Mining a Change-Based Software Repository

Romain Robbes
Faculty of Informatics
University of Lugano, Switzerland

Abstract

Although state-of-the-art software repositories based on
versioning system information are useful to assess the evo-
lution of a software system, the information they contain is
limited in several ways. Versioning systems such as CVS
or SubVersion store only snapshots of text files, leading to a
loss of information: The exact sequence of changes between
two versions is hard to recover. In this paper we present an
alternative information repository which stores incremen-
tal changes fo the system under study, retrieved from the
IDE used to build the software. We then use this change-
based model of system evolution to assess when refactor-
ings happen in two case studies, and compare our findings
with refactoring detection approaches on classical version-
ing system repositories.

1 Introduction

The nature of information found in software repositories
determines what we can infer from it. Conversely, informa-
tion missing from a software repository hampers the quality
of the research we perform: What is stored in a repository is
of prime importance. However, another characteristic limits
the choice of source code repositories: the number of avail-
able case studies[12]. This pragmatic reason explains why
researchers base themselves on popular repositories such
as CVS and SubVersion despite their limitations. Indeed,
most open source projects give free access to their reposito-
ries, including industrial-size case studies such as Apache,
Eclipse, Mozilla or Linux.

This large availability comes with a price. Versioning
systems are designed to be used in a variety of contexts and
hence must lower their assumptions about the objects they
version. CVS and SubVersion — the most popular version-
ing systems in the open-source world — only assume that
the objects they version are files. They are thus used in a
variety of situations, from source code files to system doc-
umentation or binary files. Even if Estublier ef al. write
in [6], that one of the next steps for versioning systems

research is to break the assumption of language indepen-
dance, this is not yet the case in practice. We claim that
these assumptions are too weak for researchers to perform
precise research on source code evolution. Basing an anal-
ysis only on the successive versions of a source tree of code
files implies a heavy pre-processing to raise the abstraction
level beyond files and directories. Versioning systems have
another limitation degrading the quality of the information
they contain: They only update their repositories when a
developer explicitly checks in his work. Ideally, updates to
the repository should come often to be as small and precise
as possible, but this cannot be guaranteed.

This paper explores the benefits and drawbacks obtained
by breaking the assumption that a popular repository must
be used. We instead created a software repository designed
to store a maximal amount of information about an evolving
piece of software. In particular, we do not use a versioning
system, but built from the ground up a change-based soft-
ware repository which fetches domain-specific information
from an Integrated Development Environment (IDE). Being
change-based means that the evolution of a software system
is not modelled as a sequence of versions anymore: Using
an IDE allows us to store, as first-class citizens, the actual
changes which were performed on the system to obtain its
latest version. This model better matches the actual evolu-
tion of a system since we reproduce how developers actually
change the system.

To validate our approach we chose to study when a par-
ticular kind of changes, namely refactorings, are applied to
a software system, based on two case studies. We compare
the findings of this application of our approach with other
work in which refactorings are detected in a classical ver-
sioning system repository.

Structure of the paper. Section 2 details the limita-
tions of versioning systems as evolutionary data reposito-
ries. Section 3 shows how the change-based repository we
implemented addresses these concerns. Section 4 shows a
concrete application of our approach: An analysis of the fre-
quency of refactoring operations in two case studies. Sec-
tion 5 discusses our approach while Section 6 concludes the
paper and outlines future work.

2 Limitations of Versioning Systems

Versioning systems, especially those chosen for their
popularity among developers such as CVS and SubVersion,
have two shortcomings which limit the amount of informa-
tion we can recover from them: They are file-based and
snapshot-based [12] [2].

A file-based versioning system versions files and lines.
Since all documents in a computer are represented as files,
a file-based versioning system can version anything. This
lowest-common denominator approach has allowed file-
based versioning systems to become ubiquitous, relagating
domain-specific versioning systems to niche markets.

However, text files are a poor medium to perform precise
source code analysis. A heavy pre-processing must be per-
formed to raise the abstraction level beyond file and lines:
parsing every version of the system to build a model of it,
and then linking these models together to obtain the over-
all history of the system in terms of versions. This process
needs parsers and dedicated tools, and is costly in terms of
implementation and computing time.

Snapshot-based versioning systems store updates in their
repositories as deltas between two snapshots of the system.
They do so when a developer commits to the versioning sys-
tem. The issue is that the larger the delta between two ver-
sions is, the harder it is to distinguish individual changes.
Since versioning systems only rely on notifications from the
developer, they cannot guarantee small deltas.

Most developers submit their changes only when a task
is finished or at the end of their working day. Hours or days
can go by during which the versioning system is not noti-
fied of changes. When a commit is finally issued, it will
have aggregated all those changes in a single transaction.
Changes tend to get muddled together: It becomes hard
to distinguish between them, especially if they were per-
formed at the same location. Furthermore, it is not possible
to determine if a change such as a method addition has been
performed at once or in a series of incremental steps in the
same session, if only the start and the end point are known.
The exact sequence of changes is lost.

A futher consequence for evolution research is these two
effects reinforce each other with the practice of version
sampling. Text-files imply a heavy pre-processing: Often,
not all versions of a system are taken into account for analy-
sis, but only a fraction. Hence the size of the deltas between
the retained version grows much larger. Sampling is a com-
mon enough practice that it was included as a requirement
of Kenyon[1], a framework for evolution analysis.

3 Change-based Software Repositories

In a change-based repository the history of a software
system is not viewed as a sequence of versions, but rather

as the sum of change operations which were necessary to
bring the system to its actual state. These operations can
not be deduced with enough precision by differencing two
arbitrary program versions [10]. Instead they are recovered
by monitoring the IDE usage of programmers while they are
building the software. Building a change-based repository
involves the following steps:

Program represention. How we represent a software sys-
tem in a change-based repository to match the problem
domain as closely as possible.

Change operations. What constitutes a change operation
on a software system, and how to abstract from the
lower-level details when they are not needed.

Data retrieval. How to retrieve change operations from an
evolving system, using an IDE.

3.1 Program Representation

Our repository stores programs as domain-specific enti-
ties rather than text files. Since we focus on object-oriented
programs, the entities we store and analyse are object-
oriented constructs such as classes and methods, not files
and lines. Entities of the problem domain are first-class
citizens that can be directly accessed and intereacted with,
rather than being first parsed, then pre-processed.

Our approach thus represents systems as evolving ab-
stract syntax trees (AST) of their object oriented programs.
At various levels of the AST, we find packages, classes,
methods, variables and finally statements nodes, as shown
in Figure 1. A node a is a child of a node b if a contains b
(a superclass is not the parent of a subclass, only packages
are parents of classes). Nodes have properties. These prop-
erties vary with the type of node being considered, such as:
for classes, name and superclass; for methods, name, return
type and access modifier (public, protected or private, if the
language supports them); for variables name, type and ac-
cess modifier.

This abtract syntax tree represents one state of the pro-
gram, i.e., one state the program went through during its
evolution. Each entity also has a change history contain-
ing all change operations applied to it during the system’s
evolution.

3.2 Change Operations

Change operations represent the actual evolution of the
system under study: They are actions a programmer per-
forms when he changes a program, which are captured, rei-
fied and stored in our repository. Change operations enable
us to transition from one state of the evolving system to
the next. Some examples of change operations are: adding

[Package A] [Package B] Package C

) o) Cowr)

- 3 [JT

[private int x] [public void foo(int y)]

Figure 1. Programs are represented as ab-
stract syntax trees

a class to the system, removing a method, moving a class
from one package to another, changing the implementation
of a method, or performing a refactoring. We support to
kinds of operations: atomic and composite change opera-
tions.

3.2.1 Atomic Change Operations

Since we represent programs as abstract syntax trees,
change operations are, at the finest level, operations on
the program’s AST. These operations consist of creating,
adding, or removing a node in the AST, as well as changing
properties of a node:

Creation: creates a node » for an entity of a given type ¢.
Addition: adds a node n as a child of a given parent p.
Removal: removes a node n from the childs of its parent p.

Property change: changes the value v of a property p of
node n.

Atomic change operations are executable. By iterating
on the list of changes we can generate all the states the pro-
gram went through during its evolution. In that sense, these
operations are sufficent to model the evolution of programs.

3.2.2 Composite Change Operations

Even if atomic change operations are enough to model the
evolution of programs, the finest level of granularity is not
always the best suited. Representing the entire evolution of
a system only by its atomic modifications would lead to an

overwhelming mass of information. An abstraction mech-
anism is necessary. Hence change operations are compos-
able, and can be grouped into higher-level change opera-
tions associated with a more abstract meaning. For exam-
ple, moving a class from one package to another consists in
first removing it from the old package, and then adding it
to the new package. These two change operations can be
grouped in a single, higher-level move class change opera-
tion.

We can see the change-based history of a system as a
tree. Its leaves are the fine-grained change operations men-
tioned above, while the root node represents the entire his-
tory of the system, as one change operation. Inbetween are
several levels of increasingly coarser-grained change oper-
ations:

Developer-level actions: This set of changes constitute a
unit from the developer’s point of view . For example,
changing the definition of a class, adding or changing
a method are such changes. Developer-level actions
can contain several atomic changes: A method addi-
tion contains changes related to the creation and the
addition of the program statements within it.

Refactorings: Refactorings [7] are behavior-preserving
code transformation aimed at improving the design of
source code. The rename method refactoring involves
changing the method’s name, and also all the refer-
ences from the old method name to the new one. These
developer-level actions can be grouped in a higher-
level entity representing the refactoring itself. In the
same fashion, the extract method refactoring replaces
a section of code from a method with a call to a newly
created method containing this code fragment. These
two changes can also be grouped to form a higher-level
change.

Bug fixes: A bug fix would consist of all the changes nec-
essary to fix a given bug being grouped and labelled as
such.

Development sessions: This change aggregates all the
changes done during a single development session by
a developer, be they bug fixes, refactorings or devel-
oper actions. This is the closest in term of size with a
commit extracted from a versioning system.

Features: This higher-level abstraction would be com-
posed of all the lower-level changes which were nec-
essary to build a given feature of the system.

With such a decomposition of the evolutionary data, the
user can explore it by “drilling down” to interesting parts,

'Note that some of these actions can be performed automatically by
IDE tools — such as generating accessor methods — but are still classified
at this level.

using interactive tools. He or she can start from a high-
level view of the entire system’s history and arrive to a
lower-level view focused on the evolution of a smaller set
of closely-related classes, in a given period of time.

In the case study of the article we focus on some of these
higher-level changes that have been already implemented
in our prototype: developer-level actions, refactorings and
development sessions.

3.3 Data Retrieval

Viewed from the mindset of a versioning system user,
there is no reason why the approach we propose should get
more precise data if the same strategy is used. This is cor-
rect. Capturing a more accurate evolution of the system,
including refactorings, with a good amount of precision re-
quires a new data source. Hence the data repository we de-
vised does not rely on versioning system data, but on the
interaction with an Integrated Development Environment
(IDE).

The strategy used by versioning systems, which is to wait
for the developer to submit his or her changes to the reposi-
tory, does not capture the information necessary to build ac-
curate change operations. The core issue is that versioning
systems let the developer notify them of changes, instead
of taking a more proactive approach. We can adopt such
an approach by using an IDE, which can be open to exter-
nal contributors by means of a plug-in mechanism [15] [17].
Examples of open IDEs includes Squeak? and Visualworks®
for the Smalltalk language, Eclipse* and IntelliJ IDEA for
the Java language.

IDEs maintain a internal high-level representation of
the code they manage. They exploit it to offer several
language-dependent tools to increase programmer produc-
tivity, such as abstracted source code views — beyond the
normal source-level, text based view —, refactoring and au-
tocompletion. They also feature event mechanisms which
allow the IDE to react to the programmer’s activity.

These mechanism can by exploited by tools to closely
monitor a system’s evolution, with the following advan-
tages:

e User activity can be processed as it happens. Large
deltas between versions is what makes it hard to dis-
tinguish between changes. On the contrary being noti-
fied of individual changes means that the deltas are as
small as possible, giving much more context for each
change and easing the tracking of entities. If an en-
tity is renamed, and is then heavily changed, it is much

Zhttp://www.squeak.org
3http://smalltalk.cincom.com
“http://www.eclipse.org
Shttp://www.jetbrains.com/idea

easier to keep track of it if the changes are processed
separately rather than together.

e Time stamps can have an up to the second precision,
whereas in a versioning system’s repository only the
time stamp of the transaction is kept.

e It is possible to be notified of a variety of events to
make the analysis more precise. For example refactor-
ing tool usage can be monitored, as well as code navi-
gation or execution errors. If an interface to a version-
ing system is present in the IDE, it can be monitored
too. This allows to easily delimit the stream of change
operations in sessions.

3.4 Implementation

We have implemented our approach in an IDE plug-in
for the Squeak Smalltalk environment, under the moniker
“SpyWare” ¢ (Figure 2). SpyWare currently monitors the
activity of the IDE user and store code modifications in
a change-based repository, alongside other useful infor-
mation, such as refactorings or navigation paths through
the code. SpyWare also allows to exploit this information
through interactive data reports and visualizations. It also
can regenerate the code of the project at any given point in
time, and offers dedicated code browsers for this task.

XE Spyllare @o
opengrowser]|araphics | exploreMogel|choosemadel] changeViewer | changeList
: Project | on: 2086-84-84T80:01:57.00:00 »o

th Level 100;

Ranged createSearingereath.

Figure 2. SpyWare’s Ul

4 Case Study: Applications of Change-Based
Mining

We have already performed some preliminary case stud-
ies on several student projects we monitored with an earlier
version of our prototype [14] [13], but without considering
refactorings. We focus on the relation between development
sessions and refactorings in the following case study.

Shttp://romain.robb.es/spyware/

4.1 Refactoring Detection

Locating refactorings is important since it permits to
characterize phases of development of a system, a useful
tool to assess a system’s evolution. Weissgerber ef al. list
other uses in [16], including detecting errors and replaying
changes.

Several works perfom refactoring detection based on
conventional software repositories [16] [3] [4]. They anal-
yse successive versions of a software system in order to de-
tect which refactorings have been employed between ver-
sions. The most recent approaches, Weissgerber et al. and
Dig et al. still feature several restrictions:

e The focus is on refactorings which change the interface
of classes, such as rename method, push up method
or add parameter. Other refactorings operating at the
method body level are not detected (extract method,
rename temporary , etc.).

e These approaches works best when the entities are not
modified by other changes in the same session. Weiss-
gerber and Diehl use clone detection to match method
bodies in case of renames, but a method which is both
renamed and has a portion of its code removed using
extract method would be harder to detect.

e In the same way, if a method body is modified by non-
refactoring operations before or after a refactoring, the
detection of the refactoring is more difficult.

e Weissgerber looks for comments in the CVS log file to
find areas where refactorings were performed and em-
pirically assess its precision, while Dig bases himself
on release notes. There is no way to know which refac-
torings happened and accurately measure the precision
of the approaches: The lookup is manual.

4.2 Case Study Questions

The main problem of refactoring detection approaches is
the noise induced by other changes performed in the same
locations as the refactorings. Our approach is not affected
by this since it leverages the IDE to record refactorings per-
formed via tools rather than attempting to detect them.

This refactoring log combined with our general change-
based model allow us to empirically study when and how
refactorings are actually applied. We test if situations when
refactorings are performed on heavily changing code — the
hardest one to detect — happen frequently in practice.

Specifically, our case study answers the following ques-
tions:

e What kind of refactorings were used? Are they
interface-changing refactorings detected by other ap-
proaches?

e Were several refactorings applied to the same entities
in the same session, making them harder to detect?

e Were refactorings performed alongside other changes,
complicating their detection in the process?

We study two different systems. The first is our proto-
type itself. It has been monitoring itself since its inception,
and can track refactorings applied to it since a few months.
The other case study comes from an independent developer
who allowed us to monitor him on one of his projects for
several months. It is a web application which we will refer
to as “Project X” for privacy reasons.

4.3 Types of Refactorings Performed

Table 1 lists the different types of refactorings performed
on the two systems. The first part of the table lists refactor-
ings which have a large impact on the interface of the class,
such as changing a method signature or renaming a method.
The second part lists refactorings which have a little impact
on class interfaces (adding or removing a single method to
a class), while the third part contains refactorings which do
not change the interface of a class, only its implementation.

[Type of Refactorings | Spyware [ProjectX |
Add Parameter 6 0
Push Up Method 5 45
Rename Class 3 0
Rename Method 10 0
Abstract Instance Variable 0 1
Push Up Instance Variable 0 5
Total 24 (28%) 51 (54%)
Extract Method 37 0
Extract Method to Component 2 0
Inline Method 1 0
Total 40 (47%) 0 (0%)
Extract Expression to Variable 6 0
Inline Temporary 3 0
Rename Instance Variable 4 1
Rename Temporary Variable 5 42
Temporary to Instance Variable 3 0
Total 21 (25%) 43 (46%)
[Total Number of Refactorings [85 [94]

Table 1. Types of refactorings performed

The refactorings detected by Weissgerber et al., or Dig et
al., are all in the first category. We see that the first category
constitutes 30% of the refactorings in SpyWare, whereas
method-level refactorings refactorings (second or third cat-
egory) constitute 70% of the refactorings. Project X is dif-
ferent: no methods were renamed or extracted. A majority
of refactorings were either push-up method or rename tem-
porary. A large half of the refactorings were interface-level
refactorings, the being at the method-body level. It is inter-
esting to notice that a few marginally popular refactorings

in study 1 are overwhelmingly used in study 2: Refactorings
habits seem to vary wildly among developers.

4.4 Multiple Refactorings During Sessions

Refactorings applied in large numbers over a single de-
velopment session are interesting since they carry the risk
that multiple refactorings are applied to the same entity.

Table 2 shows result in agreement between the two stud-
ies: a majority of sessions do not feature refactorings at all.
In the rest, twice as many sessions feature a low number of
refactorings, but the ones having a large number of refactor-
ings have the majority of refactorings performed, between
59 and 80 percent of them.

Number of refactorings | Spyware Project X
per session

[0 [63 (712%) [111 (87%)]
1 7 5
2-4 10 5
Total 17 (20%) 10 (8%)
Total Refactorings 35 (41%) 19 (20%)
5-9 5 3
10-19 2 1
20-29 0 2
Total 7 (8%) 6 (5%)
Total Refactorings 50 (59%) 75 (80%)
Total number of sessions | 87 127
Total number of refac- | 85 94
torings

Table 2. number of refactorings per session

4.5 Refactorings and Method Modifications

We computed how often a method was involved in sev-
eral refactorings and found differing results for each case
study. For Project X, no method was involved in several
refactorings. In our prototype however, we found 28 oc-
curences of these: Most were affected only two or three
times, but a few methods were affected by four or five refac-
torings. Sessions tended to have several methods associ-
ated with several refactorings. Refactorings such as extract
method and extract expression to temporary often were ap-
plied several times to one method, as well as inlining refac-
torings: 15 times in total.

We also computed how often a method was refactored
and also changed by other means in our two studies. The
results are summed up in Table 3. A method was considered
heavily modified if it was modified (i.e., recompiled) more
than 3 times during a session outside of refactorings.

Table 3 tells us that: (1) a sizeable amount of methods
were involved in refactorings but were modified, rendering
the detection of this fact more difficult. Less than half of

the methods were only refactored in SpyWare, and nearly
30% changed heavily. Project X is more positive: three-
quarters of methods were refactored without other modifi-
cations. This is due to the high number of push-up method
refactorings, whereas our project contains much more ex-
tract method than push up method refactorings. (2) two-
third to 80% of methods involved in refactorings were cre-
ated in the same session: Without preliminary data on the
method, it is much more difficult to know if it was involved
in a candidate refactoring.

Method Evolution Char- | Spyware Project X
acteristic

[Changed Overall [590 [1587
Involved in Refactorings 150 62
Involved and Not | 72 (48%) 47 (76%)
Changed
Involved and Changed 35 (23%) 7 (11%)
Involved and Heavily | 43 (29%) 8 (13%)
Changed
Involved and Created 101 (67%) 50 (80%)

Table 3. Number of refactorings per method
per session

4.6 Conclusions

In a project where refactorings are at the interface-level —
such as Project X —, it seems much easier to detect refactor-
ings, corroborating the results found in practice by other ap-
proaches. However, when refactorings at the method body
level occur — such as in SpyWare —, they tend to come in
groups and cause more body-level modifications, rendering
them much harder to detect. Incidentally, they are not the
focus of most refactoring-detection approaches. As for the
usability of our repository, its accuracy and change-based
model allowed us to query the data in a straightforward way,
as shown in the high-level data we extracted. We think a
change-based representation supporting composition is well
suited for this type of analysis.

5 Discussion

This section discusses our contribution according to: (1)
the advantages and drawbacks of our approach with respect
to classical and popular versioning systems, namely CVS
and SubVersion; (2) its relationships with the general field
of software configuration management research, and partic-
ularly change-based versioning systems; and (3) a discus-
sion of the findings of our case study.

5.1 Change-based versus snapshot-based reposi-
tories

Our approach has the following characteristics:

It is Domain-specific: We treat object oriented concepts
such as classes and methods as first-class citizens. No
pre-processing is necessary to recover these entities.
It is hence easier to reflect at the level of classes and
methods. On the other hand, our apprach is harder to
adapt to other programming languages and IDEs since
a significant porting effort has to be undertaken.

Less information loss: Each change has a precise time
stamp information up to the second, whereas change
information in a versioning system only keeps the time
stamp of the actual commit to the repository. This
allows us to recover the exact sequence of changes
employed during each developement sessions. In the
same fashion, monitoring an IDE enables us to record
events such as refactorings rather than detecting them.

Changes are first-class citizens: Changes are explicitely
modelled and easily accessible. An abstraction mecha-
nism allows changes to be considered at several levels.
In the case studies of this paper we primarily chose the
abstractions of development sessions and refactorings
as basis for our work.

Rare case studies: Since the information stored by our ap-
proach was previously discarded, we can not use the
same case studies as other approaches. This is a major
drawback which limits us to a few case studies and
future project. So far we have monitored 9 student
project, our prototype and Project X. We hope to ex-
pand our pool of possible projects soon. This requires
a port of our tools on more popular platforms, such as
the Eclipse/Java platform.

Memory and speed requirements: Our approach main-
tains a fine-grained model of a system’s evolution. Its
requirements in terms of processing power are thus
higher than other, lightweight approaches. Perfor-
mance has not been a concern so far, so it is not op-
timized. Still, we need to test our approach with larger
systems to know how it scales.

Non-code repositories: Bug databases and e-mail archives
are also important sources of information we have not
discussed. We have not yet researched how to link then
with the information found in our repository.

5.2 Relations to Software Configuration Manage-
ment

One could think we are trying to implement a new kind
of versioning system to support our task. Although we
share several concepts with the SCM community, we are
not building a SCM per se, for the following reasons:

e SCM systems do much more than just storing data
about a software system. They must detect con-
flicts between versions, provide configuration selec-
tion, handle derived versions and much more. We are
only interested in modelling the evolution of a system
at a fine-grained level.

e The main drawback of our approach is the lack of case
studies. Providing an SCM replacement would add a
barrier to entry and discourage potential users: Devel-
oper tend to keep their SCM choices for a long time.
CVS has been in use for 15 years now, and starts only
now to be replaced by SubVersion, mainly because
SubVersion is an improvement over CVS but is still
largely compatible. We see ourselves as complement-
ing rather than replacing current versioning systems.

[2] details the sub-field of change-based versioning sys-
tems. These range from conditional compilation, to full-
featured systems such as EPOS[8]. The idea is to build
a system from change sets rather than versions of ob-
jects. Considering change sets as first class citizens per-
mits much richer configuration possibilities. However the
change granularity they consider is the feature level, which
is much coarser than ours. These systems also adopt the
checkin/checkout philosophy of state-based versioning sys-
tems and so have the same information loss problem. An ex-
ception is operation-based merging [11], which explicitely
stores change operations, but is very theoritical and does not
tell where or how to get these operations, or what they con-
sist of. Moreover its focus is explicitely software merging:
It lacks features to support program comprehension through
evolution.

5.3 Refactoring Case Study

Henkel et al. [9], Ekman et al. [5] also record refac-
torings. In addition, the idea of refactoring logs is being
adopted by mainstream IDEs: Frameworks to support these
activities are developed for Eclipse. We are however the
only one to our knowledge to include refactorings in a more
general framework aimed at modelling in detail the evolu-
tion of software systems.

Our limited amount of case studies means that we cannot
reproduce the conditions of the experiment of Weissgerber
and Diehl. A direct comparison is not possible since the

precise information our approach requires was not recorded.
We can only perform an approximate comparison by using
alternative case studies, and comparing the usage patterns
of these studies. This raises the questions of the relevance
of our comparison.

However, we believe the figures we have stress the limits
of refactoring detection in software archives. In the case
studies we took, several refactorings were undertaken in
parts of the system which were heavily modified in the same
session, rendering further detection hard. As the habits of
using refactoring tools becomes commonplace, such behav-
ior might increase, making the task difficult to accomplish
without IDE help. Even if people do not use our full-fledged
approach, we believe the use of refactoring logs can be a
valuable insight to refactoring detection tools and provide
an objective benchmark to measure tool accuracy.

Refactoring detection approaches have a sizeable advan-
tage over ours: they can detect refactorings performed man-
ually, something we cannot do at the moment. A possible
extension of our work is to detect manual occurences of
refactorings as well. We believe that analysing sequences
of changes can yield some interesting results in this respect,
but have yet to validate this theory.

6 Conclusion

In this paper we presented the principles behind a
change-based repository and how they can address some
of the limitations of more classic software repositories to
perform software evolution. By monitoring IDE usage in-
stead of relying on the checkin/checkout model of version-
ing systems, a change-based repository can capture more
accurate information about an evolving system, and repre-
sent its evolution as a sequence of changes rather than sev-
eral successive versions. We implemented our ideas and
used one of these repositories to assess how often situations
in which refactoring detection tools — based on versioning
system repositories — have problems really occur.

Our work can be extended in the following ways: (1) de-
tecting manual occurences of refactorings alongside those
performed with automatic tools; (2) we want to study in
more details what happens during a development session in
order to characterize them; (3) we want to widen the usage
of our tool and the case studies available by promoting it
and porting it to more popular developer platforms.

References

[1] J. Bevan, J. E. James Whitehead, S. Kim, and M. God-
frey. Facilitating software evolution research with kenyon.
In Proceedings of the 10th European software engineering
conference, pages 177-186, 2005.

(2]

(3]

(4]

(3]
(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]

R. Conradi and B. Westfechtel. Version models for soft-
ware configuration management. ACM Computing Surveys,
30(2):232-282, June 1998.

S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. In Proceedings of the ACM Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’00), pages 166—178,
2000. Also appeared in ACM SIGPLAN Notices 35 (10).
D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Auto-
mated detection of refactorings in evolving components. In
D. Thomas, editor, ECOOP, volume 4067 of Lecture Notes
in Computer Science, pages 404—428. Springer, 2006.

T. Ekman and U. Asklund. Refactoring-aware versioning in

eclipse. Electr. Notes Theor. Comput. Sci., 107:57-69, 2004.
J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber. Impact of soft-
ware engineering research on the practice of software con-
figuration management. ACM Transactions on Software En-
gineering and Methodology, 14(4):383-430, Oct. 2005.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

B. Gulla, E.-A. Karlsson, and D. Yeh. Change-oriented
version descriptions in epos. Softw. Eng. J., 6(6):378-386,
1991.

J. Henkel and A. Diwan. CatchUp!: capturing and replaying
refactorings to support API evolution. In Proceedings Inter-
national Conference on Software Engineering (ICSE 2005),
pages 274-283, 2005.

M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In MSR ’06: Proceed-
ings of the 2006 international workshop on Mining software
repositories, pages 58—64, 2006.

E. Lippe and N. van Oosterom. Operation-based merging. In
SDE 5: Proceedings of the fifth ACM SIGSOFT symposium
on Software development environments, pages 78-87, New

York, NY, USA, 1992. ACM Press.

R. Robbes and M. Lanza. Versioning systems for evolution
research. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), pages 155—
164. IEEE Computer Society, 2005.

R. Robbes and M. Lanza. An approach to software evolution
based on semantic change. In Proceeding of FASE 2007,

page to appear, 2007.

R. Robbes and M. Lanza. A change-based approach to soft-
ware evolution. In ENTCS volume 166, issue 1, pages 93—
109, 2007.

D. Cubrani¢ and G. Murphy. Hipikat: Recommending perti-
nent software development artifacts. In Proceedings 25th
International Conference on Software Engineering (ICSE
2003), pages 408—418, New York NY, 2003. ACM Press.

P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In ASE '06: Proceedings of the 21st
IEEE International Conference on Automated Software En-
gineering (ASE’06), pages 231-240, 2006.

T. Zimmermann, P. Weilgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In 26th
International Conference on Software Engineering (ICSE
2004), pages 563-572, Los Alamitos CA, 2004. IEEE Com-
puter Society Press.

