
The Robot Operating System: Package Reuse and
Community Dynamics

Pablo Estefoa, Jocelyn Simmondsa,1, Romain Robbesb, Johan Fabryc

aDepartment of Computer Science, University of Chile
bFaculty of Computer Science, Free University of Bozen-Bolzano

cRaincode Labs

Abstract

ROS, the Robot Operating System, offers a core set of software for operating
robots that can be extended by creating or using existing packages, making it
possible to write robotic software that can be reused on different hardware plat-
forms. With thousands of packages available per stable distribution, encapsu-
lating algorithms, sensor drivers, etc., it is the de facto middleware for robotics.
Like any software ecosystem, ROS must evolve in order to keep meeting the
requirements of its users. In practice, packages may end up being abandoned
between releases: no one may be available to update a package, or newer pack-
ages offer similar functionality. As such, we wanted to identify and understand
the evolution challenges faced by the ROS ecosystem. In this article, we report
our findings after interviewing 19 ROS developers in depth, followed by a focus
group (4 participants) and an online survey of 119 ROS community members.
We specifically focused on the issues surrounding package reuse and how to
contribute to existing packages. To conclude, we discuss the implications of our
findings, and propose five recommendations for overcoming the identified issues,
with the goal of improving the health of the ROS ecosystem.

Keywords: Robot Operating System, Package Management, Software
Ecosystems

1. Introduction

Control programs for robots are complex pieces of software, usually both
concurrent and reactive, making them hard to write and debug [1]. This type
of software is also intrinsically probabilistic: sensors are not perfect, actuators
suffer from wear-and-tear, etc. [2]. At the same time, robotics projects require

∗Corresponding author. Address: Beauchef 851, Santiago, Chile.
Email addresses: pestefo@dcc.uchile.cl (Pablo Estefo), jsimmond@dcc.uchile.cl

(Jocelyn Simmonds), rrobbes@unibz.it (Romain Robbes), johan@raincode.com (Johan
Fabry)

Preprint submitted to Journal of Systems and Software October 2, 2018

deep expertise in diverse areas (e.g., mechatronics or computer vision), so de-
velopers are not necessarily software engineers. However, they do face software
engineering (SE) challenges. For example, early work by Nesnas et al. [3] and
Brog̊ardh [4] focus on the architecture of robotic applications: how to organize
robotic software into reusable modules, as well as make it scalable, respectively.
More recent work has focused on the challenges introduced by working in multi-
robot environments [5] and cyber-physical systems [6]. Additional SE challenges
arise when developing real time systems [7], as well as robots that must interact
with humans [8, 9], where safety and teamwork are important issues.

Several middleware frameworks have been proposed to manage the many
challenges faced in robotics, such as the Robot Operating System (ROS) [10], the
Yet Another Robot Platform (YARP) [11] or the Open Robot Control Software
(OROCOS) [12]. These middleware frameworks all offer an abstraction layer
between the hardware and application layers, providing hardware manipulation
primitives that hide the heterogeneity of the underlying hardware, as well as
help manage the communication between robots. This approach has proven to
be effective at accelerating robotic software development, and with more than
140 robots (humanoids, drones, cars, etc.) on the officially supported list, ROS
is considered the de facto standard for robot programming.

As an open source project, ROS relies on the contributions from developers
all over the world. ROS applications communicate using a publish-subscribe
architecture, where the goal is to enable non-experts to quickly build software
that includes sophisticated functionality such as path planning, object recogni-
tion and grasping. ROS also provides a package management system to simplify
code reuse, so developers can contribute their own applications back to ROS in
the form of packages. There are now 2,711 packages available on the ROS web-
site1. The ROS community meets at the yearly ROSCon conference, with more
than 450 attendees in 2017 2. Furthermore, the ROS Community Metrics Re-
port lists 5,875 and 14,774 registered users respectively for ROS Wiki and ROS
Answers (Q&A site) [13].

As such, ROS meets the definition of a software ecosystem – a collection
of software projects which are developed and evolve together in the same envi-
ronment [14] – where projects are ROS packages and the applications built on
top of them. This means that we can study ROS from a software ecosystem
viewpoint, such as the works of German et al. [15] and Decan et al. [16] have
done for the statistical programming ecosystem centered around the R language.
In particular, we want to study the package mechanism, which has become a
significant hurdle in the development of ROS applications. For example, badly
documented packages can be hard to reuse. Some packages become “orphans”3,
i.e., they are only available for a previous distribution of ROS and are not be-

1Number of packages by September 19th, 2018: 2018. http://repositories.ros.org/

status_page/melodic_default.html. Accessed: 2018-03-13
2ROSCon 2017: 2017. http://roscon.ros.org/2017. Accessed: 2018-03-13
3Orphaned Package, ROS Wiki: 2017. http://wiki.ros.org/OrphanedPackage. Accessed:

2018-03-13

2

ing actively maintained. However, the problem is not always limited to the
packages themselves: in the history of ROS, there have been planned breaking
changes between distributions that made several packages obsolete4. As such,
we propose the following research questions for this study:

RQ1: What difficulties do users encounter when reusing ROS packages?

RQ2: How do users contribute to the ROS ecosystem?

RQ3: What are the main contribution bottlenecks in the ROS ecosystem?

In order to shed more light on this issue and the other issues affecting ROS
users, we conducted a series of 19 semi-structured interviews of ROS users,
followed up by a focus group (4 participants) as well as a confirmatory on-line
survey (119 participants). An analysis of the collected information uncovered
the following challenges with respect to packages: 1) package reuse is not as
easy as promised: bugs and lack of basic documentation hamper reuse, 2) a
large amount of packages end up being abandoned by their developers, and 3)
the lack of an active package maintainer affects the normal flow of contribution
in the community. We also uncovered 4 challenges that affect contributors: 1)
they do not have time to contribute, 2) they are not confident in the quality of
their possible contributions, 3) they think that their contributions may be too
specific for the general community, and 4) they are unaware of the contribution
workflow. All of these challenges affect the resilience of the ROS ecosystem,
both in the short- and long-term.

To address these challenges, we make five recommendations to the ROS com-
munity: 1) Identify and Predict Abandoned Packages, 2) Provide an Informa-
tive Package Repository, 3) Recommend contribution opportunities to qualified
community members, 4) Limit breaking changes and 5) Motivate and encour-
age community contribution. The goal of these guidelines is to minimize the
consequences of absent package maintainers. The guidelines were designed tak-
ing into account the contribution challenges that we identified. We also discuss
ways in which these recommendations can be followed by the ROS community.

Structure of the paper. Section 2 discusses related work, and Section 3
presents background information on ROS and its community. Section 4 explains
the methodology we followed to carry out our study. Section 5 discusses selected
results from the interviews, focus group and online survey, focusing on package
reuse and community dynamics. Section 6 discusses the contribution bottle-
necks that we discovered and in Sect. 7, we present our recommendations for
overcoming these bottlenecks. Section 8 presents the limitations of this study.
Finally, we conclude this work in Sect. 9.

4ROS Hydro Migration guide, ROS Wiki: 2015. http://wiki.ros.org/hydro/Migration.
Accessed: 2018-03-13

3

2. Related Work

We have divided the related work into 2 subsections. We first give an
overview of empirical studies on how other communities develop software (see
Sect. 2.1), and then of existing work on SE for robotics (see Sect. 2.2).

2.1. Empirical studies of SE in specific communities

Several studies have been performed to learn more about SE issues in spe-
cific contexts or for specific communities. For example, Murphy-Hill et al. [17]
studied video game developers at Microsoft, finding that compared to a more
traditional setting, creative imperatives made it more difficult to implement
automated testing. Another study of video game developer by Washburn et
al. [18], extracted lessons learned and best practices from an analysis of 155
“post-mortem” documents (i.e., what went right and what went wrong during
development) that were published on gamasutra.com.

End users have also been studied. Given the large number of people that
use spreadsheets, Hermans et al. [19] defined code smells for spreadsheets, im-
plementing a tool to detect and present these code smells to users. They also
studied code duplication in spreadsheets, especially focusing formulas that are
copied as data instead of formulas; these copies may not be updated when one of
them changes [20]. Stolee et al. [21] analyzed web mash-ups that were developed
using Yahoo! Pipes, finding issues with reuse, evidenced by the large amount
of duplication between existing programs. A similar study by Burlet et al. [22]
focused on computer musicians using visual programming languages. They also
found a very high amount of code duplication, along with differences in activity
patterns, compared to traditional open-source software development.

Users of the Scratch programming language, which is popularly used to
teach computational thinking, have also been studied. Aivaloglu and Her-
mans [23] carried out a controlled experiment to understand the impact of code
smells. They found that long methods hindered the subject’s understanding
of a program, while code duplication made it harder for subjects to modify
their programs. Code duplication in Scratch has also been studied by Robles et
al. [24], by analyzing a large repository of Scratch programs; they found that
code cloning was extensive in this repository.

Several of the references in this section focus on code duplication. A prelim-
inary study of code duplication in the ROS ecosystem, focusing specifically on
ROS launch files, indicated that this practice is also prevalent in ROS [25].

2.2. SE for Robotics

SE for Robotics studies the practice and challenges to software development,
when robots are present. One journal specifically focuses on this topic: the
Journal On Software Engineering for Robotics (JOSER) with seven volumes. In

4

addition, the first edition of the RoSE5 workshop was held at the International
Conference on Software Engineering 2018.

We found three studies that are similar in focus to ours, which we discuss
in this section. HAROS is a framework for quality assurance of ROS reposi-
tories, presented by Santos et al. [26]. The approach executes a static analysis
rule checker on ROS repositories, in order to uncover faults and defects in ROS
systems. They found that code is overly complex, that there is insufficient docu-
mentation and that the community is not concerned with standards compliance.
A later study [27] shows that the community is concerned about the quality of
ROS software, although they are not following their own standards.

Curran et al. [28] analyzed the impact and health of ROS packages in the
ecosystem, instrumenting ROS core functionality in order to collect information
about package execution. The impact that a package has on the ecosystem is
calculated by counting direct and indirect dependencies, and package health is
calculated by measuring how much time has elapsed between the latest update
and activity on the issue tracker. The authors created a website to show this
information to maintainers and contributors, so that maintenance efforts can be
directed to packages with a high impact but low health.

At ROSCon 2017, Dittrich et al. [27] presented their preliminary findings
about quality assurance practices in the ROS ecosystem. They interviewed ROS
community members6, finding that: 1) there is a lack of package maintainers,
and consequently a problem of unmaintained packages; and 2) dependency errors
are the second most frequent source of bugs in packages, and are often detected
late in the development cycle. They also found that newcomers are not familiar
with the quality practices defined by the ROS community.

3. The ROS ecosystem

In this section we give an overview of the ROS concepts necessary for this
work, and we also describe the community behind ROS.

3.1. The Robot Operating System (ROS)

The goal driving the ROS project is to decouple robotic software from the
hardware, making ROS applications robot-agnostic. Thus, from an architectural
point of view, ROS is a middleware layer that resides between existing operating
systems on specific robotic platforms, and user-created applications. This means
that robots with equivalent hardware features can run the same applications
after minor modifications. As such, ROS is available for a wide variety of robots:
mobile robots, manipulators, autonomous vehicles, humanoid robots, unmanned
aerial vehicles (UAV), among others.

51st International Workshop on Robotics Software Engineering (RoSE’18): 2018. https:

//sselab.de/lab9/public/wiki/RoSE18/index.php. Accessed: 2018-03-13
6The number of interviewees was not provided.

5

Table 1: Release and end-of-life (EOL) dates for the last 7 ROS distributions, as well as the
number of available packages (# Pack.) and authors/maintainers (# AM) for each distribu-
tion.

ROS Distribution Release date EOL date # Pack. # AM
Melodic Morenia May 23, 2018 May, 2023 788 277
Lunar Loggerhead May 23, 2017 May, 2019 856 294
Kinetic Kame May 23, 2016 Apr., 2021 2509 699
Jade Turtle May 23, 2015 May, 2017 1361 384
Indigo Igloo Jul. 22, 2014 Apr., 2019 3210 837
Hydro Medusa Sept. 4, 2013 May, 2015 2110 509
Groovy Galapagos Dec. 31, 2012 Jul., 2014 2256 557
Fuerte Turtle Apr. 23, 2012 – 2728 732

ROS applications are modeled as networks of nodes, which are processes that
are in charge of particular tasks, such as controlling actuators, running navi-
gation algorithms, processing images, publishing sensor data, etc. These nodes
communicate through channels called topics. Following a publish-subscribe ar-
chitecture, nodes publish messages through these channels, and nodes subscribe
to the channels that have the data that they need. In other words, ROS applica-
tions are graphs of nodes connected by topics. This architecture is quite flexible,
since new nodes can be added without updating the rest of the application.

ROS provides hardware abstraction and commonly-used functionality in
robotics, which are available as ROS Packages. The ROS Wiki7 defines a
package as a piece of software that encapsulates useful functionality in a way
that is easy to reuse (e.g., sensor drivers, software for planning and controlling
robot motions, etc.). A package may contain ROS nodes, ROS-independent
libraries, datasets, configuration files, etc..Thus, it can contain different types
of files: source code (mainly C++ and Python), package definition files, build
files, launch files, sets of parameter values, documentation files, and other ROS-
related files, such as the physical description of a robot. In the rest of this
article, when we refer to packages, we mean any package that is not part of the
ROS core8.

The ROS architecture and package system have led to ROS’ success: ROS
has become the de facto platform for robotic software. Table 1 shows the num-
ber of packages for the last 7 ROS distributions9. These numbers vary between
distributions because some maintainers port their packages to a newer distribu-
tion (in the case of breaking changes), some maintainers abandon their packages,
and new packages also appear. Up until Kinetic Kame, every distribution ex-
cept Jade Turtle had at least 2,000 packages. We posit that, since Jade Turtle
is between two long-term support (LTS) distributions, some maintainers may
have decided to port Indigo Igloo packages directly to Kinetic Kame, skipping

7Packages - ROS Wiki: 2015. http://wiki.ros.org/Packages. Accessed: 2018-03-13
8ROS core stacks, GitHub : 2011. https://github.com/ros. Accessed: 2018-03-13
9Data obtained from the ROS website: 2018. http://www.ros.org/browse/list.php. Ac-

cessed: 2018-03-13

6

Jade Turtle altogether. Kinetic Kame is the currently recommended version,
with both Lunar Loggerhead and Melodic Morenia under development, so the
lower numbers for these last two distributions are expected.

3.2. The ROS Community

There is an active community supporting ROS. A group of users – ROS
core and package developers, and tools maintainers – also play the role of Com-
munity Managers. This team consists of both volunteers and employees of the
Open Source Robotics Foundation10. Some of their duties are: manage the
ROS communication channels, lead the process of ROS Enhancement Propos-
als (REPs)11 development, implementation and dissemination, and organize the
yearly ROSCon conference12, among others. We now describe the main com-
munication channels used by this community. To begin with, ROS Answers13

is a Q&A website that follows the same format as Stack Overflow . This is typ-
ically the main channel that users rely on when trying to solve problems. This
channel currently has 22,247 users (22% increase since 2017), who have posed
42,360 questions, of which 69.09% have been answered14.

Mailing lists are mostly used by package maintainers and community man-
agers for announcements (releases, important fixes, etc). ROS Discourse is a
forum site (launched Feb. 2016), where topics regarding the future of ROS are
discussed. This website is mainly used for discussing more advanced topics, tar-
geting experienced users, package maintainers and community managers, and
is meant to replace the mailing lists. As of Oct. 201815, this website has over
31,000 users and approximately 14,300 discussion topics. Typical activity on
this website, measured over a month (Sept. to Oct. 2018), involves approxi-
mately 880 posts and 470 active users.

Most packages are hosted on the GitHub platform. ROS documentation16

recommends the use of the Issues section of the package repository for communi-
cation between developers and users, where questions and bugs can be reported
and solved by directly interacting with the package owner. The number of
packages available for each distribution, as well as the number of contributing
developers, are available in Tab. 1.

Finally, many specific libraries, which in some cases are older than ROS itself,
have their own sub-communities, which mostly interact through web forums. A
sub-community is usually a subset of the larger ROS community that gravitates
around certain specific library, framework or hardware set. Some examples of

10Open Robotics: 2017. http://www.openrobotics.org/. Accessed: 2018-03-13
11REP Purpose and Guidelines: 2017. http://www.ros.org/reps/rep-0001.html. Ac-

cessed: 2018-03-13
12ROSCon 2018: 2018. http://roscon.ros.org/2018/. Accessed: 2018-03-13
13ROS Answers: 2017. http://answers.ros.org. Accessed: 2018-03-13
14ROS Community Metrics Reports July 2018: 2018. http://wiki.ros.org/Metrics. Ac-

cessed: 2018-03-13
15About Discourse.ros.org - Site Statistics: 2018. https://discourse.ros.org/about. Ac-

cessed: 2018-03-13
16Tickets, ROS Wiki: 2017. http://wiki.ros.org/Tickets. Accessed: 2018-03-13

7

these are: the Point Cloud Library (PCL)17 community or the PR2 robot18

community. ROS users and contributors often interact with members of these
sub-communities, who are commonly members of the ROS community.

4. Research Methodology

As discussed in Sect. 2.2, existing studies of the ROS ecosystem have fo-
cused on different aspects, like code quality, package dependencies and quality
assurance practices. We began our study of the ROS ecosystem in 2016, inter-
viewing 19 developers that use ROS for their robotic projects. The goal was
to identify pain points in the ROS ecosystem, so as to focus our study. As
such, we asked a broad range of questions about the interviewees’ background
and general opinion about ROS, the perceived learning curve, both positive and
negative experiences using ROS, knowledge about the offered communication
mechanisms, and finally, the software artifacts and developer roles involved in
a typical robotics project. The interview questions are listed in Appendix A.

Most of the negative feedback given by the interviewees was about package
abandonment and reuse, which is touted as one of the main advantages of the
ROS ecosystem. These topics go hand in hand with community dynamics, since
packages are built, maintained and used by community members. We carried
out a small focus group (4 participants) in order to discuss the following topics
in more depth: package abandonment and reuse, quality concerns with respect
to package reuse, ways of participating in the ROS ecosystem, and contribution
opportunities that are being missed.

The feedback gathered from both the interviews and focus group was used
to identify the 3 research questions stated in Sect. 1: RQ1) What difficulties do
users encounter when reusing ROS packages? RQ2) How do users contribute
to the ROS ecosystem? and RQ3) What are the main contribution bottlenecks
in the ROS ecosystem? We carried out an open online survey of ROS users in
order to answer these questions. The survey questions are listed in Appendix B,
the goal is to identify pain points in the ROS ecosystem that can be mitigated
through community action.

In this section, we discuss two methodological aspects: how we picked the
participants for each part of this study, and how we analyzed the collected data.
The limitations of this study, as well as threats to validity, are discussed in Sect. .

4.1. Research Participants

We first interviewed developers and scientists working on robotics projects.
Each interview was performed in person, with an average duration of one hour.
The first author of this article, who carried out the interviews, is based in Chile
and travelled to France for a research visit. For these reasons, we contacted
the directors of the main robotics laboratories in Chile and France in order to

17Point Cloud Library (PCL): 2017. http://pointclouds.org/. Accessed: 2018-03-13
18PR2 robot: 2017. http://willowgarage.com/pages/pr2/overview. Accessed: 2018-03-13

8

recruit interviewees. We ended up with 19 participants, these both agreed to
be interviewed and were available during the periods when the interviews were
conducted (Chile: Mar. to Aug. 2016, France: Sept. to Nov. 2016). Seven
of these belong to a robotics laboratory at the University of Chile, the rest to
robotics laboratories located in France. None of those interviewed maintain a
public ROS package.

In the case of the focus group, we recruited participants from a robotics
laboratory at the University of Chile. We contacted people that belong to the
Mechanical or Electrical engineering departments, so as to avoid people with a
SE background. We chose 4 people that had some experience using ROS, and
were willing and available to participate. Note that 2 of these participants were
interviewed in the previous step of this study.

Finally, the survey was available to answer online through the Survey Mon-
key platform. Participants of the interview were invited to take the survey
through an e-mail. An open invitation to participate was published in a post19

in ROS Discourse and shared on Twitter and through ROS-related mailing lists
(e.g. ROS Industrial). We got 119 responses, received up to August 21, 2017.
The survey was voluntary and all answers were treated anonymously. The only
requirement to participate was to have some experience using ROS. Most partic-
ipants are affiliated to a university (58%), followed by institutions in the private
sector (24%) and research centers (13%). Less than 3% claim not to be affiliated
with an institution.

4.2. Data Analysis

We collected demographic information about the interviewees: the level of
experience in robotics and ROS. The participants’ background also varied, with
participants working in vision, human-robot interaction, multi-robot environ-
ments, perception, autonomous vehicles, among others. The interviews were
recorded and the audio was manually transcribed. We followed an open cod-
ing process of these transcriptions, analyzing 4,075 sentences and tagging 2,673
with a primary code and 1,195 with a secondary code, from a universe of 257
possible codes that emerged from the coding process. We wrote memos – sum-
maries – about several topics that emerged from the data. The memo writing
process started with the identification of the related codes, which allowed us to
identify the parts of the interviews that were relevant to a specific memo. The
first author performed the coding process and wrote the memos, with regular
iterative feedback by the remaining authors.

Since we obtained the most negative feedback about Package reusability,
Package abandonment, Community bottlenecks during the interview process, we
focused on these topics during the focus group. This activity was guided by the
first author of this article, lasted 3 hours and was held near the end of June

19Invitation post in ROS Discourse: 2017. https://discourse.ros.org/t/

participants-for-a-survey-on-collaboration-and-package-reuse-in-ros/. Accessed:
2018-03-13

9

2017. The focus group was also recorded, and then manually transcribed by the
first author. The comments made by each participant were grouped into one
of the following subtopics: Expectations about packages, Debugging, Package
Configuration, Abandoned Packages, Community Interactions and Causes of
missed contribution opportunities, which are subtopics of the 3 interview topics
we focused on. We wrote a memo for each subtopic, again this effort was lead
by the first author, with regular iterative feedback by the remaining authors.

Finally, for the online survey, we derived 22 questions from our 3 research
questions. These questions can be grouped into 5 parts. The first part asks for
demographic information: type of institution (e.g., University, Private Sector,
etc.), country, background in robotics, level of ROS experience and background
in SE. In the second part, we asked about their experience reusing ROS pack-
ages, their degree of dependence on packages, and their degree of familiarity
with Abandoned Packages (presented in Section 6.2). The third part focused
on package abandonment, asking about reasons for package reuse failure and
artifacts that support package reuse. The fourth part asked about contribution
activities: types of contributions made by the participant, obstacles that they
encountered when contributing. We also asked participants to indicate support
systems used (e.g., ROS Answers, ROS Wiki, mailing lists, etc.), as well as rea-
sons for not sharing questions about ROS with the community. The final part
of the survey asks the reasons why a participant chose not to answer a question
posed by a community member, e.g., on ROS Answers or Stack Overflow.

5. Results

In this section, we report the data collected in this study. Each interviewee
has been assigned a numerical id. Findings are contrasted with results from
the survey. We classified the interviewees according to their level of experience
with ROS: Beginner (Beg), Intermediate (Int) or Advanced (Adv). Beginners
have up to 1 year of ROS experience and/or only use basic ROS features. An
Intermediate user has 1 - 3 years of ROS experience, has explored more ad-
vanced ROS features (e.g., complex communication mechanisms), and can also
read/write package files. Finally, an Advanced user has four or more years of
ROS experience. These users also work with advanced ROS features and may
have also written packages from scratch. Advanced users also have very specific
questions about the packages they use, usually contacting package authors to
solve issues. Survey participants were only classified according to their amount
of experience with ROS, as we lack additional information. The distribution of
participants is presented in Tab. 2. Note that almost a quarter of the survey
participants reported no SE background, 34% had taken courses, and 42% claim
to have a strong SE background.

5.1. Package Reuse Experience

When developers need a new feature, developers use a search engine to look
for an existing package that implements the feature. The majority of our sur-

10

Table 2: Distribution of participants by level of experience using ROS.

User Type # Interviewees # Survey participants
Beginner 3 (16%) 31 (26%)
Intermediate 9 (47%) 39 (33%)
Advanced 7 (37%) 40 (41%)
Total 19 (100.00%) 119 (100.00%)

veyed participants have tried to reuse at least one community maintained pack-
age (95%) and depend on them (92%). Half of them have some or major20

dependencies to these packages, so they are highly sensitive to variations in
ecosystem health. The question was intentionally broad, with the goal of allow-
ing users to specify dependencies as they perceive them.

Once a candidate package is found, the next step is to integrate it and
test it. This includes downloading, compiling, installing, configuring, launching
and monitoring the execution of the package (details in Sect. 5.2). Note that
the integration phase is prone to failure: 71% of surveyed participants reported
failures here (details in Sect. 5.3). When this happens, users look for help, trying
to integrate the package using the knowledge gained from the ROS community
(expanded in Sect. 5.4).

This search and integrate cycle is repeated until the expected behavior is
obtained, or the developer realizes that it is not technically feasible to integrate
the package. The following testimony by an advanced interviewee showcases the
types of problems found reusing packages:

We had a deadline some weeks ago. We [decided to] use ROS Control to move
the robot around and we couldn’t understand what was happening. Even now
we don’t get why we got this weird issue. The robot was so jerky so we wanted
to stop it. [...] We looked at the code many times and just couldn’t get it.
And then we said: OK, let’s forget about ROS Control, but a week before the
deadline we rebuilt everything and it worked. — I17,Adv

5.2. Integrating a package

We now describe the package integration process, obtained by combining
the interviewees’ experience and the official ROS documentation. First, the
user needs to download the package, using apt-get for Debian-based OS’ or
cloning the repository. The package then needs to be installed : this is done
automatically when apt-get is used, an alternative is to use catkin21, the
default ROS building tool. Once installed, the package must be configured and
launched : parameters, nodes, device identifiers and/or topic names must be set
in order to properly launch a node/service. Finally, once the project is running,
the user can monitor data flow, node status, etc., deciding whether the new
package is behaving as expected, or if it needs to be reconfigured or removed.

20Both “a large amount” or “few critical” dependencies qualify as major dependencies.
21Catkin, ROS Wiki: 2015. http://wiki.ros.org/catkin. Accessed: 2018-03-13

11

5.3. Why do users fail when reusing packages?

We found that 74% of the survey participants that tried to reuse a 3rd
party ROS package failed to do so (84 out of 113 participants, excluding the
6 participants that have never tried to reuse a package). We asked the survey
participants to list reasons for which they have failed to reuse a package in
the past. We populated the list with 9 reasons, extracted from the responses
provided in the interview. This list seems to cover the majority of the cases
that occur in practice, since only 4 survey respondents selected “Other”. Five
of the reasons where picked by at least a quarter of the survey participants:

1. “The package was for an outdated ROS distribution” (71%): This reason
was frequently selected by Beginners (83%) and Advanced users (74%).
In the case of Beginners, since they do not know the ecosystem well, they
may not be aware that a package is outdated. In the case of Advanced
users, the need for specific features may mean that there are no active
packages that offer the required features. Finally, in Intermediate users
(59%), we think that they are more aware than Beginners about outdated
packages, but unlike Advanced users, their needs are more standard.

2. “I could not figure out how to use it (lack of documentation)” (56%): This
reason was picked more by Beginners (61%) and Intermediate users (70%)
than by Advanced users (44%). We expected this, since documentation is
commonly more needed by less experienced users, while Advanced users
can manage with other artifacts (e.g. launch files, robot and world geo-
metric modelling files, etc.). Note that the third responsibility of a package
maintainer, according to community practices22, is to “monitor and up-
date package documentation”. This result uncovers an important barrier
to package reuse in ROS.

3. “There was a bug that prevented the package from working properly” (50%):
This issue affected Advanced users (59%) more than Beginners (33%) and
Intermediate users (48%). This could be because Advanced users work on
more complex projects and depend on more packages. In the case of spe-
cific features, there may be no obvious replacements for a buggy package.
Coming across bugs in packages decreases confidence in the ecosystem [29].

4. “I did not succeed in configuring the package for my use case (launch files,
etc.)” (34%): This reason affected 52% of Intermediate users, 33% of
Beginners and 28% of Advanced users. Configuring launch files requires
deep knowledge of the robotic domain underlying the package. Unless
the user knows and/or there is a configuration guide, it is a tough task.
A badly configured package may not work and may even affect some of
the packages with which it interacts. We think that this cause was more
frequent for Intermediate users because they start to use more packages,
but are not as experienced as Advanced users.

22Maintenance Guide, ROS Wiki: 2017. http://wiki.ros.org/MaintenanceGuide#

Responsibilities_of_a_Maintainer. Accessed: 2018-03-13

12

5. “I could not install the package” (38%): Core packages are normally easy
to install using apt-get. However, other packages usually need to be
manually installed, which means addressing dependency issues by hand.
Although it affects less participants, we see this more frequently in users
that rely on non-core packages (Advanced users (33%), Intermediate user
(30%), Beginners (22%)). A documented installation process is funda-
mental when considering a new package.

The remaining reasons for failing to install a package were: 6) “The package
is not compatible with my particular hardware” (20%); 7) “The package was for a
newer version of ROS, mine is older” (18%); 8) “The package had performance
issues” (18%), and 9) “I asked for help but could not find it.” (14%).

5.4. Looking for help

Our interviewees prefer to look online for help, contacting package develop-
ers or more experienced users. Another option is to consult knowledge artifacts
created by the community, like wiki pages and tutorials. Other strategies are
asking questions and providing/searching for answers in Q&A sites, and search-
ing for code snippets. The 4 sources for online support prefered by the survey
participants are: ROS Answers (85%), ROS Wiki (79%), GitHub (59%) and
Interaction with Maintainers (29%). We now discuss each source.

5.4.1. ROS Answers

Searching. When running into an issue, the first step for all interviewees is to
look for information using a search engine like Google. Relevant ROS Answers
questions and answers can be usually found in the first 10 Google results. ROS
Answers is also the first source of information for the majority of the survey
respondents (85%), regardless of experience level. Beginners and Intermediate
users look for guidance, clarifications, and/or software artifacts (e.g., code snip-
pets, parameter values). Advanced users not only search for information, but
also provide answers and act as moderators. Two of the 7 Advanced users in-
terviewees mentioned that they do not use ROS Answers very often, since they
face more particular or complex problems that would probably go unanswered
on the platform. Here is the testimony of one of these users:

I look for the issues in GitHub. Sometimes I search on Google first and then
go to issues in GitHub. I never go to ROS Answers, I never found anything
useful there. If searching does not return links to ROS Answers, I never go
there. I don’t think that I found something useful there. Maybe it is because
[the packages] that I’m using are on GitHub, but not in actual ROS releases.
— I18,Adv

Asking. 18 of the 19 interviewees indicated that they first try to fix package
reuse issues by themselves using online resources. If the issue persists, they ask
colleagues for help. The very last course of action is to post a new question
on ROS Answers. Our survey shows that the three main reasons why users
avoid asking new questions are: 1) 52% of Beginners think their questions

13

are too specific, this percentage drops to 36% for more experienced23 users;
2) 33% of the Beginner and Intermediate users think that their questions are
a misunderstanding on their part (only 14% of Advanced users reported this
reason); and 3) 32% of Beginner , 24% Advanced users and 15% Intermediate
users think that it takes too much effort to write a full question. Additional
reasons for not asking questions include: presence of private/sensitive data that
cannot be shared according to institutional policy, and long response times, such
as in the following example:

On ROS Answers there was a question from 2012 that was exactly was I was
looking for, but no one had answered it. — I5,Beg

Answering. Questions on ROS Answers are usually answered by experienced
users and specialists in certain robotics domains. These users expect clearly
stated questions, along with all the information and artifacts needed to give an
answer. They also expect that the user that posed the question will be available
to answer follow-up questions. By October 2nd 2018, 42,404 questions have been
posted to ROS Answers, of which 69.3% have been answered. An additional
1,326 questions have been tagged with the ROS label on Stack Overflow (51.51%
answered). The answered/asked ratio for ROS Answers shows that it as an
effective channel for finding help. Note however that this ratio is slightly lower
than that of popular communities on Stack Overflow : Python, Ruby-on-rails
and the R programming language all border on an answer rate of 75%24.

The following are the main reasons why survey participants do not answer
questions on ROS Answers: 1) lack of time (64%); 2) answering a question
properly requires further interaction with people, to clear up misunderstanding
and ask for additional data/feedback (27%); 3) the setup data needed to repli-
cate an issue is not available (23%); and 4) the hardware needed to replicate an
ssue is not available (20%). A minority of the participants claimed that they
do not feel confident enough in their answers and/or think that another person
would be able to give a better answer.

5.4.2. ROS Wiki

Searching. All interviewees agree that ROS Wiki is the source of documenta-
tion, and they consult it regardless of their level of experience with ROS. Sur-
veyed respondents indicated that every package must document their features
on the ROS Wiki , including current development status and any API specifica-
tions. They also expect to find installation and configuration guidelines, as well
as a troubleshooting guide for common problems.

23Intermediate and advanced users.
24Python 74.58%, Ruby-on.rails 73.73%, R 74.56% answer rate in Stack Overflow as of

October 2nd 2018

14

Creating and Editing pages. Each package should have a ROS Wiki page, which
should be created and updated by the package maintainer25. None of our inter-
viewees maintains a public ROS package, nor mentioned having edited existing
ROS Wiki pages. According to the survey respondents, contributing docu-
mentation is rare: only 25% of the respondents have updated or added miss-
ing documentation, and only 13% have posted an experience report. Editing
documentation is 10 percentage points below the next most popular form of
contributing: submitting a new feature (36%).

5.4.3. GitHub

Searching for Code Examples. A minority of Advanced users manifested that
actively looking for code snippets is an important part of their workflow:

[One of the main strengths of ROS in my opinion is] the support – the vast
quantity of examples you can find: it’s amazing. I haven’t seen that in any
other framework for robotics. You just search on Google and you find examples.
There is always someone who has already done it [and shared it] — I3,Adv

Users look for code examples that show how to use a package API, find
recommended parameters, build a workaround to a problem. The issues that
users encounter in this step are similar to those when searching in package
documentation: examples could be for an outdated API and relevant examples
could be missing. If a package has been abandoned, users cannot update faulty
examples since there is no maintainer.

Interacting with Maintainers through the Issue Tracker. Advanced interviewees
often avoid ROS Answers because they often face more complex or particular
issues, and will often directly interact with the package maintainers through the
package repository Issue Tracker.

5.4.4. Private Communication with Maintainers

Users will sometimes contact package maintainers directly. This allows them
to get support without revealing sensitive information about their projects on
public channels. The following quote is an example of this type of behavior.

If not I would just ask. Sometimes I don’t like to ask directly in the GitHub
page. When I want to ask someone I email directly to the authors. I feel weird
exposing myself by publishing things publicly. — I14,Int

5.5. What do users contribute to the ROS ecosystem?

According to our survey, contributions can be sorted by (descending) fre-
quency: Bug Reports, Q&A in ROS Answers, Bug Fixes, Feature requests &
submissions, Documentation updates & additions. We now discuss them.

25ROS Package Documentation Guidelines: 2016. http://wiki.ros.org/

PackageDocumentation. Accessed: 2018-03-13

15

Bug Reports. Bug reports are reported using the associated package repository
Issue Tracker. This is the most common type of contribution, regardless of level
of ROS experience, and is especially frequent in Advanced (77%) and Intermedi-
ate users (67%). In the short-term, bug reports benefit the package maintainer,
who receives feedback about their package. In medium- and long-term, fixing a
reported bug benefits all the package’s users.

Q&A in ROS Answers. Activity on this Q&A platform is mostly guided by
Advanced users (Answering: 68%, Asking: 66%) rather than less experienced
users. More than a half of the Intermediate users (63%) ask new questions but
only 26% declare having answered a question. From the Beginners who had
contributed (50%), one third of them had posted or answered a question.

Bug Fixes. 76% of Advanced and 67% Intermediate users indicated that they
submit bug fixes. Like bug reports, bug fixes directly benefit the package main-
tainer and indirectly benefit all the package users.

Feature requests & submissions. Like bug reports, these contributions are han-
dled through the Issue Tracker of the GitHub package repository. Feature re-
quests are valuable feedback for the package maintainer, who can find out about
unknown needs that their users have, or new ways that their packages are being
used. Feature submissions implement new features that need to be reviewed by
the package maintainer and eventually integrated into the package. This kind
of contribution is mostly carried out by more experienced users. Requesting
new features is also more in the realm of non-beginners, with 46% and 41%
of the Advanced and Intermediate users participating in such a task. Half of
Advanced users (51%) have also submitted new features, while only 19% of the
Intermediate users have done so.

Documentation updates & additions. Updates or additions to package docu-
mentation are mostly made by Advanced users (updating: 37%, adding: 32%).
This type of contribution directly benefits users of the package, but also its
maintainers, since it removes part of the burden of documenting the package.

6. Bottlenecks in Contribution

Open Source communities rely on the interactions between contributors,
who provide knowledge and artifacts, and users who consume them. In this
section, we present 5 bottlenecks that affect the contribution dynamics of the
ROS ecosystem. These emerged from the interviews and were confirmed and
prioritized using the survey. We first describe them all, before focusing on the
most critical to ROS’ success as a robotics middleware: Package Abandonment.

16

6.1. Bottlenecks

B1. Lack Of Time. This is by far the most frequent restriction on contributing,
regardless of the degree of expertise that a user has. 59% surveyed respondents
indicated that it was one of the reasons why they failed to contribute. This bot-
tleneck hinders all the types of contribution mentioned in the previous section.
For example, users do not answer questions that they should be able to answer:

And what I should have done and didn’t do was to reply to those who had those
problems. I could do it, but at the time I was trying to develop something else
so I forgot about it. — I13,Adv

This bottleneck cannot be directly addressed; rather, it is a strong constraint
and any proposal should explicitly take into account users’ lack of time.

B2. Package Abandonment. This occurs when it is unclear who the package
maintainer is, or the maintainer is unresponsive. In this case, package develop-
ment is frozen, since no one is in charge, and contributions cannot be received,
evaluated, or integrated. This phenomenon is acknowledged by 90% of the
survey participants, and for 63% of those who have experienced it, it occurs
regularly. In the following quote, an Advanced user presents the case of a pack-
age for which build files needed to be updated to a newer build system (catkin)
in order to make it compatible with newer versions of ROS.

It’s common that you find a package and it’s only compatible with ROS Fuerte
and the only way to make it compatible with newer versions is to catkinize it.
But the student who made it finished his thesis and left the package as it is
[, abandoned]. They [, the community,] could make a “foster home” for these
packages, so that they can be maintained. — I4,Adv

We discuss the issue of package abandonment in detail in Sect. 6.2, because
of the substantial amount of evidence pointing to a broader and deeper impact
on the ROS ecosystem. The next three bottlenecks describe situations where a
potential contribution could have been shared but is not. Community Managers
are responsible for making sure the community is aware about contribution
channels, quality assurance guidelines and conventions, as well as trying to lower
any barrier to entry that could make contributors hesitate to contribute. Like
the lack of time bottleneck, these need to be taken into account when designing
a solution, in order to minimize their impact.

B3. Lack of confidence in the value/quality of a contribution. Some Beginners
and Intermediate users do not contribute because they are not sure about the
correctness, quality or value of their contribution. 26% of the survey participants
indicate that this issue is a bottleneck for them.

It’s contradictory because I like the information from there, but normally when
I know the answers I don’t really contribute. I am not sure If I know how to
answer properly [...], so normally I don’t really contribute. — I14,Int

17

B4. The contribution could be too specific to my problem, domain, hardware
or research problem. In general, this bottleneck was acknowledged by 31% of
survey participants. Intermediate and Advanced users think that some piece of
software or documentation may not be useful for others due to its specificity.
The impact is that users avoid sharing bug reports, bug fixes and package cus-
tomizations.

I have made my own packages but I have never published them. Because they
are specific to my work, like, for example: we use multiple motors to control
the humanoid robot [, for] those motors we made our own packages. They were
very specific to our robots. — I10,Int

B5. Workflow is unknown or not clear. Some interviewees claim they do not
share their contributions because the workflow is unknown or not clear. 14% of
the survey participants indicated that they have experienced this situation.

Many developers don’t follow REPs26. This means that they create artifacts in
one way, and others do so in different way. This should be more uniform, but
it is fine because people create what they want and they contribute it. This is
one of the reasons why I didn’t wanted to share my code: I write it [(the code)]
in my own way, which is not the proper way to share it. I then switched focus
to another project or task, and left it as is. — I4,Adv

According to Steinmacher et al. [30], this issue has an important impact
on the willingness to collaborate from community members and it represents
an important barrier to entry for newcomers. The ROS Wiki has a section
informing users about how to contribute27. It is not clear whether community
members are aware of resources like these.

6.2. Package Abandonment

The impact of this contribution bottleneck on the ecosystem is the most
complex. In part, this is because of the domain – robotics. The development
of some packages requires deep knowledge of algorithms, mathematics, as well
as other disciplines. Many packages are the side product of research work,
e.g., an experiment, a proof of concept implementation, etc. In other words,
those working in this field are not full-time software developers, and so have
limited resources to support their software. In the case of student projects, these
are usually abandoned soon after the student has graduated. Another cause,
orthogonal to the previous one, is that developers sometimes start building a
package and then leave them unfinished in order to start working on another
package (which may or may not replace the abandoned one).

26ROS Enhancement Proposal (REP) are the official documentation of architectural and
design decisions for the ROS middleware: 2000. http://www.ros.org/reps/rep-0000.html.
Accessed: 2018-03-13

27Get Involved, ROS Wiki: 2017. http://wiki.ros.org/Get\%20Involved. Accessed:
2018-03-13

18

This phenomenon was widely reported among survey participants: 90% of
them acknowledged having encountered an abandoned package, where 63% in-
dicate that finding an abandoned package is a common situation. Intermediate
and Advanced users encounter this phenomenon with significantly higher fre-
quency (from “very often” to “‘all the time”), presumably because they make
use of more third-party packages, as well as more specialized packages. In-
terviewee I17,Adv pointed out that some popularly used packages from MoveIt
framework28 are in this situation, also highlighting the relationship between
package abandonment and lack of time:

For example there is a package in MoveIt that is very popular. And a lot of
people wanted to add some fixes because they were a lot of issues. All the people
that were maintaining the package were like “gone”. So there is now only one
[developer], I guess, who is maintaining this package that everybody needs but
nobody is really interested in maintaining. These are the strengths and the
weaknesses to being open source, I guess. — I17,Adv

6.2.1. Impact on Package Reuse and Contribution Dynamics

Intermediate and Advanced users rely significantly on packages outside the
ROS core: more than 51% of them depend moderately to highly on packages
maintained by the community. Beginners also depend on packages outside the
ROS core, but in a slightly smaller measure (45%). As such, more than 92%
of surveyed users depend on packages maintained by the community. Thus, we
can argue that ROS users do rely on packages developed by the community.
Contrasting these numbers with the high rate of users that have failed to reuse
a package or that have acknowledged that they have had to deal with abandoned
packages, we posit that package abandonment is a major issue.

For example, an Intermediate user that participated in the focus group,
highlighted that the scope of debugging does not reach the ROS infrastructure:
“[the debugging process starts] assuming that the bug is hidden somewhere in
your own code” — I22,Int. Thus, buggy abandoned packages means that users
can no longer assume that the system outside the boundaries of their projects
“just works”. The participants of our study agree that package reuse and the
ROS community are the main strengths of this middleware, so the phenomenon
of Package Abandonment threatens these strengths in three ways:

1. Abandoned packages weaken the ROS ecosystem reliability. Although reusing
ROS packages is a common practice, several interviewees mentioned that search-
ing for packages to reuse is quite time-consuming.

So most of the time I look for something people have already made. I feel like
I lose a lot of time searching a lot of things, trying packages that are, like,
not working anymore. They were made for old versions of ROS, like Fuerte,
but they are not working for Indigo or Kinetic. Then you update the package

28MoveIt, Motion Planning Framework: 2017. http://moveit.ros.org/. Accessed: 2018-
03-13

19

yourself, but if you don’t have any documentation about the internals of the
package, you don’t necessarily know where to change stuff. You can lose a lot
of time trying to use other packages. — I18,Adv

As such, users can spend a significant amount of time trying to configure a
package and understanding how to integrate it with existing code, only to find
out that it has already been abandoned and that no one can answer questions
about issues with the code.

2. We cannot foresee which packages are abandoned. When searching for pack-
ages to reuse, there is no way of filtering out abandoned packages, and users
lose time before realized that a package is abandoned. Currently, there are no
channels for users to report abandoned packages.

3. A missing maintainer cuts off contribution flows. Many maintenance tasks
rely on users who provide feedback, i.e. bug reports, feature submission, etc.
When the maintainer is missing, feedback and contributions cannot be consid-
ered. Bug reports and feature requests filed through the GitHub Issue Tracker
are also ignored, and documentation is not added or updated. Contributions
that require more effort from the contributor, such as bug fixes and feature sub-
missions, are lost since no one is reviewing Pull Requests. Regarding support
issues, Advanced users tend to interact directly with the maintainer in order to
clarify more advanced questions. This is impossible in the case of abandoned
packages. Finally, very specific questions on ROS Answers will remain unre-
viewed and/or unanswered. In summary, the absence of a maintainer creates a
bottleneck in the evolution of a package, cutting off the contribution flow.

As ROS users declare that they lack the time to contribute, any sort of con-
tribution is highly valuable. However, not receiving an answer is a strong barrier
for contributors, which may demotivate them and make them refrain from con-
tributing [31]. This severely harms the contribution dynamics of the ecosystem,
which is a fundamental form of interaction in open source communities. More-
over, it is reported as a common barrier for peripheral contributors [32]: it
ultimately threatens the health of the ROS community and its growth.

6.2.2. How do users handle these threats today?

Users who need to reuse an abandoned package find other ways of overcoming
their issues. It is in these such cases that users become skeptical of the “official”
way of developing ROS applications and scratch their itches through custom
workarounds. Our interviewees reported two common workarounds.

The first workaround is to find a solution outside of ROS. Users can wrap,
or “ROS-ify”, external libraries, applications or even an entire middleware in
order to integrate them with ROS. This is done by creating a ROS node that
encapsulates everything required to run the component being “ROS-ified”. This
was recognized by many interviewees as a common practice, which allows de-
velopers to quickly incorporate the desired feature or behavior in their project,
albeit sacrificing quality. Interviewees I17,Adv and I18,Adv discussed this prac-
tice, indicating that they wrapped the OROCOS [12] middleware after several

20

attempts to use the official ros control29 feature. While this is a testament
to ROS’s flexibility and extensibility, such a fragile assembly of heterogeneous
applications can hardly constitute a long-term solution.

The second workaround is to fork the repository of the abandoned package,
so as to adapt it without the supervision of an absent maintainer. Although this
solves the problem for the package user, it is not a solution for the ecosystem.
The forked package may benefit other users, but as long as its maintenance is
not guaranteed it may also become an abandoned package. Someone forking a
package to satisfy a local need may not necessarily be willing to maintain the
package in the long-term.

These two workarounds represent shortcut solutions for a particular user of
an abandoned package but do not solve the problem for the ecosystem. For both
workarounds, the original abandoned package is still the point of reference. In
other words, new users will still arrive at and try to use the original package,
likely encountering the same issues over and over again. These users may solve
the issues on their own, or fail to reuse the package. A popular abandoned
package may thus be forked several times, by different users, who may duplicate
their efforts by working individually, rather than in a collaborative way.

Thus, we need new collaboration strategies, ones that favor communication
between package users and collaborators in order to replace the absent main-
tainer. All this with the goal of supporting the healthy evolution of abandoned
packages and the ROS ecosystem.

7. Recommendations for overcoming contribution bottlenecks

The information presented in Sections 5 and 6 allow us to answer the research
questions that guided this study. We now propose five guidelines to ease ROS
package reuse that can lead to a healthier ecosystem. These guidelines take into
account the bottlenecks that we described in the previous section.

Recommendation 1 : Identify and Predict Abandoned Packages

Package reusability is one of the most valued strengths of ROS. However,
according to our survey, 74% of users fail to reuse packages: in many cases this
is because the packages have been abandoned by their maintainers. Users can
waste a considerable amount of time and effort trying to install or configure such
a package before realizing that it has been abandoned. Currently there are no
methods to identify packages that have already been abandoned, nor to predict
when packages are at risk of being abandoned. When users find packages that
cannot be reused, and for which contributions will be ignored, the ecosystem
becomes less reliable.

29ros control - ROS Wiki: 2017. http://wiki.ros.org/ros_control. Accessed: 2018-03-13

21

There has been a reaction from the community, which has begun to man-
ually list Orphaned Packages30. These packages are those who have not been
released in the latest version of ROS. In other words, Orphaned Packages are a
particular case of Abandoned Packages. Since this list is manually maintained
by volunteers, it is not regularly updated nor is it complete: volunteers that
lack time may not systematically keep track of the state of packages, or may be
unfamiliar with the workflow to declare that a package is abandoned. According
to the ROS’ Maintenance Guidelines31, the person in charge to update the state
of the package is the maintainer. However, in the case of abandoned packages,
the maintainer is already gone and will probably not return to update the status
of the package.

The prevalence of abandoned packages in a context where humans lack time
and may not know the workflow to notify the community of a package being
abandoned leaves only one alternative: automation. An automated approach
to identify packages that are abandoned does not suffer from these bottlenecks;
approaches using techniques for mining software repositories may provide some
support. Examples of them are the use of heuristics based on the history of
development (in)activity of packages (e.g. number of commits, forks or git pull
requests) [33, 34], activity of contributors in the bug tracker (or GitHub Issues)
or mailing lists, the new contributors joining [35] or the release frequency.

Once abandoned packages are identified, the community can be notified so
that they can take action. The first step is to warn possible users of these pack-
ages, so that they can minimize the amount of time that they dedicate to making
the package work for them. Maintainers of packages that depend on abandoned
packages should also be notified, so that they can start to make plans. For
instance, package users may look for non-abandoned packages that offer similar
functionality. They may also fork the repository of the abandoned package for
minimal maintenance that lets them keep using the package. Although this ac-
tion solve the problem locally if many users do it, it leads to duplicated efforts
in the ecosystem. Such situation can be managed by reporting the existence of
these forks even if the users are not willing to become official maintainers. In a
second step, the community can make an open call for contributors to maintain
the package or to address certain urgent maintenance tasks for those packages
whose abandoned status seriously affects packages that depend on them.

Alternatively, and especially if there is no interest from the community to
keep maintaining an abandoned package, the community can suggest options
of packages that provide similar features in order to replace dependencies to
abandoned packages with active ones.

A further development is to predict which packages are at risk of being
abandoned. Prediction of possible package abandonment means that we try

30Orphaned Packages, ROS Wiki : 2017. http://wiki.ros.org/OrphanedPackage. Ac-
cessed: 2018-03-13

31Orphaned Packages, ROS Wiki : 2017. http://wiki.ros.org/MaintenanceGuide#Role\

_of_a_Maintainer. Accessed: 2018-03-13

22

to estimate how probable it is that the development of a certain package may
stop, or that contributions to this package will not be processed. Previous
work [34, 36, 33, 37] agrees to consider a project as abandoned based on a
threshold of 1 year of inactivity. Such a threshold makes any attempt of predic-
tion can be achieved after one year. However, recently Coelho et al. proposed an
approach for identifying abandoned projects in GitHub [35] that does not rely
on that approach: an abandoned package may have little development activ-
ity. They classify projects through a machine learning model based on random
forest classifiers. Although their sample is relatively small (127 projects) their
approach obtained precision of 80% and recall of 96%. In addition, reusing their
model, they provide a metric of abandonment prediction named Level of Main-
tenance Activity (LMA). Thinking in an approach based on heuristics, there is
vast amount of work related to the developer turnover in open source projects:

Constantinou et al. empirically studied developer retention in the RubyGem
and NPM ecosystems [38]. They found that both weak commit intensity or a
long period of inactivity in committing are associated to a high probability of
abandonment within an ecosystem. Coelho et al. surveyed the maintainers of
over a hundred of projects on GitHub in order to study the reasons for fail-
ure [37]. Note that this relates to our work since each ROS package is a project
in the ROS ecosystem. The following are reasons that Coelho et al. confirmed
as causes for project failure on GitHub: the project became functionally obso-
lete, the main contributor does not have enough time to work on the project, or
was no longer interested in the project. These heuristics should be taken into
account for any predictor of abandoned packages.

Recommendation 2 : Provide an Informative Package Repository

Popular and mature software ecosystems such as the LATEX document engine,
or programming languages like R and JavaScript, rely on an informative and
complete catalog of available packages to reuse: CTAN32, CRAN33 and NPM34,
respectively. According to our survey, users look for the following information
about packages that may be reused: package purpose and features, the installa-
tion process, the development status of the package (active or abandoned), who
is the package maintainer, its dependencies, its API documentation, guidelines
for configuring the package, information about availability of tests and/or ROS
Bags. The ROS community guidelines indicate that packages should be hosted
on a repository system that provides this information. Users would also like
more information about available packages: troubleshooting experiences, per-
formance benchmarks, recent activity on development and usage or alternative

32CTAN: Comprehensive TeX Archive Network: 2017. https://www.ctan.org. Accessed:
2018-03-13

33The Comprehensive R Archive Network: 2017. https://cran.r-project.org. Accessed:
2018-03-13

34NPM - NodeJS Package Manager: 2017. https://www.npmjs.com. Accessed: 2018-03-13

23

packages. Some of the above can be provided by harnessing the experiences of
current users of a package, and complemented with popular related questions
from Q&A sites. As a consequence, the user will be able to take a more informed
decision when choosing which packages to depend on in their projects.

The ROS ecosystem has three main repositories with information of the
available packages. The first one is the ROS Index Project35, a community-
maintained ROS package index. This effort is the closest to the informative
repositories mentioned in the previous paragraph. On this website, users can
find information about the indexed packages, such as: version, development
status, website, documentation, name of the maintainer, link to API documen-
tation. This information comes from the package manifest file (XML) manually
entered by the maintainer. Although this index is non-official, It also uses the
meta-data about the source, documentation and release git repositories from the
official list of packages36 which is manually completed and updated by package
maintainers. This site, used to be an unofficial project which was officially
integrated to the ROS’ websites in October 201837.

The second source of information about packages is the ROS Wiki . Packages
are also manually indexed on the ROS Wiki , by creating a dedicated page
containing relevant information such as: package description, list of maintainers,
ROS distribution support and API documentation. Although the guidelines
recommend documenting a package before release, there are no standards with
respect to minimum completeness and/or quality of this documentation. The
ROS community also provides a third repository, which summarizes the data
available in the main ROS repository. This website38 lists the status of ROS
packages, showing their maintainers, and current status of maintenance and
availability for a given ROS distribution.

All of these repositories are manually updated, thus the accuracy of the
information depends on the goodwill of the users and maintainers. These repos-
itories are always at risk of being outdated. Even in the case of the repositories
that are updated on a more regular basis, the information about abandoned
packages will most likely not be up to date. Thus, some abandoned packages
will still be classified as active, misleading users.

Improving the status of these repositories, while taking into account the bot-
tlenecks (lack of time, knowledge of the contribution workflow, package aban-
donment) calls for the same solution as before: automation. For instance, an
approach that detects abandoned packages or predicts that a package is likely to
be abandoned could also update the repository to make that knowledge public
to the community. The approach of Storey et al. about using of bot [39] for

35ROS Index: 2019. https://index.ros.org. Accessed: 2018-03-13
36Lists of packages for each ROS distribution: 2018. https://github.com/ros/rosdistro.

Accessed: 2018-03-13
37Topic: “ROS2 Documentation”, ROS Discourse: 2018. https://discourse.ros.org/t/

ros2-documentation/6475/2. Accessed: 2018-03-13
38Status of ROS Packages per ROS release: 2017. repositories.ros.org. Accessed: 2018-

03-13

24

assisting in testing, support and documentation can be explored. The quality
and completeness of the package information was also a reported concern, by
automating their measurement [40] would raise contribution opportunities for
improving them. Such actions would help enrich current available information
provided in the package repository and consequently easing user’s package de-
pendency decisions [41]. In addition, sporadic contributors would be aware of
contribution opportunities and how to contact maintainers, which, according to
Lee et al. are common barriers [32] for this kind of contributors. Moreover, ex-
posing the activity of packages, announcing updates and enhancements attracts
new users and contributors [42].

Recommendation 3 : Recommend contribution opportunities to qualified
community members

Recommender Systems in Software Engineering can help with providing in-
formation from large sources of data that, because of their size, heterogeneity
and complexity of processing, cannot be done by a single person or a group of in-
dividuals [43]. Recommender Systems can be used to point out members of the
community that are particularly more suitable to make certain contribution to
the ecosystem [44]. They can identify experts to answer a popular unanswered
question in ROS Answers, owners of certain expensive robots to replicate and
confirm bugs associated to that hardware, or for instance, to address certain
maintenance tasks from a highly used abandoned package. Selecting the ade-
quate recommender system model requires experimentation over the particular
dataset to work with [45]. Several expert recommender systems applied in Stack
Overflow are based in Collaborative Filtering methods, although contrasting the
size of the datasets of ROS Answers (30 thousand of questions answered) and
Stack Overflow (11.7 millions of questions answered) such models are not di-
rectly reusable. We propose to use a hybrid approach, Content-Boosted Collab-
orative Filtering [46]. This mechanism complements the Collaborative Filtering
(CF) approach with Content-Based (CB) methods. The CF approach would use
the user activity behavior to model the willingness to address an unanswered
question, thereafter managing the workload balance among volunteers. The CB
methods would benefit from the rich vocabulary gathered from the terminol-
ogy of the varied disciplines involved in robotics, and, in addition, from the
names or identifiers of hardware (robots, actuators, sensors, IoT, etc.) and soft-
ware artifacts (programming languages, libraries, package names, type of files,
ROS concepts, etc.) that constitute a ROS project. As the ROS community is
comparatively smaller than other ecosystems, it is more susceptible to issues of
information scarcity (the cold start problem). In the case of ROS Answers for
instance, we expect that the CB approach could compensate the lack of activity
data of a new question, by classifying it into a cluster with questions of a similar
latent semantics.

In addition to find a qualified member of the community for suggesting a
contribution we also suggest to fragment a regular contribution (e.g. bug fix,

25

bug report, update of documentation, new feature request, etc.) into small-
sized tasks. Such “micro-tasks” would cost less time and effort reducing barriers
for contributors. For example, a bug report and bug fix contributions can be
fragmented into: verify of completeness and precision of the report, reproduce
the bug, identify affected modules, propose a fix, reproduce the bug with the
fix, verify compliance of coding standards of the fix, integrate the fix. A system,
similar to an issue tracker, could keep track of the status of the contribution,
inform about effort estimation, level of completeness of the contribution, and
allow users to vote for the urgency of such contribution.

These mechanisms directly address bottlenecks B1, B2, B3 and B4, in the
following ways:

B1. Lack Of Time. Since time is a scarce resources, recommendation engines
limits the time investment of users to the minimum necessary. Users do not
have to waste time looking for someone with the required expertise to answer
a question, if the system can recommend experts instead. Similarly, experts do
not need to spend time looking for questions that they could answer; rather,
the questions could be pre-selected for them. This limits their time investment
to the minimum. A proactive recommender can also issue notifications to users,
instead of being manually triggered by users. Similarly, a small-sized task is
easier to address than a larger task and lowers the opportunity cost. This
benefits particularly to peripheral contributors and One-Time Contributors 39

by lowering its barriers for contribution [32].

B2. Package Abandonment. Abandoned packages that are relevant for the
ecosystem can be (partially) maintained by breaking maintenance tasks into
micro-tasks: smaller tasks that are cheaper in terms of effort and/or time
(e.g. bug confirmation, test coverage of certain component, bugfix verification,
partial-feature implementation). A recommender system can offer a micro-task
to qualified members of the community.

B3. Lack of confidence in the value or quality of the contribution. Experts will
realize that their knowledge is valuable to the community when unanswered
questions are recommended based on their experience and expertise.

B4. The contribution could be too specific to my problem, domain, hardware
or research problem. Developers realize that the packages that they created
to address particular research problem or equipment may be valuable to other
members of the community, establishing a clear contribution opportunity.

In addition, such contribution recommendations are an opportunity to in-
form, remind and/or teach about Contribution Policies (how to contribute, qual-
ity guidelines, code standards, etc.) and the corresponding workflows to do so.
This addresses the contribution bottleneck B5. The workflow is unknown or not

39A peripheral contributor who has had exactly one code contribution (i.e. a patch) accepted
in that project” [32]

26

clear , further lowering barriers to contributions. In the long run, the effective
implementation of this recommendation may increase the truck factor in pack-
ages and promote the emergence of new de facto contributors or maintainers for
packages, necessary for a healthy growth of ROS [47].

Recommendation 4 : Limit breaking changes

The ROS community has been through several cases of breaking changes.
While these changes were demanded by the community, and the developers tried
to make the transition as smooth as possible, these changes still had a significant
impact on the community. An example of such a situation occurred between
the ROS Groovy and ROS Hydro releases, where there was a large change to
the build system, which switched from ROS Build to Catkin. This situation
was reported by interviewee I4,Adv (Section 6.1); this change meant that all
abandoned packages were immediately outdated.

More recently, the ROS Kinetic release caused breaking changes in the API
of the build system and some core functions in the middleware that had to be
updated by maintainers. The result was that one third of the packages that were
available in the previous release, ROS Jade, no longer worked on ROS Kinetic.

Another potentially large breaking change is occurring right now, with the
introduction of ROS2, a new version of the ROS core written from scratch.
ROS2 was motivated partially due to the success of ROS1 whose community
demanded support of new use cases (e.g. teams of robots, small embedded
systems, etc.) and new quality constraints (e.g. real-time systems, secure com-
munication mechanisms) that were not available in ROS1. The ROS2 project
website points out that “ROS 2 will be built as a parallel set of packages that
can be installed alongside and inter-operate with ROS 1” 40. Nonetheless, retro-
compatibility is still a topic of discussion 41:

[You can use ros1 bridge for making use of not-yet-ported ROS1 packages] but
you would need to learn a reasonable amount about packages in ROS1 as well
to know how to use them properly. Thus exclusively focusing on ROS2 would
leave you without significant functionality.[...] Viewing ROS1 and ROS2 as an
exclusive-or relationship is not a good approach. — ROS Discourse moderator,
July 3, 2018 42

Thus, during the transition period, it is likely that users will need to use
packages from both ROS1 and ROS2, which will incur an increase of complexity
as long as ROS 1 packages are not ported to ROS 2.

40Why not just enhance ROS 1, ROS 2.0 Design: 2018. https://design.ros2.org/

articles/why_ros2.html#why-not-just-enhance-ros-1. Accessed: 2018-03-13
41Topic: “Discussion on ROS to ROS2 transition plan”, ROS Discourse: 2018. https://

discourse.ros.org/t/discussion-on-ros-to-ros2-transition-plan. Accessed: 2018-03-
13

42Topic: “ROS1 or 2 for a newbie?”, ROS Discourse: 2018. https://discourse.ros.org/

t/ros1-or-2-for-a-newbie/. Accessed: 2018-03-13

27

Such breaking changes may seriously affect all the packages that are already
available; packages which are the reason why users prefer ROS for building their
robotics applications in the first place.

These breaking changes emerge from the core ROS development team and
close members, and the rest of the developers and maintainers need to be made
aware of such deep changes in technology and workflows. The new technology
workflows and their associated breaking changes raise the barrier to entry for
maintainers that are already contributing to ROS. Packages that do not adapt
to these changes are immediately outdated, and some of them may be aban-
doned by maintainers that have no time to learn and/or adapt their packages.
This situation is particularly dangerous for packages that have already been
abandoned, as it is unlikely that anyone will update them.

As a consequence, many packages are at risk of being affected by this type
of change (e.g., one third during the transition between Jade and Kinetic).
Maintainers will take time to react (in the best case) or may not react at all. A
side-effect of this is that packages that depend on abandoned packages may be
prevented from upgrading, if their dependencies cannot be upgraded. In fact,
needing to use outdated packages was the most frequent reason of why our survey
participants could not reuse a package (66%). Another possible symptom of
this is the opposite scenario, where a user is stuck with an older version of ROS
(perhaps because their dependence on an abandoned package prevents them
from upgrading to a newer version), and thus cannot use a package that works
only on newer versions; 16% of survey respondents failed to reuse a package for
this reason.

Bogart et al. studied the strategies used by different communities – Eclipse,
R/CRAN and Node.js/NPM ecosystems – to deal with breaking changes [48].
In Eclipse, the core community prioritizes backward compatibility. The com-
munity behind R/CRAN wants to ensure that installing and updating packages
is easy for end users. For the Node.js/NPM community, maintainers should be
able to install and publish packages in an easy and fast way. The Eclipse strat-
egy seems to suit the ROS Ecosystem, considering the current bottlenecks for
collaborators. In particular, some maintainers in the Eclipse ecosystem provide
a frequently changing API for experts, and a simpler and more stable one for
regular users. These maintainers must also document compatibility issues in
detail, as well as guidelines for handling secondary effects of breaking changes,
all in order to provide a smooth transition for users. In some sub-communities
around certain R packages, maintainers have a more direct and continuous com-
munication with users, specially for changes that may affect them. In three of
the ecosystems studied by Bogart et al., release and migration activities are
supported by automated mechanisms that provide informative reports to pack-
age maintainers and users. The ROS Ecosystem would also benefit from the
automation of such processes.

28

Recommendation 5 : Motivate and encourage community contributions

There is a perception that questions posted on ROS Answers are either an-
swered after a long delay, or not being answered at all. Our survey reports that
14% of respondents avoid asking in ROS Answers because “There is no point in
doing so since people never answer”. In the cases that questions are answered
late, answers may then become obsolete, or are not needed anymore. In addition
to discouraging participation, this situation represents a strong barrier to entry
for newcomers [31]. Recommendation 3 may help by inviting qualified members
of the community to answer. However, this approach does not guarantee that
the question will be answered. Here is where a complementary approach that
considers motivation for contribution could take place.

The ROS community should evaluate the use of gamification techniques for
motivating participation. This approach has been successful in many software
development activities [49, 50]. ROS Answers follows the format of Stack Over-
flow in this aspect, giving points for answers, which increases users’ karma (par-
ticipation metric). Active users can then compete answering questions to get
higher karma. Users can also gain badges for specific contribution achievements
that are desired for an active and healthy community. For instance, to encour-
age to control the quality of questions, ROS Answers provides two badges: City
Duty Badge for voting up/down 100 different questions of City Patrol Badge
which is given for the first flagged post. The full list of badges, and how many
times they have been awarded is available online43. These badges mostly reward
Q&A viewing and voting, which is a good start. These gamification techniques
(points, badges, etc.) have proven to be effective in Stack Overflow [51, 52, 53],
therefore we can expect them to be effective in ROS Answers as well.

However, as seen in our study, we need to think about badges that encourage
richer user participation. For example, ROS Answers users are not asking follow
up questions, nor adding useful context information to existing questions, etc.
We propose to further the use of these techniques extending them to other
communication channels used by the ROS community. ROS or robotics-specific
badges should also be considered as incentives for users and at the same time to
enrich users’ profiles. For example, in the case of a bug that affects a popular
package, we could design team badges, where we make it explicit that as a
community, we expect that users will collaborate in order to replicate this bug
on different robots and ROS distributions.

There could be additional recognition in the community for outstanding
contributors. For instance, public recognition in the website or at ROSCon, or
coupon discounts for attending ROSCon could be attractive incentives [54, 55].
Additionally, the ROS community could concentrate contributions into events
of short periods of time. Such events are common in other software develop-

43ROS Answers Badges: 2018. https://answers.ros.org/badges/. Accessed: 2018-03-13

29

ment communities, such as the GNOME 44 desktop environment Hackfests 45.
Similarly, special initiatives for contributions can be created, e.g. the Jenk-
ins’ “Adopt a Plugin” 46 initiative that encourages users to take charge of the
maintenance of an abandoned plug-in. In all these cases, since possible contrib-
utors have to come across an announcement for contribution, we consider that
these are passive approaches. On the other hand, the approaches presented in
Recommendation 1 and 3 are active approaches.

8. Limitations of this study

The first part of this study is a qualitative study, based on a restricted
number of interviews, with participants from only two countries (France and
Chile). This is due to the difficulty of getting access to interview participants. As
such, the finding from this part of the study cannot be generalized. To remedy
this, we then used a focus group to assess for which findings there was some
level of agreement. Since the focus group was of a limited duration and involved
a small number of people, we turned to another strategy to further triangulate
our findings. Thus, we conducted an online survey over a broader segment of
the ROS community, where we verified agreement with key statements from the
interviews and focus group. The survey included respondents from a variety
of countries and and a greater variety of profiles. Both the interview and the
survey were iteratively prototyped, in order to make sure that the questions
would be clearly understood by participants.

Our interview participants were all scientists. Other ROS users (e.g., prac-
titioners in industry, students/teachers, hobbyists) may have different moti-
vations, needs and interests. Therefore, it is possible that non-scientist may
be affected by different issues, and thus that answers from non-scientist would
open up different findings. We do stress, however, that a significant proportion
of survey respondent (1/4) were from the private sector. In order to gauge this
possible threat, we compared the distribution of answers between scientists and
non-scientists. We find them to be very similar, which makes us think that large
differences between the populations are unlikely. Thus, while non-scientists may
face additional issues, they also struggle with reported issues such as Package
Abandonment and Bottlenecks in Contribution, as was confirmed by the answers
of non-scientists in the online survey.

Our discussion of the “lack of time” bottleneck is quite general. Some partic-
ipants of the ROS ecosystem (e.g., members of the OSRF) are paid to contribute
to ROS, may thus be less affected by the “lack of time” bottleneck. Our inter-
viewees have the profile of unpaid volunteers, mostly working at universities and
research centers. None of them mentioned being paid to specifically contribute

44The GNOME Project: 2018. https://www.gnome.org. Accessed: 2018-03-13
45Hackfests in the GNOME-related world: 2018. https://wiki.gnome.org/Hackfests. Ac-

cessed: 2018-03-13
46Adopt a Plugin - Jenkins - Jenkins wiki: 2017. https://wiki.jenkins.io/display/

JENKINS/Adopt+a+Plugin. Accessed: 2018-03-13

30

to ROS. Regarding survey participants, we can not know whether they are paid
to contribute to ROS specifically. Extrapolating from our interview responses,
we would hypothesize that this is unlikely for respondents employed at univer-
sities and research centers. However, we can not hypothesize for respondents
in the private sector. Therefore, although a very interesting direction, our data
does not let us study the consequences of being a paid or an unpaid contributor
in the contribution bottlenecks.

Internal bias is present in the analysis of the transcription, as the coding
process was carried out by the first author. To increase reliability of the coding,
the first author was given feedback on the coding process in meetings with two
of the authors of this article. This was done by going through random sentences
in the corpus and checking the assigned tags. Summarizing these transcripts
into memos was done collaboratively by three of the authors of this article.

Additional interviews, focus groups, large-scale surveys and/or additional
quantitative studies should be carried out to increase the confidence in the
findings of this study. As some of the aspects are not specific to robotics per
se, replication in domains other than robotics is also an interesting avenue of
research.

9. Conclusions

The ROS ecosystem consists of a large number of packages that are available
for developing robotics applications. The architecture of ROS applications as
a publish-subscribe system was designed with reuse in mind. However, beyond
its technical architecture, significant challenges affect ROS users when reusing
packages. We started with an exploratory series of 19 interviews and a focus
group with 4 robot scientists. Based on the feedback of these activities we
defined a set of 3 research questions about package reuse and abandonment, as
well as community dynamics. We then carried out an online survey in order
to capture the experience of a wider variety of ROS users, where 119 people
completed our survey.

We found that ROS users depend on packages developed by the community:
more than 90% of the survey respondents do so. At first glance, this validates
the claim that ROS encourages reuse. However, failing to reuse a package is also
very common in this ecosystem, with more than 70% of the survey participants
reporting that this has happened to them. One specific case is when a package
has been abandoned, limiting the evolution of the ecosystem.

ROS is also an ecosystem with a large amount of open-source software. As
such, the community relies on open-source contributions to thrive. We identified
five bottlenecks to contributions to the ROS ecosystem:

1. Users simply lack the time to make contributions.

2. Abandoned packages (which can be caused by lack of time) cannot receive
contributions.

3. Some users are not confident that their contributions are of high enough
quality.

31

4. Some users think that their contributions are too specific to be more gen-
erally valuable.

5. The workflow for contributing to the ROS ecosystem is not always known.

Overall, package abandonment and contribution bottlenecks are complex
phenomena that influence each other. Based on this study, we also formulated
5 guidelines that could improve the health of the ROS ecosystem. Some of the
guidelines can also be supported by automation, which is vital in a context
where lack of time is prevalent. The five guidelines are:

1. Identify and predict abandoned packages, in order to notify prospective
and current users of these packages.

2. Maintain an informative package repository that includes the status of the
packages.

3. Leverage recommender systems to proactively propose contribution op-
portunities of small-sized tasks to members of the community.

4. Limit breaking changes in the ecosystem, as abandoned packages will be
left behind.

5. Encourage community contributions on social websites such as Q&A web-
sites.

Several of these issues and bottlenecks are not unique to the ROS ecosystem.
As such, we expect them to be applicable to other ecosystems as well.

10. Future Work

Our outlook on this work goes towards the evaluation of two of proposed
recommendations: R1: Identify and Predict Abandoned Packages and R3: Rec-
ommend contribution opportunities to qualified community members.

The community needs to know which packages are abandoned or at serious
risk of being abandoned. As maintenance efforts are always scarce, the focus
should be set on packages which are critical in the dependency chains of the
ecosystem: many packages may depend on them to work, or they are popular
among users. We are currently working on methods for identifying these types
of packages in the ROS ecosystem. The idea is to predict the likelihood of an
active package being abandoned. An interesting research venue is to extend
this evaluation in other software ecosystems. Such results will provide insights
on technical and social aspects of different ecosystems regarding the package
abandonment phenomenon.

One interesting approach to address the package abandonment issue is to
distribute the maintenance workload among qualified members of the commu-
nity. The maintenance workload could be chopped up into smaller tasks, e.g.
reviewing a feature request or replicating a bug report. Existing recommender
systems could be adapted to make recommendations about who could carry out
these tasks. Finally, another interesting avenue of research is how to motivate
community members into making contributions of different natures: the amount
of time or effort required, degree of expertise required, etc.

32

References

[1] F. Mart́ın, E. Soriano, J. M. Cañas, Quantitative analysis of security in
distributed robotic frameworks, Robotics and Autonomous Systems 100
(2018) 95–107. doi:10.1016/J.ROBOT.2017.11.002.

[2] S. Thrun, W. Burgard, D. Fox, Probabilistic robotics, Vol. 45, 2005.
doi:10.1145/504729.504754.

[3] I. A. D. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. A. Estlin,
Claraty and challenges of developing interoperable robotic software, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003, pp. 2428–2435. doi:10.1109/IROS.2003.1249234.

[4] T. Brog̊ardh, Present and future robot control development—an indus-
trial perspective, Annual Reviews in Control 31 (1) (2007) 69 – 79.
doi:https://doi.org/10.1016/j.arcontrol.2007.01.002.

[5] S. Kernbach, D. Häbe, O. Kernbach, R. Thenius, G. Radspieler, T. Kimura,
T. Schmickl, Adaptive collective decision-making in limited robot swarms
without communication, The International Journal of Robotics Research
32 (1) (2013) 35–55. doi:10.1177/0278364912468636.

[6] P. J. Mosterman, J. Zander, Cyber-physical systems challenges: a needs
analysis for collaborating embedded software systems, Software & Systems
Modeling 15 (1) (2016) 5–16. doi:10.1007/s10270-015-0469-x.

[7] A. Liekna, E. Lavendelis, A. Nikitenko, Challenges in development of real
time multi-robot system using behaviour based agents, in: Distributed
Computing and Artificial Intelligence, 2013, pp. 587–595.

[8] M. Gombolay, X. J. Yang, B. Hayes, N. Seo, Z. Liu, S. Wadhwania, T. Yu,
N. Shah, T. Golen, J. Shah, Robotic assistance in coordination of patient
care, in: Robotics: Science and Systems XII, Robotics: Science and Sys-
tems Foundation, 2016. doi:10.15607/rss.2016.xii.026.

[9] B. Hayes, B. Scassellati, Effective robot teammate behaviors for support-
ing sequential manipulation tasks, in: 2015 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2015, pp. 6374–6380.
doi:10.1109/IROS.2015.7354288.

[10] M. Quigley, K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A. Mg, ROS: an open-source Robot Operating System (2009).
URL http://www.willowgarage.com/sites/default/files/

icraoss09-ROS.pdf

[11] P. Fitzpatrick, G. Metta, L. Natale, Towards long-lived robot genes,
Robotics and Autonomous systems 56 (1) (2008) 29–45.

33

[12] H. Bruyninckx, Open robot control software: the OROCOS
project, Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No.01CH37164) 3 (2001) 2523–2528.
doi:10.1109/ROBOT.2001.933002.

[13] T. Foote, ROS Commuity Metrics Report, verified 21/08/2017 (July
2016).
URL http://download.ros.org/downloads/metrics/

metrics-report-2016-07.pdf

[14] M. Lungu, M. Lanza, T. Gı̂rba, R. Robbes, The small project observatory:
Visualizing software ecosystems, Science of Computer Programming 75 (4)
(2010) 264–275.

[15] D. M. German, B. Adams, A. E. Hassan, The evolution of
the R software ecosystem, Proceedings of the European Confer-
ence on Software Maintenance and Reengineering, CSMR (2013) 243–
252doi:10.1109/CSMR.2013.33.

[16] A. Decan, T. Mens, M. Claes, P. Grosjean, When github meets CRAN: an
analysis of inter-repository package dependency problems, in: IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineer-
ing, SANER - Volume 1, 2016, pp. 493–504. doi:10.1109/SANER.2016.12.

[17] E. Murphy-Hill, T. Zimmermann, N. Nagappan, Cowboys, ankle sprains,
and keepers of quality: How is video game development different from soft-
ware development?, in: Proceedings of the 36th International Conference
on Software Engineering, ACM, 2014, pp. 1–11.

[18] M. Washburn Jr, P. Sathiyanarayanan, M. Nagappan, T. Zimmermann,
C. Bird, What went right and what went wrong: an analysis of 155 post-
mortems from game development, in: Proceedings of the 38th International
Conference on Software Engineering Companion, ACM, 2016, pp. 280–289.

[19] F. Hermans, M. Pinzger, A. van Deursen, Detecting and visualizing inter-
worksheet smells in spreadsheets, in: Software Engineering (ICSE), 2012
34th International Conference on, IEEE, 2012, pp. 441–451.

[20] F. Hermans, B. Sedee, M. Pinzger, A. v. Deursen, Data clone detection
and visualization in spreadsheets, in: Proceedings of the 2013 International
Conference on Software Engineering, IEEE Press, 2013, pp. 292–301.

[21] K. T. Stolee, S. Elbaum, A. Sarma, Discovering how end-user programmers
and their communities use public repositories: A study on yahoo! pipes,
Information and Software Technology 55 (7) (2013) 1289–1303.

[22] G. Burlet, A. Hindle, An empirical study of end-user programmers in the
computer music community, in: Proceedings of the 12th Working Confer-
ence on Mining Software Repositories, IEEE Press, 2015, pp. 292–302.

34

[23] F. Hermans, E. Aivaloglou, Do code smells hamper novice programming?
a controlled experiment on scratch programs, in: 24th International Con-
ference on Program Comprehension (ICPC), IEEE, 2016, pp. 1–10.

[24] G. Robles, J. Moreno-León, E. Aivaloglou, F. Hermans, Software clones
in scratch projects: On the presence of copy-and-paste in computational
thinking learning, in: Software Clones (IWSC), 2017 IEEE 11th Interna-
tional Workshop on, IEEE, 2017, pp. 1–7.

[25] P. Estefo, R. Robbes, J. Fabry, Code duplication in ROS launchfiles, in:
Chilean Computer Science Society (SCCC), 2015 34th International Con-
ference of the, IEEE, 2015, pp. 1–6.

[26] A. Santos, A. Cunha, N. Macedo, C. Lourenço, A framework for qual-
ity assessment of ROS repositories, in: IEEE International Conference on
Intelligent Robots and Systems, Vol. 2016-Novem, 2016, pp. 4491–4496.
doi:10.1109/IROS.2016.7759661.

[27] Y. Dittrich, G. van der Hoorn, A. Wasowski, How ROS cares for Quality,
ROSCon 2017 (2017).

[28] W. Curran, T. Thornton, B. Arvey, W. D. Smart, Evaluating impact
in the ROS ecosystem, in: Proceedings - IEEE International Conference
on Robotics and Automation, no. June in 2015, 2015, pp. 6213–6219.
doi:10.1109/ICRA.2015.7140071.

[29] T. Mens, B. Adams, J. Marsan, Towards an interdisciplinary, socio-
technical analysis of software ecosystem health, CEUR Workshop Proceed-
ings 2047 (2017) 7–9. arXiv:1711.04532.

[30] I. Steinmacher, T. U. Conte, C. Treude, M. A. Gerosa, Overcoming open
source project entry barriers with a portal for newcomers, in: Proceedings
of the 38th International Conference on Software Engineering, ACM, 2016,
pp. 273–284.

[31] I. Steinmacher, M. Aurelio, G. Silva, D. F. Redmiles, A systematic lit-
erature review on the barriers faced by newcomers to open source soft-
ware projects, Information and Software Technology 59 (44) (2015) 67–85.
doi:10.1016/j.infsof.2014.11.001.

[32] A. Lee, J. C. Carver, A. Bosu, Understanding the Impressions, Motiva-
tions, and Barriers of One Time Code Contributors to FLOSS Projects:
A Survey, in: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), IEEE, 2017, pp. 187–197. doi:10.1109/ICSE.2017.25.

[33] T. Mens, M. Goeminne, U. Raja, A. Serebrenik, Survivability of software
projects in gnome–a replication study, SATToSE 2014—Pre-proceedings
79.

35

[34] J. Khondhu, A. Capiluppi, K.-J. Stol, Is It All Lost? A Study of Inactive
Open Source Projects, in: Proceedings of the 9th International Conference
on Open Source Systems, Springer, Berlin, Heidelberg, 2013, pp. 61–79.

[35] J. Coelho, M. T. Valente, L. L. Silva, E. Shihab, Identifying Unmaintained
Projects in GitHub, in: Proceedings of ESEM 2018.

[36] J. L. C. Izquierdo, V. Cosentino, J. Cabot, An Empirical Study on the
Maturity of the Eclipse Modeling Ecosystem, Proceedings - ACM/IEEE
20th International Conference on Model Driven Engineering Languages and
Systems, MODELS 2017 (2017) 292–302doi:10.1109/MODELS.2017.19.

[37] J. Coelho, M. T. Valente, Why modern open source projects fail, in: Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ACM, 2017, pp. 186–196.

[38] E. Constantinou, T. Mens, An empirical comparison of developer reten-
tion in the RubyGems and npm software ecosystems, Innovations in Sys-
tems and Software Engineering 13 (2-3) (2017) 101–115. arXiv:1708.02618,
doi:10.1007/s11334-017-0303-4.

[39] M.-A. Storey, A. Zagalsky, Disrupting developer productivity one bot at
a time, in: Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, ACM, New
York, NY, USA, 2016, pp. 928–931. doi:10.1145/2950290.2983989.

[40] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, D. Lo, Categorizing
the Content of GitHub README FilesarXiv:1802.06997.

[41] R. G. Kula, D. M. German, A. Ouni, T. Ishio, K. Inoue, Do developers
update their library dependencies?: An empirical study on the impact of
security advisories on library migration, Empirical Software Engineering
23 (1) (2018) 384–417. arXiv:1709.04621, doi:10.1007/s10664-017-9521-5.

[42] V. Midha, P. Palvia, Factors affecting the success of Open Source
Software, Journal of Systems and Software 85 (4) (2012) 895–905.
doi:10.1016/j.jss.2011.11.010.

[43] M. P. Robillard, W. Maalej, R. J. Walker, T. Zimmermann (Eds.), Recom-
mendation Systems in Software Engineering, Springer Berlin Heidelberg,
2014. doi:10.1007/978-3-642-45135-5.

[44] M. Gasparic, A. Janes, What recommendation systems for software engi-
neering recommend: A systematic literature review, Journal of Systems
and Software 113 (2016) 101–113.

[45] X. Wang, C. Huang, L. Yao, A survey on expert recommendation in
community question answering, JOURNAL OF COMPUTER SCIENCE
AND TECHNOLOGY 33 (1) (2018) 1–29. arXiv:arXiv:1807.05540v1,
doi:10.1007/s11390-015-0000-0.

36

[46] P. Melville, R. J. Mooney, R. Nagarajan, Content-boosted collabora-
tive filtering for improved recommendations, Proceedings of the 18th Na-
tional Conference on Artificial Intelligence (AAAI) (July) (2002) 187–192.
arXiv:86, doi:10.1.1.16.4936.

[47] J. Mateos-Garcia, W. E. Steinmueller, The institutions of open source soft-
ware: Examining the Debian community, Information Economics and Pol-
icy 20 (4) (2008) 333–344. doi:10.1016/j.infoecopol.2008.06.001.

[48] C. Bogart, C. Kästner, J. Herbsleb, F. Thung, How to break an API:
cost negotiation and community values in three software ecosystems, in:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2016, ACM Press, 2016, pp.
109–120. doi:10.1145/2950290.2950325.

[49] T. Dal Sasso, A. Mocci, M. Lanza, E. Mastrodicasa, How to gamify software
engineering, in: Software Analysis, Evolution and Reengineering (SANER),
2017 IEEE 24th International Conference on, IEEE, 2017, pp. 261–271.

[50] D. J. Dubois, G. Tamburrelli, Understanding gamification mechanisms for
software development, in: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2013, 2013, p. 659.
doi:10.1145/2491411.2494589.

[51] B. Vasilescu, V. Filkov, A. Serebrenik, StackOverflow and GitHub: As-
sociations between software development and crowdsourced knowledge, in:
Proceedings - SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013,
2013, pp. 188–195. doi:10.1109/SocialCom.2013.35.

[52] B. Vasilescu, Human aspects, gamification, and social media in collabora-
tive software engineering, in: Companion Proceedings of the 36th Interna-
tional Conference on Software Engineering, ACM, 2014, pp. 646–649.

[53] S. Grant, B. Betts, Encouraging user behaviour with achievements: an
empirical study, in: Proceedings of the 10th Working Conference on Mining
Software Repositories, IEEE Press, 2013, pp. 65–68.

[54] A. Atiq, N. Zealand, Monetary Rewards for Open Source Software Devel-
opers, in: ICIS-RP, 2014, pp. 1–10.

[55] S. Gosain, The Impact of Ideology on Effectiveness in Open Source
Software Development Teams, MIS Quarterly 30 (2) (2006) 291.
doi:10.2307/25148732.

Appendix A. Interview Questions

Part 1: Background and general opinion about ROS

37

1. What is your graduate and/or postgraduate degree / what are you study-
ing?

2. How long have you been programming with ROS?

3. How do you mainly use ROS? Or contribute to ROS?

4. Do you have a software engineering background? For you, what is Software
Engineering?

(a) Does this apply to ROS?

5. What are the key strengths of ROS in your opinion?

6. What are the principal weaknesses / areas of improvement of ROS?

7. How does ROS compare with the alternatives? Do you know any? Which
ones?

8. Do you usually spend more time developing new modules, configuring
existing modules or adapting 3rd party modules?

9. What are in your opinion the most common errors when using ROS?

Part 2: Learning curve and first steps

10. How much time do you think someone needs to reach an acceptable ex-
pertise in ROS?

11. Which activities are key for developing that expertise?

12. What do you do when you face an unknown bug or behaviour of your
program?

(a) Do you ask in a mailing list?
(b) Do you ask in ROS Answers?
(c) Do you go to the documentation of the relevant packages?
(d) Do you visit the Github page of the relevant packages?

13. What do you think about the mechanisms of communication provided
by the ROS community? (ROS Answers, discourse.ros.org, Mailing lists,
ROS Wiki, Github pages . . .)

14. What do you think about the documentation of ROS packages? Their
tutorials, examples, explanations, demos, etc.

Part 3: Experiences using ROS

15. Describe the latest hard to find bug you had to fight with while using
ROS? Is this a usual kind of bug?

16. ROS as a middleware and a framework provides mechanisms for developing
applications. Have you ever experienced that you have noticed a lack of a
solution or that you had to somehow bypass a ROS solution (or hacking
a ROS solution) due to it not fulfilling your requirements?

17. What has been the most . . . in your experience working with ROS?

(a) Boring or repetitive task or tool feature.
(b) Easy, straightforward tasks.
(c) “Magical” task: you do it because you know it is necessary but you

do not know what is it for. If anything goes wrong, you would not
know how to fix it.

38

(d) Good quality tool.

18. Have you ever experienced issues due to the upgrade of a ROS distribu-
tion?

19. In your experience, typically how many modules you interact with?

20. Have you experienced issues configuring a set of modules? Can you give
examples?

21. Have you had issues of hard to understand launch files? Can you give
examples?

22. ROS has many types of files (launch files, yaml, package .xml files, other
.xml files, build files, etc.).

(a) Can you explain to me the role of each of the files?
(b) What are the 3 more frequently used files?

Part 4: Communication Mechanisms
This section asks questions about the five communication mechanisms pro-

vided by ROS (see Sect. 2.1).

23. Which one have you used?

24. Which one have you never heard of / used?

25. In which contexts would you use each one?

26. Have you encountered issues using the ROS communication mechanisms?
Can you give examples?

27. What are the main constraints or concerns when choosing between mech-
anisms?

28. Do you combine communication mechanisms? How?

29. Have you ever used another communication mechanism or a custom one?

Part 5: Software Artifacts & Developer Roles

30. What are the common tasks of a developer when programming a robot
behaviour? Please list all the examples you can.

31. Can you group these tasks into a role of a developer?

32. For all roles, how many people play this role? (only 1, 2 or 3, everyone)

33. Which software artifacts are related to each task?

Appendix B. Survey Questionnaire

Part 1: Demographic and basic information

1. Select which institution you are affiliated with:

(a) University
(b) Private sector
(c) Research Center
(d) I am not affiliated with an institution
(e) Non-governmental Organization (NGO)
(f) School

39

(g) Local government agency (eg. municipality, ministry)
(h) Other, please specify

2. Country of your institution (Leave it blank if you are not affiliated with
an institution).

3. What is your background in robotics? For example: computer vision,
simulation, navigation, etc.

4. How experienced are you with ROS?

(a) Between 0 to 6 months
(b) From 6 months to 1 year
(c) Up to 2 years
(d) Up to 3 years
(e) Up to 4 years
(f) Up to 5 years or more

5. Do you have any background in Software Engineering?

(a) Not familiar with the term ”Software Engineering”
(b) Heard about SE, but don’t know the definition
(c) Know what it is, but no background in this area
(d) Have taken some Software Engineering courses
(e) Have a strong background in Software Eng.

Part 2: General Background

6. Have you tried reusing a 3rd party ROS package?

(a) Yes
(b) No

7. How dependent are your projects to 3rd party ROS packages?

(a) Only on core packages
(b) Few dependencies
(c) Some dependencies
(d) Major dependencies

8. How often do you encounter the ”Abandoned Package” phenomenon in
practice?

(a) Never
(b) Rarely
(c) Sometimes
(d) Very often
(e) All the time

Part 3: Reusing Packages

9. Have you ever failed to reuse a 3rd party ROS package?

(a) Yes
(b) No

10. Why did you fail reusing it? (Leave it blank if you have not failed reusing)

(a) The package was for an outdated ROS distribution.
(b) I could not figure out how to use it (lack of documentation).
(c) There was a bug that prevented the package from working properly.

40

(d) I did not succeed in configuring the package for my use case (launch
files, etc.) I could not install the package.

(e) The package is not compatible with my particular hardware.
(f) The package was for a newer version of ROS, mine is older.
(g) The package had performance issues.
(h) I asked for help but could not find it.
(i) Other, please specify.

11. How often do you find tests in 3rd party ROS packages?

(a) Never
(b) Rarely
(c) Occasionally
(d) Frequently
(e) Very frequently

12. How often do you find ROS Bags in 3rd party ROS packages?

(a) Never
(b) Rarely
(c) Occasionally
(d) Frequently
(e) Very frequently

13. How relevant to you are the following types of documentation when reusing
a 3rd party ROS package?

• General documentation about the purpose of the package and its
features.

• API documentation.

• Guidelines for configuring the package launch files.

• Troubleshooting experiences from other users.

• Issue tracker information.

• Benchmarks and/or information about its performance.

• Information about the robot(s) where it has been tested on.

• Other.

For each type of documentation, indicate if it is:

(a) Not relevant
(b) Hardly relevant
(c) Somewhat relevant
(d) Relevant
(e) Highly relevant
(f) I do not know

14. When reusing a package, where do you get help? Check all that apply:

(a) ROS Answers.
(b) ROS Wiki.
(c) I search for examples on Github.
(d) StackOverflow.
(e) Colleagues.

41

(f) I ask the package maintainers on Github.
(g) Mailing list.
(h) Discourse.
(i) Other, please specify.

15. Which of the above options do you use most frequently? (Same alterna-
tives as in #14)

16. How dependent are your projects to 3rd party ROS packages?

(a) Only on core packages.
(b) Few dependencies.
(c) Some dependencies.
(d) Major dependencies.

Part 4: Contributions

17. What type of contribution have you made to 3rd party ROS packages?
(Leave it blank if you have not made a contribution)

(a) Reported a bug.
(b) Question post in ROS Answers.
(c) Submitted a bug fix.
(d) Answer post in ROS Answers.
(e) Asked for a new feature.
(f) Submitted a new feature.
(g) Added missing documentation.
(h) Updated documentation.
(i) Experience report post.
(j) Another type of contribution.

18. Which of the above options of type of contribution is the most frequent?
(Same alternatives as in #17)

19. Have you ever failed to make a contribution to a 3rd party ROS package?
If so, why? (Leave it blank if you have not)

(a) I did not have enough time to make a contribution.
(b) I think my issue is too specific to my project, hardware and/or re-

search.
(c) I was not confident that the contribution was good enough (in terms

of correctness and/or quality).
(d) The package was abandoned, so no one will receive or integrate it.
(e) I did not know how to make a contribution (I am not aware of a

workflow).
(f) I forgot.
(g) It might have been a misunderstanding on my part.
(h) I was not sure who to send the contribution to I did not know which

software license to use.
(i) My institution/contract has privacy policies that forbid me from

making contributions to open-source projects or sharing work funded
by it.

(j) I did not know you could contribute to packages.

42

(k) I did not know how to use GIT or Github well enough to send my
contribution (e.g. pull requests).

(l) The maintainer or other users probably fixed the problem already.
(m) Another reason, please specify.

20. Which of the above reasons is the most frequent? (Same alternatives as
in #19)

Part 5: Support-like contributions

21. Have you ever felt like you could have answered a question on a Q&A site,
Mailing list or forum, but in the end you did not submit an answer?

(a) Yes
(b) No

22. Why did not you do submit an answer? (If you answered No to question
#21, leave it blank)

(a) It takes too much time to replicate the situation described in ques-
tion.

(b) It requires follow-up questions before answering.
(c) It requires setup data that usually is not provided (ROS Bags, etc.).
(d) It requires hardware I do not have access to.
(e) Another reason, please specify.

43

