language-based. Two generic conceptual versions
should match if they share enough information. In tree di�erenc-
ing this holds if their similarity overcomes pre-determined metric
thresholds (in the case of GumTree, obtained through hashing and
Dice comparisons). However, this favors the most similar subtrees
even in contexts apparently better resolved by language rules and
development conventions, such as Listing I. This makes GumTree
fail in several patterns of refactoring, such as extracting methods.

More speci�c information could improve matching. Embedding
in the algorithm knowledge of speci�c language rules (e.g., event
handlers are more similar than other methods) could prevent spu-
rious matches. Other examples include: increasing the weight of
the name of properties (Listing II, case B); recognizing system pack-
ages and compatible types; recognizing this and base; reducing the
weight of access modi�ers. This suggests a new approach in SCCD:
be more language-aware, and not only tree-aware.
Per-element matching. Following the previous recommendation
to the fullest, a way to reduce the number of mismatches could be
to make the matching polymorphic according to the element type.
The elements vary not only in the type, but also in the average size
of their contents (with an impact on performance, see Table 2), the
naming conventions, their syntactical structure, or their semantic
role. Di�erent elements are modi�ed with distinct frequencies and
in distinct ways. State of the art SCCD algorithms such as GumTree
and Change Distiller [10] are limited in this regard: They propose
SCCD strategies based on whether the element to match is a tree
leaf or an internal node, or the size of the subtree below it.

Tuning the matching procedure to the type of elements would
allow to select the best matching techniques for each one, vary-
ing, for instance: the similarity techniques (e.g., monograms [4] or
bigrams [10, 29]; hashing [9, 13], Dice [9], or longest common subse-
quence [4]); the testing thresholds (static [4, 9] or dynamic [8, 10]);
and discriminant parts (e.g., [29]).

10 LIMITATIONS
Preliminary study. Our preliminary study was conducted on a
single system to gain and preserve knowledge about the system.
Other systems may have di�erent issues. On the other hand, our
corpus for the follow-up study is much larger than the one used in
related work (3 systems for [10], 16 systems for [9]), which increases

our generalization in another dimension. During the manual in-
vestigation of a random sample on those 107 systems, we did not
encounter cases of issues that seemed drastically di�erent than
what we observed during the preliminary study.
GumTree speci�c. Our diagnostic is speci�c to the current behav-
ior of GumTree and not of any other algorithm nor con�guration.
Our heuristics will detect the same issues on other algorithms;
comparable results would indicate similar issues. A preliminary
exploratory study as we did in Section 4 would be needed to ensure
additional issues do not a�ect other algorithms.
GumTree’s support for C#. The support of GumTree for C# has
some limitations stemming from the ASTs produced by SrcML. We
detected two of those that we were able to work around. Comments
were not associated with the entities that they described, but with
their parents, resulting in a large number of ghost moves; we �ltered
out the comments and re-processed the data. Some enum declara-
tions contained nested classes, which caused redundant changes
in enum values. These cases were �ltered out from the heuristics,
although they may a�ect some elements that SrcML nested under
the enums. While we mitigated the impact of these two issues,
there might be additional issues we did not detect. We think this is
unlikely, as we have done an extensive amount of manual analysis
and have not detected anything else, but we cannot exclude it out-
right. We note that this outlines an additional limitation of SCCD
algorithms: their sensibility to the topology of the AST, topology
that is rarely documented in the papers.
False positives. Our analysis may su�er from false positives re-
turned by heuristics. This could lead us to overstate the importance
of the issues. To mitigate this, we manually evaluated the output of
the heuristics, �nding that redundant changes were generally very
accurate, with spurious and arbitrary changes somewhat less so.
An additional issue is that the rating was done by the �rst author
only—however, the �rst author is the only author to possess the
required C# experience to reliably do this rating.
False negatives. Our heuristics may not return all the impreci-
sions, leading us to understate the importance of the issues. Some
spurious changes may satisfy the relative thresholds of our spurious
change heuristic. Moreover, redundant changes are not exclusive
to elements with identical names. Algorithm 1 can be customized,
for example to support more �exible forms of matching to re�ect
this. The redundant change heuristic also likely su�ers from false
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negatives due to the �ltering out of elements nested under enums
by SrcML. Thus, it is likely that the “space for improvement” over
GumTree that we identi�ed is greater than our estimate.
Imprecise symptoms. The symptoms of redundancies can be im-
precise. Ideally, each should describe a single mismatch. However,
in some cases, several mismatches combine together (e.g., an UM
pattern and an UU pattern). In other cases, several conceptual ele-
ments can be simultaneously redundant if they have equal names
but belong to di�erent scopes. The most commonly a�ected ele-
ments are variables and �elds. For example, n variables may exist
with the same name in di�erent methods. The heuristic does not
discriminate and may report in the worst case n2 symptoms instead
of n (if all variables changed at once). Since variables may be moved
among di�erent methods, these situations cannot be automatically
resolved. We mark an issue as a true bad behavior if at least one of
the versions is truly involved in a bad behavior. This may lead to
overestimating some symptoms in Tables 1 and 2, particularly for
variables and �elds. We thus refrain from making strong conclu-
sions about the number of symptoms. The number of �les is not
a�ected by this issue.

11 RELATEDWORK
11.1 Change Detection
Change detection in trees. Zhang and Shasha [30] introduced an
early algorithm to compute the edit distance between two trees.
Chawathe et al. [4] introduced the preliminary notions and algo-
rithms of change detection in hierarchically structured information
(e.g., Latex documents), splitting the general problem in the match-
ing phase, and the minimum conforming edit script subproblems.
Pawlik and Augsten introduced RTED [22], one of the best algo-
rithms to detect the minimum-cost edit script on ordered, labeled
trees. RTED is agnostic to the syntax and the kind of the nodes;
it can detect incompatible changes, such as updates between two
di�erent kinds of nodes. This is why algorithms extending it, such
as GumTree, must �lter its output.
Source code change detection. Beyond GumTree [9] that we
covered extensively, other algorithms have been developed. UmlDi�
by Xing and Stroulia [29] reports design changes for attributes or
dependencies between packages, classes, interfaces, methods and
�elds. They combine name-based with structure-based measuring
and identify a taxonomy of changes. Neamtiu et al. [19] report
changes at the level of the AST, comparing types and variable names.
The approach fails when there are a lot of changes and the ASTs
being compared have very di�erent shapes. Fluri et al. [10] show
the limitations of Chawathe et al.’s approach when applied to source
code. They then adapt the algorithm to source code by changing
its matching criterion and similarity computations. Hashimoto and
Mori [13] present Di�/TS, a tool supporting �ne-grained analysis;
it extends the work of Zhang and Shashas [30] with control based
on heuristics related to a given programming language. A recent
addition to the state of the art is the work of Dotzler and Philippsen
[7], which introduces generic optimizations to tree di�erencing
algorithms to more precisely detect moves.

Barabucci et al. [3] argue that the size of the edit script is only
one aspect with which to measure the quality of a change detection

algorithm. They introduce additional metrics that measure other
aspects, that may be more adequate for di�erent usage scenarios.

11.2 Beyond change detection
Several approaches address some of the shortcomings of change de-
tection, many via post-processing edit scripts. These could likely be
improved by higher quality edit scripts. Origin analysis approaches
focus on detecting entities that were split or merged [11]. Sev-
eral approaches (too many to list) detect refactorings in software
repositories—an early example is the approach by Weissgerber and
Diehl [28]; a more recent one is RefDi� [25]. Hora et al. studied
how often refactorings threatened to break the continuity of en-
tity histories, �nding it very common [15]. Missed matches have
the same e�ect, while spurious matches may lengthen the entity’s
history. Kim and Notkin detect systematic changes [18] that can
be described more succinctly by rules (e.g., add a method to an en-
tire class hierarchy). Kawrykow and Robillard detect non-essential
changes, changes in edit scripts beyond refactorings that do not
a�ect functionality [17]. Herzig and Zeller separate the tangled
changes in logical units of functionality [14].

Others proposed radical departures from the status quo. Nguyen
et al. proposed a versioning system that stores the structure of
object-oriented programs, rather than merely its source code as
text [20]. A follow-up version also explicitly stored refactoring
operations [6]. Apel et al. proposed an intermediate solution, the
semi-structured merge, where the higher level of the structure is
used for merging, with text below it [1]. Others advocated recording
changes as they were made to a system, instead of storing versions
[24]. The systematic mapping study of approaches using �rst-class
changes by Soetens et al. [26] provides a comprehensive overview.

12 CONCLUSIONS
Source Code Change Detection algorithms are an essential building
block for many MSR approaches. Any imprecision that they have
may be ampli�ed in subsequent steps. As such, improving SCCD
is an important goal in MSR. We presented an empirical study
characterizing the limitations of GumTree, a state of the art SCCD
algorithm. We �rst applied GumTree to one C# software system.
An exploratory study in which we manually analyzed the issues
present in GumTree edit scripts found that 27% the 86 �le version
pairs we analyzed were not optimal.

We then classi�ed the imprecisions in four categories: redundant,
spurious, arbitrary, and ghost changes. For each category (except
ghost changes), we developed detection heuristics. We applied the
heuristics on a corpus of 107 C# systems, manually rated their
precision, and estimated the extent of imprecisions in the corpus.

The imprecisions pointed out by the heuristics were common
enough that there are opportunities to improve GumTree. In partic-
ular, our results indicate that GumTree has issues in the matching
phase; a matching phase tailored to the speci�c element types to
match may yield promising results. GumTree, and other SCCD
algorithms, mostly treat source code as “just an AST”, and do not
consider many language features. We are currently actively work-
ing on the development of a SCCD approach that is tailored to the
speci�cities of the C# programming language, to improve on the
state of the art in SCCD.
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