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Abstract

Libraries are commonly used to support code reuse and increase productivity. As

any other system, they evolve over time, and so do their APIs. Consequently, client

applications should be updated to benefit from better APIs. To facilitate this task, API

elements should always be deprecated with replacement messages. However, in prac-

tice, there are evidences that API elements are deprecated without these messages. In

this paper, we study questions regarding the adoption of deprecation messages. Our

goal is twofold: to measure the real usage of deprecation messages and to investigate

whether a tool is needed to recommend them. We assess (i) the frequency of depre-

cated elements with replacement messages, (ii) the impact of software evolution on

this frequency, and (iii) the characteristics of systems that deprecate API elements in

a correct way. Our analysis on 622 Java and 229 C# systems shows that: (i) on the

median, 66.7% and 77.8% of the API elements are deprecated with replacement mes-

sages per project, (ii) there is no major effort to improve deprecation messages, and

(iii) systems that deprecated API elements with messages are different in terms of size

and community. As a result, we provide the basis for creating a tool to support clients

detecting missing deprecation messages.
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1. Introduction

In software development, it is common practice to implement systems on top of

frameworks and libraries [32], taking advantage of their Application Programming In-

terfaces (APIs). This provides several benefits, for example: (i) reduction of develop-

ment costs and time due to code reuse [25], (ii) increase focus on the essential system

requirements, since developers do not need to re-implement the services provided by

an API [18], and (iii) increase software quality by using well-adopted, tested and doc-

umented code elements. Due to their advantages, APIs may have thousand of client

applications. For example, with the support of Boa [7], an infrastructure to support

ultra-large-scale software mining on GitHub repositories, we found 143,454 client ap-

plications for java.util.ArrayList, 63,434 for android.os.Bundle, and

50,118 for org.junit.Test.

As any software system, frameworks/libraries and their APIs also evolve over time.

Naturally, API elements (i.e., public types, methods, and fields) may be renamed, re-

moved, or updated. Consequently, impacted client applications should migrate to ben-

efit from improved API elements [1].

To facilitate client developers making the transition and preserve backward compat-

ibility, API elements should be deprecated with replacement messages. Mechanisms

to support API deprecation are provided by most programming languages, such as

Java and C#. For example, Java presents two solutions to deprecate types, methods,

and fields: using deprecation annotations and/or deprecation Javadoc tags. Both an-

notations and tags are used to warn developers referencing deprecated API elements.

However, the latter may be accompanied by replacement messages to suggest what to

use instead. Listing 1 presents an example of deprecated method in Java. In this ex-

ample, method getPostParams() is deprecated with a @Deprecated annotation

(line 4) and a Javadoc tag @deprecated (line 2). This tag contains a replacement

suggestion for the deprecated method, which is method getParams().
1 /**
2 * @deprecated Use {@link #getParams()} instead.
3 */
4 @Deprecated
5 protected Map<String, String> getPostParams() throws AuthFailureError { ... }

Listing 1: Deprecated method in Java - GOOGLE/IOSHED
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In practice, previous studies indicate that API elements are commonly deprecated

with missing or unclear replacement messages. For example, Robbes et al. [27] and

Sawant et al. [28] investigate the impact of API deprecation in software ecosystems.

Although it is not their main focus, the authors present preliminary evidences that

APIs are usually deprecated without replacement messages. Hora et al. [13] investigate

the impact of API evolution also at an ecosystem level; their results also highlight

evidences that deprecation mechanisms should be more adopted. However, we still

lack detailed information of API deprecation adoption. We are unaware about the real

scale of this phenomenon, whether it tends to get better (or worse) over time, and

characteristics of involved systems.

In this paper, we study a set of questions regarding the adoption of API deprecation

messages. We analyze: the frequency of deprecated API elements with replacement

messages; the impact of software evolution on the frequency of replacement messages;

and the characteristics of systems which deprecate API elements in a correct way in

terms of popularity, size, community, activity, and maturity. Our goal is twofold: to

measure the usage of deprecation messages and to investigate whether a tool is needed

to recommend these messages. Thus, we propose the following research questions,

which are answered in the context of 622 Java and 229 C# systems:

• RQ1. What is the frequency of deprecated APIs with replacement mes-

sages? We analyse the frequency of deprecated API elements with replacement

messages. We detect that 66.7% of the API elements are deprecated with re-

placement messages per system in Java and 77.8% in C# (median values).

• RQ2. What is the impact of software evolution on the frequency of replace-

ment messages? We assess the frequency of replacements messages by compar-

ing multiple releases. Overall, we detect that there is almost no major effort to

improve the quality of these messages over time.

• RQ3. What are the characteristics of software systems with high and low

frequency of replacement messages? We investigate whether system popular-

ity, size, community, activity, and maturity have an impact on the way developers
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deprecate API elements. We find that systems that follow best deprecation prac-

tices are statistically significant different from the ones that do not in terms of

size, developing community, and activity.

Overall, we detect at a large-scale level that API elements are commonly deprecated

without replacement messages. Therefore, we perform a follow up study to verify the

feasibility of designing and implementing a recommendation tool that automatically

infers replacement messages by mining real solutions adopted by developers. In this

context, we computed a precision of 73%, i.e., we are able to correctly infer missing

replacement messages in almost 3/4 of the cases. To evaluate recall, we analyzed

three real-world systems, resulting in the following values: 28.2%, 30.7%, and 37.5%.

Thus, this suggests that a recommendation tool targeting elements deprecated without

replacement messages is indeed possible to be implemented, with good precision and

reasonable recall.

This work is an extension of our previous study [2]. Specifically, this study extends

the previous one in three major points: (1) we extend all research questions to investi-

gate API deprecation in the context of C# programming language; (2) we provide new

data analysis on RQ2 to investigate the impact of software evolution on the frequency

of replacement messages; and (3) we provide a complementary study to assess preci-

sion and recall of a recommendation tool to automatically infer replacement messages.

Thus, the contributions of this paper are summarized as:

• We provide a large-scale empirical study covering two programming languages

to understand to what extend APIs are deprecated with replacement messages.

• We provide evidences on the benefits of a recommendation tool to assist client

developers in the detection of missing replacement messages.

In Section 2, we present the background in the context of APIs and deprecation. We

describe our experiment design in Section 3 and we present the experiment results in

Section 4. The complementary study on the recommendation tool to infer replacement

messages is described in Section 5. Finally, we present related work in Section 6, and

we conclude the paper in Section 7.
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2. Background

2.1. Application Programming Interfaces

In this paper, we define Application Programming Interfaces (APIs) as interfaces

used by software components to communicate with each other, as illustrated in Fig-

ure 1. Examples of successful APIs include Java API1, .NET Framework Class Li-

brary2, and Android API3.

Figure 1: APIs acting as interfaces between clients and a provider software entity [24].

In this work, we consider API elements as public/protected types, fields, and meth-

ods. Listing 2 shows an API example, which presents an excerpt of the Stack class in

package java.util for Java Platform Standard Edition4. In this example, methods

push(), pop(), peek(), empty(), and search are public, thus, they are API

elements. By contrast, serialVersionID() field is private, thus, it is not an API

element. Also, the class Stack itself is an API element, because it is public.
1 public class Stack<E> extends Vector<E> {
2

3 public E push(E item) {
4 ...
5 }
6 public synchronized E pop() {
7 ...
8 }
9 public synchronized E peek() {

10 ...
11 }
12 public boolean empty() {
13 ...
14 }
15 public synchronized int search(Object o) {
16 ...
17 }
18 private static final long serialVersionUID = 1224463164541339165L;
19 }

Listing 2: Example of API elements in class java.util.Stack in Java

1https://docs.oracle.com/javase/8/docs/api/
2http://msdn.microsoft.com/en-us/library/gg145045.aspx
3http://developer.android.com/reference
4http://www.oracle.com/technetwork/java/javase
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2.2. API Deprecation

Software systems evolve over time, changing their methods, fields, and types.

When an API element changes, the impact propagates to client systems. To mitigate

the impact of these changes, libraries and frameworks should use deprecation mech-

anisms, like messages to support client developers. In fact, API deprecation is a way

to alleviate the impact of API changes. In theory, before being removed, changed, or

renamed, API elements should be annotated as deprecated to support client developers

making the transition to new ones. Deprecated API elements are kept in the system

to preserve backward compatibility, but they should not be used by client developers

because they may be removed in the future.

2.2.1. API Deprecation in Java

The Java language, since J2SE 5.0, provides a mechanism to deprecate types, meth-

ods, and fields, using the @Deprecated annotation. This annotation causes the com-

piler to issue a warning when it finds references to deprecated API elements. Listing 3

shows an example of a deprecated method using the @Deprecated annotation. In

this example, the Database method is deprecated with this annotation (line 1), but it

is not included any suggestion for a replacement.
1 @Deprecated
2 public Database(Context context) { ... }

Listing 3: Deprecated method in Java using @Deprecated annotation - FACEBOOK/STETHO

When an element is annotated with the @Deprecated annotation, the compiler

will issue a deprecation warning if the element is used (e.g., invoked, referenced, or

overridden). The compiler will complain as the message shown in Listing 4:
1 Note: Path\to\java\file.java uses or overrides a deprecated API.
2 Note: Recompile with -Xlint:deprecation for details.

Listing 4: Warning message caused by @Deprecated annotation

When using deprecation annotations, it is a good practice to document the rea-

sons for the deprecation and/or to recommend alternative API elements. To support

this practice, Java provides the Javadoc tag @deprecated (supported since J2SE

1.1). The tag should also be used to warn developers about deprecated elements. List-

ing 5 shows an example of a deprecated method using the @deprecated tag (line 3).
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The tag contains a deprecation message that suggests replacing the deprecated method

setFieldOrder() (lines 6-8) by the method getFieldOrder().
1 /**
2 * Force a compile-time error on the old method of field definition
3 * @deprecated Use the required method getFieldOrder() instead to
4 * indicate the order of fields in this structure.
5 */
6 protected final void setFieldOrder(String[] fields) { ... }

Listing 5: Deprecated method in Java using the Javadoc tag @deprecated - JAVA-NATIVE-ACCESS/JNA

More specifically, Java documentation recommends the use of two solutions to dep-

recate elements with replacement messages i.e., message to suggest developers what to

use instead, as follows:

• Javadoc 1.1: This Javadoc version recommends to use the annotation @see to

indicate the replacement API.

• Javadoc 1.2 and later: These versions recommend to use the word use followed

by the annotation @link to indicate the replacement API.

Listing 6 shows an example of deprecated Java method, according to Javadoc 1.2

and later guideline. Like in Javadoc 1.1, the tag @deprecated (line 3) is used to pro-

vide documentation to help the developers, but we also see the use of the use guideline

to indicate the replacement element. Notice the use of the @link tag to provide a link

to the documentation of the replacement element. The warning message “Use @link

#ScriptSortBuilder(Script, String) instead” will be presented when developers compile

a system that calls the deprecated method lang(). This message contains the sugges-

tion for the replacement element and the link for its documentation. Notice that Java

deprecation guidelines are not mandatory: developers may adopt other conventions to

provide replacement messages, or simply do not use them at all.
1 /**
2 * The language of the script.
3 * @deprecated Use {@link #ScriptSortBuilder(Script, String)} instead.
4 */
5 @Deprecated
6 public ScriptSortBuilder lang(String lang) { ... }

Listing 6: Deprecated method in Java using Javadoc 1.2 guidelines - ELASTIC/ELASTICSEARCH
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2.2.2. API Deprecation in C#

The C# programming language has the attribute Obsolete to deprecate API ele-

ments. Like @Deprecated annotations in Java, when an element has the Obsolete

attribute, the C# compiler issues a message if it is used. The attribute contains two ar-

guments: (i) a message to support developers and (ii) a parameter to define if the use of

deprecated element should cause a compiler error. This attribute can be used with no

arguments, but it is recommended to include an explanation on the reasons the element

is obsolete and what API element should be used as a replacement. Listing 7 presents

an example of a deprecated method in C#, where the Obsolete attribute is used with

a replacement message to support client systems.
1 [Obsolete("Use ApiTaskAsync instead", true)]
2 protected virtual void ApiAsync(HttpMethod httpMethod, string path, object

parameters, Type resultType, object userState) { ... }

Listing 7: Deprecated method in C# using Obsolete attribute with a replacement message - FACEBOOK-
CSHARP-SDK/FACEBOOK-CSHARP-SDK

3. Study Design

3.1. Selecting Case Studies

We analyse Java and C# systems hosted on GitHub, the most popular social coding

platform nowadays. We use three filtering criteria to select real systems and discard

irrelevant ones [15]: number of stars, releases, and deprecated API elements.

1. Number of stars. GitHub provides the stargazer button that allows users to show

interest on systems. We select systems with 100 or more stars in order to only

take into account popular and real-world ones.

2. Number of releases. GitHub has the ability to tag specific points in history

in order to facilitate release creation.5 We select systems with three or more

public releases (tags) available on GitHub. We use this criterion to assess API

deprecation evolution.

5git-scm.com/book/en/v2/Git-Basics-Tagging
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3. Number of deprecated API elements with replacement messages. We select

systems with at least one public/protected deprecated API element with replace-

ment message. We use this criterion to filter out systems without replacement

messages, which are not in the scope of our study.

We then selected all the systems that satisfied our filtering criteria: 622 in Java and

229 in C#. To better characterize them, Figure 2 presents the distribution of the three

aforementioned measures. For Java systems, the number of stars in the first quartile,

median, and third quartile is 158, 280, and 593. For C#, the number of stars in the first

quartile, median, and third quartile is 162, 300, and 719, respectively. The top-3 Java

systems with more stars are ELASTIC/ELASTICSEARCH (12.4K stars), NOSTRA13-

/ANDROIDUNIVERSALIMAGELOADER (9.7K), and GOOGLE/IOSCHED (7.7K). For

C#, the top-3 systems with more stars are DOTNET/COREFX (9.2K), SIGNALR/SIG-

NALR (5.6K), and DOTNET/ROSLYN (4.5K). Also, for Java, the number of releases in

the first quartile, median, and third quartile is 12, 25, and 58, while for C# it is 10, 19,

and 42. Finally, for Java, the number of API elements deprecated with replacement

messages in the first quartile, median, and third quartile is 2, 6, and 20, and for C# it is

2, 7, and 18.
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Figure 2: Distribution of number of stars, number of releases, and number of deprecated API elements in the
selected systems.

In addition, we manually classify the selected systems in two categories: library

and non-library. In fact, library developers are expected to take more care when evolv-

ing APIs. We define systems in library category after inspecting their description and

documentation on GitHub. In this case, we payed special attention in explanations in-

cluding keywords such as library, framework, API, and interface. Other systems are
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classified as non-library. For Java, we classified 342 (54.98%) as libraries and 280 as

non-libraries (45.02%). For C#, we detected 119 (51.97%) libraries and 110 (48.03%)

non-libraries.

3.2. Extracting Deprecated API Elements

As a first step to support answering our research questions, we extract all API

elements (including types, fields, and methods) with deprecation annotations in Java

and C# systems. For Java, we extract their associated Javadoc and, for C#, we ex-

tract the Obsolete attribute. Listing 8 presents an example of a deprecated method

in Java. In this example, the @deprecated annotation (line 6) is used to depre-

cate method onModule(). Additionally, a Javadoc annotation is used to describe a

replacement for the deprecated method: instead of calling onModule(), ELASTIC/E-

LASTICSEARCH developers should now call onIndexModule().
1 /**
2 * Old-style guice index level extension point
3 *
4 * @deprecated use #onIndexModule instead
5 */
6 @Deprecated
7 public final void onModule(IndexModule indexModule) { ... }

Listing 8: Example of obsolete method in Java - ELASTIC/ELASTICSEARCH

Listing 9 shows a C# deprecation example: the attribute (line 1) is used to depre-

cate the type named IHashCodeProvider. Note that the Obsolete attribute sug-

gests a replacement for the deprecated type. Instead of using IHashCodeProvider,

MICROSOFT/CODECONTRACTS developers should now use IEqualityComparer.
1 [Obsolete("Please, use IEqualityComparer insteaded.")]
2 public interface IHashCodeProvider { ... }

Listing 9: Example of obsolete method in C# - MICROSOFT/CODECONTRACTS

To find deprecated API elements in Java, we implemented a parser based on the

Eclipse JDT library to look for deprecation annotations and tags. To find deprecated

API elements in C#, we implemented an in-house tool based on lexical analysis to

detect deprecation attributes. This tool uses regular expressions to identify methods,

fields, and types, checking whether they are deprecated. Table 1 shows the regular

expressions used by the tool. In our study, we consider C# property elements as fields.
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Table 1: Regular expressions to identify API elements in C#

Element Expression

Field
(public|protected)\\s+"(\\w+)=(?:\")?
(.*?(?=\"?\\s+\\w+=|(?:\"?)\$))

Property (\S+(?:<.+?>)?)(?=\s\w+\s\{get;)

Method

((public|protected|static|final|native|
synchronized|abstract|transient)+\\s)+
[\\$_\\w\\<\\>\\[\\]]*\\s+[\\$_\\w]+\\
([^\\)]*\\)?\\s*\\{?[^\\}]*\\}

Type
"\\s*(public|protected)\\s+class\\s+
(\\w+)\\s+((extends\\s+\\w+)|
(implements\\s+\\w+( ,\\w+)*))?\\s*\\{")

Finally, we restricted our analysis to public and protected API elements because

they represent the external contracts to clients. Moreover, when an entire type is dep-

recated, we did not consider their contained methods and fields are also deprecated

(unless these methods or fields are explicitly deprecated). Table 2 shows the number of

public and protected deprecated API elements.

Table 2: Number of deprecated API elements.

Language Deprecated
Types

Deprecated
Fields

Deprecated
Methods

All Deprecated
Elements

Java 5,814 4,521 26,727 37,062
C# 1,277 2,197 4,723 8,197

3.3. Extracting Replacement Messages

In Java, when an element is deprecated using the Javadoc tag, it may be accom-

panied by a replacement message to help client developers. As presented in Sec-

tion 2.2, Java guidelines propose two solutions to create deprecation replacement mes-

sages: (i) using the annotation @see, or (ii) using the word use and the annotation

@link. However, to detect alternative guidelines followed by Java developers, we

extracted deprecation messages with the support of the JDT library, and we manually

inspected a subset of these messages. Specifically, we randomly selected deprecated

messages until we found 200 with replacement messages (regardless of the project);

these 200 were the ones inspected to detect the guidelines. As a result of this analy-

sis, we detected seven frequent guidelines to indicate replacement, in addition to use:
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refer, equivalent, replace* (i.e., replace, replaced, replacement),

see, moved, instead, and should be used. We also confirmed the usage of

annotations @link and @see.

Table 3 shows the frequency of guidelines as well as message examples. The most

adopted guideline is use, with 17,810 cases (47.9%). In contrast, the least adopted

one is should be used, with 33 cases, (0.09%). Notice that some guidelines may

co-occur in the same message. For example, use commonly happens with @link. In

total, 22,075 (59.5%) API elements were deprecated with replacement messages out of

37,119 Java API elements.

Table 3: Frequency of replacement guidelines in Java.

Guideline Frequency Example

use 17,810 (47.9%) use encodeURL(String url) instead (Apache Tomcat)

@link 14,852 (40%)
Use @link #setController(DraweeController)
instead (Facebook Fresco)

instead 14,173 (38.2%) Use KEY_LMETA instead (Facebook Nifty)
@see 2,334 (6.3%) @see #getStartRequests (WebMagic)
replace* 2,171 (5.8%) Replace to getParameter(String, int) (Dubbo)

refer 1,070 (2.9%)
property will be removed, refer
@link #getEncoded(boolean) (Actor Platform)

see 777 (2.1%)
See servlet 3.0 apis like
HttpServletRequest.getParts() (Eclipse Jetty)

moved 224 (0.6%)
deprecated since 2008-05-28. Moved to stapler
(Eclipse Hudson)

equivalent 166 (0.3%)
The @link Iterable equivalent is
@link ImmutableSet#of() (Google Guava)

should be used 33 (0.09%)
org.bukkit.entity.minecart.PoweredMinecart
should be used instead (Bukkit)

In contrast to Java, we could not find guidelines to define replacement messages for

C#. For this reason, we also performed a similar manual analysis to detect replacement

guidelines in C#. First, we extracted deprecation messages in deprecated API elements.

We looked for occurrences of the attribute Obsolete and we manually inspected a

subset of these messages. As a result, we detected three frequent guidelines that are

used to indicate replacement: use, replace*, and instead. Table 4 presents the

frequency of each identified replacement in C#, with examples of replacement mes-

sages. The most common guideline is instead, with 3,118 cases (51%). In contrast,
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the least adopted one is replace*, with 422 cases (8%). In total, 5,268 (64.3%) API

elements are deprecated with replacement messages. This data is further explored in

RQ1, and its evolution is analyzed in RQ2.

Table 4: Frequency of replacement guidelines in C#.

Guideline Frequency Replacement Message Example

instead 3,118 (51%) This class is obsolete; use class Tree instead (Mono)
use 2,686 (49%) Use static Add() method instead. (Mono Monomac)

replace* 422 (8%)
Replace it with both GetSupportedInterfaceOrientations
(Redth/ZXing.Net.Mobile)

3.4. Comparing Systems with High and Low Frequency of Replacement messages

3.4.1. Defining Metrics Possibly Impacting API Deprecation

To support answering RQ3, about the characteristics of systems that deprecate API

elements with replacement messages, we consider metrics in five dimensions that may

affect deprecation practices: popularity, size, community, activity, and maturity. The

goal is to investigate whether these metrics have an impact on the way developers

deprecate API elements. The metrics are described next and summarized in Table 5.

• Popularity. This dimension includes metrics that represent how popular is a sys-

tem in GitHub in number of stars, number of watchers, and number of forks. The

rationale is that popular systems may have more clients, thus, their developers

might have more concerns about their APIs.

• Size. This dimension includes metrics related to system size in terms of number

of files and number of API elements (i.e., sum of number of types, fields, and

methods). The rationale is that larger systems are harder to maintain, therefore,

it might be more difficult to keep track of all API changes. In contrast, smaller

systems may be easier to control and to keep track of.

• Community. This dimension includes metrics that represent the system com-

munity, including number of contributors, average files per contributor, and av-
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erage API elements per contributor.6 The rationale is that systems with larger

communities might be easier to maintain, and to keep track of API changes.

• Activity. This dimension includes metrics related to the system activity level in

terms of number of commits, number of releases, and average days per release.

The rationale is that systems with more activity might respond faster to client

complains. Therefore, they may be more likely to improve their APIs.

• Maturity. This dimension is about the system age, in number of days. The

rationale is that older systems are reliable, thus, they may have stable APIs. In

contrast, it is natural to expect that newer systems have less stable APIs.

Table 5: Metrics likely to impact API deprecation.

Dimension Metric

Popularity
number of stars
number of watchers
number of forks

Size number of files
number of API elements

Community
number of contributors
average files per contributor
average API elements per contributor

Activity
number of commits
number of releases
average days per release

Maturity age (in number of days)

3.4.2. Extracting Metrics from Case Studies

We extracted the proposed metrics from two groups of systems, considering their

last release: the ones deprecating API elements in a correct way, by providing re-

placement messages to deprecated API elements (named top systems), and the ones

not following this practice (named bottom systems). Then, we assessed these groups

6“average files per contributor” = number of files in last release/number of contributors. “average API
elements” = number of APIs in last release/number of contributors.
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to verify whether they are statistically different with respect to the proposed metrics.

These two steps are detailed next.

Selecting top and bottom systems. We first sorted all systems, in descending order,

based on the percentage of deprecated API elements with replacement messages. We

selected two groups, top-30% (i.e., systems with the highest percentage of deprecated

API elements with replacement messages) and bottom-30% (i.e., systems with the low-

est percentage). For Java, each group has 187 systems and for C# each group has 69

systems. Figure 3 shows the relative distribution of deprecated elements with replace-

ment messages in each group. In the Java systems, the median percentage is 100% for

the top systems and 17.8% for the bottom ones. For C# systems, the median percentage

is also 100% for the top systems and 42.5% for the bottom ones.
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Figure 3: Distribution of the percentage of deprecated APIs with replacement messages in the top-30% and
bottom-30% systems.

Extracting metrics and comparing systems. We extracted the metrics described in

the previous subsection for the top and bottom systems and then compared the obtained

values. We first analyse the statistical significance of the difference between the two

groups by applying the Mann-Whitney U test at p-value = 0.05. To show the effect

size of the difference between the two groups, we compute Cliff’s Delta (or d). As in

previous studies [8, 31, 19], we interpret the effect size values as small for 0.147 <

d < 0.33, medium for 0.33 < d < 0.474, and large for d > 0.474.
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4. Results

In this section, we answer and discuss the three research questions proposed in

this study. Section 4.1 discusses the frequency of deprecated APIs with replacement

messages (RQ1). Section 4.2 investigates the impact of software evolution on the fre-

quency of such messages (RQ2). Section 4.3 describes the system characteristics that

may impact on the way developers deprecate API elements (RQ3). Section 4.4 presents

some final remarks. Finally, Section 4.5 presents threats to the validity of our study.

4.1. RQ1. What is the frequency of deprecated APIs with replacement messages?

In this first research question, we analyze the frequency of deprecated API elements

with replacement messages in the last release of the Java and C# systems, when con-

sidering all projects. As presented in Table 6, in Java, 3,789 deprecated types (65%)

contain replacement messages. For deprecated fields and methods, these numbers are

2,675 (59%) and 15,568 (58.2%). When considering all deprecated API elements,

22,032 (59.4%) contain replacement messages. We also present the frequency of dep-

recated API elements with replacement messages in the C# systems. As noticed in

Table 6, 613 deprecated types (48%) in the C# systems contain replacement messages.

For deprecated fields and methods, these numbers are 1,401 fields (63.8%), and 3,254

methods (68.9%). Considering all deprecated API elements in C#, 5,268 (64.2%) con-

tain replacement messages. Overall, the results measured for Java and C# are similar,

although C# systems have a slight tendency to include more replacement messages, in

relative terms. This may be explained by the fact that both languages have explicit and

official mechanisms to deprecate API elements with messages, which do not always

happen in other programming languages.

Table 6: Number of deprecated API elements with replacement messages when considering all projects.
Between parentheses, global means.

Language Types Fields Methods All

Java 3,789 (65%) 2,675 (59%) 15,568 (58.2%) 22,032 (59.4%)

C# 613 (48%) 1,401 (63.8%) 3,254 (68.9%) 5,268 (64.2%)

Absolute analysis. Figure 4 shows the distribution of the number of deprecated API
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elements with replacement messages per system. For types, the median is 2 in Java

and 1 in C#. Regarding fields elements, the median is 1 in Java and 2 in C#. For

methods, the median is 5 in both languages. Considering all API elements in Java, the

first quartile is 2, the median is 6, and the third quartile is 20; for C#, the values are

2, 7, and 18. Therefore, methods are the most frequently deprecated elements with

replacement messages in both languages while fields are the least ones in Java and

types are the least one in C#.
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Figure 4: Absolute distribution of deprecated API elements with replacement messages.

Relative analysis. Figure 5 presents the distribution of the relative number of depre-

cated API elements with replacement messages per system, which is detailed below:

• Types: In Java, the median is 71.4%: there are 114 systems with 100% of their

deprecated types with replacement messages. In contrast, we find 57 systems

with deprecated types without these messages. For C#, the median is 75%: we

detect 61 systems with all deprecated types with replacement messages, and 30

without.

• Fields: In Java, the median is 50%: we identify 74 Java systems with 100% of

their deprecated fields with replacement messages and 72 systems without any

message. For C#, the median is 75%: there are 26 systems with 100% of fields

with replacement messages and 14 systems without any message.
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• Methods: In Java, the median is 66.7%: there are 160 Java systems with 100%

of their deprecated methods with replacement messages and 24 systems with no

replacement messages. For C#, the median is 75%: we found 63 systems with

100% of their deprecated methods with replacement messages and 20 without.

• All: In Java, the first quartile is 33.3%, the median is 66.7%, and the third quar-

tile is 100%; we also found 162 systems (26%) with 100% of their deprecated

API elements with replacement messages. For C#, the first quartile is 50%, the

median is 77.8%, and the third quartile is 100%; we found 64 systems (28%)

with 100% of deprecated API elements with replacement messages.
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Figure 5: Relative distribution of deprecated API elements with replacement messages.

In summary, in Java, types are the most deprecated elements with replacement

messages, followed by methods and fields. The third quartile at 100% for all ele-

ments shows that 25% of the systems always deprecate all elements with replacement

messages. For C#, like in Java, the third quartile is 100% for all elements, and coin-

cidentally, all three elements have the same median values (75%). We notice that C#

systems have a slight trend to include more replacement messages, when compared to

the Java ones (median per project 77.8% against 66.7%). Overall, we also observe a

relevant number of API entities deprecated without replacement messages, which may

make client application migration more difficult.

Libraries vs. Non-libraries. As described in Subsection 3.1, we classify the systems
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in two categories: library and non-library. For Java, we found 342 libraries and 280

non-libraries; in C#, 119 and 110. To compare the categories, we analyze the relative

number of deprecated messages per system in each group (Figure 6). For Java, the first

quartile, median, and third quartile are 40%, 71.2%, and 100%, for libraries. For non-

libraries, these values are 28.6%, 60%, 86.8%, respectively. For C#, the numbers for

libraries are 51.3%, 81.8%, and 97.2%. For non-libraries, these values are 50%, 73.7%,

and 100%. The difference between the median values of the two categories is 11.2%

(Java) and 8.1% (C#).7 In both languages, the percentage of replacement messages for

libraries is greater than in non-libraries.
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Figure 6: Relative distribution of deprecated API elements with replacement messages in library and non-
library systems.

4.2. RQ2. What is the impact of software evolution on the frequency of replacement
messages?

To study the impact of software evolution on API deprecation, we analyze the fre-

quency of deprecated API elements with replacement messages in several distinct re-

leases of the Java and C# systems. Starting from the first release, we collected all the

subsequent ones, considering an interval of at least two months. For each release, we

assess the frequency of deprecated API elements with replacement messages that ex-

isted in that release, regardless of when they were introduced. We then classify the

7We found statistically significant difference with medium effect size in the Java comparison (p-value <
0.01 and effect-size = 0.35).
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variation in the percentage of replacement messages of a given system release in four

categories: (i) Decrease Trend: the percentage always decreases in the analysed re-

leases; (ii) Increase Trend: the percentage always increases; (iii) Variant Trend: the

percentage increases and decreases with no pattern; and (iv) Stable Trend: the percent-

age of replacement messages is constant in all releases. Figure 7 provides examples of

systems in each category.
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Figure 7: Examples of systems in each evolution category.

Table 7 presents the number of systems in each category. For Java, 40 systems (6%)

are in the decrease category, 198 systems (32%) in the increase category, 245 systems

(40%) in variant category, and 139 systems (22%) are stable. The values for C# are 25

systems (11%) for decrease category, 59 systems (26%) for increase, 83 systems (36%)

for variant, and 62 systems (27%) for stable. Thus, most systems are variant, while a

small amount has a decrease trend in the percentage of replacement messages. Only a

minority of the systems loses the quality of their deprecation messages over time.
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Table 7: Number of systems in each evolution category.

Language Decrease Increase Variant Stable

Java 40 (6%) 198 (32%) 245 (40%) 139 (22%)

C# 25 (11%) 59 (26%) 83 (36%) 62 (27%)

In addition, Figure 8 shows the distribution of the number of system releases clas-

sified in each evolution category. We performed this analysis to reveal how the number

of releases impacts in the evolution of replacement messages. For Java, the values are

18 (decrease), 18 (increase), 14 (stable), and 48 (variant). The values in C# are 22

(decrease), 14 (increase), 11 (stable), and 40 (variant). In both languages, stable sys-

tems have the lowest number of releases on the median, while variant systems have the

highest number of releases. This may explain the fact the latter ones vary the number

of deprecated API elements, for example, by removing them more aggressively.
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Figure 8: Number of system releases classified in each evolution category.

In summary, 32% of the Java systems increase the amount of replacement mes-

sages, while only 6% decrease. For C#, 26% of the systems increase this percentage,

and 11% decrease. Overall, most systems increase and decrease the percentage of re-

placement messages, showing their deprecation quality are not maintained over time.
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4.3. RQ3. What are the characteristics of software systems with high and low fre-
quency of replacement messages?

In this research question, we assess the last release of our case studies to investigate

whether system popularity, size, community, activity, and maturity have an impact on

the way developers deprecate API elements, as indroduced in Section 3.4. We perform

this investigation by comparing top and bottom systems; top systems have 100% of

their API elements deprecated with replacement messages, while bottom barely do

that. Table 8 presents the metrics and their respective p-values and d applied on top

and bottom systems, for both languages. Metrics in bold have p-value < 0.05, and d >

0.147, i.e., they are statistically significant different with at least a small effect size in

top and bottom systems.

Table 8: Metrics and their respective p-values and d on top and bottom systems. Bold values mean p-value
< 0.05 (statistically significant different), and d > 0.147 (at least a small effect size). Level of significance
for d-values: L = large, M = medium, S = Small, N = negligible. Rel. = relationship: “+” = top systems have
significantly higher value on this metric. “-” = bottom systems have significantly higher value on this metric.

Dimension Metric Java C#
p-value d-value Rel. p-value d-value Rel.

Popularity

number of
stars

0.674 0.142 (N) + 0.004 0.407 (M) -

number of
watchers

0.018 0.04 (N) + <0.001 0.454 (M) -

number of
forks

0.028 0.08 (N) + 0.003 0.447 (M) -

Size
number of
files

<0.001 0.459 (M) - 0.034 0.419 (M) -

number of
API elements

<0.001 0.374 (M) - <0.001 0.414 (M) -

Community

number of
contributors

<0.001 0.376 (M) - 0.009 0.537 (L) -

avg. files
per contrib.

<0.001 0.227 (S) - 0.648 0.160 (N) -

avg. API elem.
per contrib.

<0.001 0.123 (N) - 0.303 0.110 (N) -

Activity

number of
commits

<0.001 0.563 (L) - 0.009 0.342 (M) -

number of
releases

0.001 0.206 (S) - 0.014 0.244 (S) -

avg. days
per release

0.004 0.182 (S) - 0.201 0.292 (S) -

Maturity
age (in number
of days)

0.253 0.009 (S) + 0.102 0.363 (M) -
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For Java, the selected top and bottom systems are statistically significant different

with at least a small effect size in 7 out of the 12 metrics, including all size and activity

metrics as well as number of contributors and average files per contributor in com-

munity. The effect size is large in one metric (number of commits), medium in three

(number of files, number of API elements, and number of contributors), and small

in three (number of contributors, average files per contributor, and average days per

release). Regarding the C# systems, 8 metrics present statistical significance: all pop-

ularity and size metrics, and number of contributors, number of commits, and number

of releases. The effect size is large in one metric (number of contributors), medium in

six (all popularity and size metrics, and number of commits), and small in one (number

of releases). In the following, we investigate each dimension.

• Popularity. In the Java systems, we detect that there is no difference in top and

bottom systems with respect to the popularity metrics. In contrast, for C# sys-

tems, we note that all popularity metrics have statistical difference. According to

the relationship column, popular C# systems provide less replacement messages

in deprecated APIs.

• Size. For both languages, we observe that top systems are smaller than bottom

ones, as measured both in number of files and number of API elements (notice

the “-” on the relationship column). In fact, it is intuitive to consider that smaller

systems are easier to maintain and to keep track of API elements, which also

facilitates the provision of replacement messages.

• Community. We can see that top systems have less contributors than bottom

ones, for both languages. This result is somehow related to the previous one: it

is expected that smaller systems have less contributors. However, Java systems

with fewer files per contributor are more likely to have replacement messages.

For C#, top systems also have fewer contributors than bottom ones. In opposite

to Java, the ratio of files per contributor has no significance.

• Activity. For the activity dimension, we observe that top systems have less com-

mits and releases than bottom ones in both languages. An explanation is that as
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bottom ones have more code changes, they may be more likely to degrade their

APIs. We also notice that Java systems released in short period are more likely

to deprecate APIs with replacement messages.

• Maturity. For both languages, we could not find relevant differences between

top and bottom systems with respect to their maturity (i.e., age in number of

days). Although, someone might expect older systems to be more stable and to

provide better APIs, in fact, we concluded that system age has no effect on the

way developers deprecate API elements with replacement messages.

In summary, for Java, top systems are statistically different from bottom ones in

7 out of 12 metrics. Top systems tend to be smaller in terms of number of files and

API elements, but have more contributors per file. For C#, we found significance in

8 metrics; popularity and size impact the way developers deprecate their APIs. In

both languages, system maturity has no effect on the way developers deprecate API

elements with replacement messages.

4.4. Discussion and Implication

From our analysis on 622 Java and 229 C# systems, we discuss the major findings

and implications. RQ1 shows that 66.7% of the API elements are deprecated with

replacement messages per system for Java, on the median. This percentage is 71.4%

for types, 50% for fields, and 66.7% for methods, suggesting that developers are more

concerned with types and less with fields. RQ1 presents that 25% of the systems always

deprecate all types, fields, and methods with replacement messages. For C#, the values

for fields, methods, and types are 75%. When considering all API elements, the median

percentage of replacement messages is 77.8%. Finally, RQ1 also shows a comparison

between libraries and non-libraries systems. In Java systems, values for libraries are

71.2%, and for non-libraries, 60%. For C#, the numbers are 81.8%, and 73.7%.

RQ2 presents that 32% of the analyzed Java systems increase the number of re-

placement messages, while only 6% decrease. The percentages are not very different

for C#: 26% of the systems increase this percentage, and 11% decrease. Overall, most

systems are placed on the variant category where they increase and decrease the per-

centage of replacement messages over time.
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Finally, RQ3 shows that top systems (i.e., the ones with more quality in their re-

placement messages) are statistically significant different from bottom projects (i.e.,

the ones with less quality in their replacement messages) in several of the considered

metrics. Top systems in Java are smaller in terms of number of files, API elements, and

community (they have less contributors, but more contributors per file). Surprisingly,

system popularity and maturity have no effect on the way developers deprecate API

elements with replacement messages. For C#, top systems are also smaller in terms of

files, API elements, community and have less activity.

Maintaining API elements in large and complex systems is not a simple task, but

may involve several developers with different level of knowledge, making it difficult

to keep consistency during their evolution [33, 27]. In fact, there is an effort in the

literature to understand the impact of software evolution on APIs [21, 27, 13, 34] and

to detect how this impact can be alleviated by mining client reactions [5, 30, 16, 33, 23,

22, 1, 28, 14]. However, this is not performed in the context of API deprecation. Thus,

together with the fact that API elements are usually deprecated without replacement

messages, and that this situation does not get much better over time, we present an

implication of our findings:

Implication: A recommendation tool should be constructed to assist client develop-

ers by automatically inferring missing replacement messages. These messages can

be inferred by mining client system reactions, i.e., learning the solution adopted by

clients when there is no replacement messages.

In Section 5, we design and assess a prototype of this recommendation tool to

support client developers by automatically inferring missing replacement messages.

4.5. Threats to Validity
4.5.1. Construct Validity

Construct validity is related to whether the measurement in the study reflects real-

world situations. One threat of our study is that deprecated API elements may be

incorrectly classified as having or not having replacement messages. To assess this

threat, we performed two analyses to assess false-positives and false-negatives. First,

we manually analysed 500 randomly selected deprecation messages classified as hav-

ing replacement messages (regardless of the project). For Java, we detected 4 false-
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positives (<1%), i.e., messages incorrectly classified as including replacement infor-

mation. For C#, we found 1 (<1%) false-positive. Second, we also manually analysed

500 randomly selected messages classified as not having replacement messages (again,

regardless of the project) For Java, we detected 26 (5%) false-negatives, i.e., messages

incorrectly classified as not including replacement information. For C#, we found 15

(3%) false-negatives. Therefore, the risk of false-positives and false-negatives in our

classification is very low.

4.5.2. Internal Validity

This threat is related to uncontrolled aspects that may affect experimental results.

Findings Validation. We paid special attention to the appropriate use of statistical ma-

chinery (i.e., Mann-Whitney test and Cliff’s Delta effect size) when reporting our re-

sults in RQ3. This reduces the possibility that these results are due to chance.

Correlation is not Causation. In RQ3, we examined whether there are metrics asso-

ciated with top and bottom systems. Notice, however, that correlation does not imply

causation. Thus, more advanced statistical analysis, e.g., causal analysis [4], can be

adopted to further extend our analysis.

Java Parser Implementation. A possible threat is the possibility of errors in the im-

plementation of our AST parser, which detects deprecated API elements. However,

because this implementation is based on JDT (a library developed by Eclipse), the risk

of this threat is reduced.

C# In-house Tool Implementation. Another possible threat is the possibility of errors in

our C# in-house tool to identify deprecated elements. To evaluate this threat, we man-

ually analysed the tool precision and recall in three systems: FACEBOOK-CSHARP-

SDK/FACEBOOK-CSHARP-SDK (26 deprecated elements), ANTARIS/RAZORENGINE

(62 deprecated elements) and AZURE/AZURE-STORAGE-NET (107 deprecated elements).

For the three systems, the tool found all deprecated elements (both precision and recall

are 100%). Thus, the risk of this threat is also low.

4.5.3. External Validity

External validity is related to the possibility to generalize our results. We focused

on the analysis on 622 Java and 229 C# open-source systems, which are representative
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case studies. These systems are hosted in GitHub, the most popular code repository

nowadays. Despite these observations, our findings cannot be directly generalized to

other systems, specifically to systems implemented in other programming languages or

commercial ones. Future replications should address this issue.

5. Inferring Missing Replacement Messages

5.1. Motivation

We detected that the median number of replacement messages with deprecated API

elements per project is 66.7% for Java and 77.8% for C#. This shows that a large num-

ber of replacement messages are missing. Moreover, the percentage of API elements

deprecated with replacement messages barely increases over time. This scenario shows

that developers may benefit from an approach to find missing replacement messages,

which could improve their maintenance practices. Specifically, it might be possible

to design and implement a recommendation tool that automatically infers replacement

messages by mining real solutions adopted by developers (as briefly presented in the

implication in Section 4.4). That is, even when there is no explicit replacement mes-

sage, API clients may take their own decisions to replace a deprecated API element

by another one. Thus, a recommendation tool could learn these decisions, particularly

when a common decision is followed by many clients.

For example, suppose that type T from an API A is deprecated without a replace-

ment message. Consider also that C1, C2, ..., Cn are clients of the API A that reference

the deprecated type T . In this context, suppose also that along their version history

most clients Ci replaced these references to another type T ′. Therefore, in this case, a

recommendation tool can suggest that a deprecated message like “use type T ′ instead”

should be added to the declaration of T .

In this section, we investigate the feasibility of designing and implementing such

a tool. To this purpose, we rely on data provided by APIWAVE [10], which is a tool to

assist client developers on evolving their systems to newer or improved APIs. APIWAVE

provides data about API migration at type level, which is mined from the type usage

differences between two versions of a class. By mining the import statements of these

versions, the tool infers that a type T was replaced by a type T ′. The current version
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of APIWAVE includes data about the evolution of top-1,000 most popular GitHub Java

projects, from which 320K packages and types are extracted. Finally, the tool provides

a ranking with the most common API migrations, which is used to support the study

described in this section.

5.2. Study Design

5.2.1. Dataset

To support the proposed study, we collect the top-3,000 API migration rules, as

provided by APIWAVE. These rules have the format: T → T ′, expressing that type T

(left side) is commonly replaced by type T ′ (right side), in the 1,000 GitHub projects

mined by APIWAVE. Next, we detail examples of the detected rules:

• junit.framework.Assert→ org.junit.Assert. This is the most popular rule.

This migration occurred in JUNIT-TEAM/JUNIT, in version 4.0. Type Assert was

moved to package org.junit;

• org.neo4j.helpers.Function→ org.neo4j.function.Function. This migra-

tion occurred in NEO4J/NEO4J, in version 2.3.3. Type Function was moved to

org.neo4j.function;

• org.sonar.api.BatchComponent → org.sonar.api.BatchSide. This migra-

tion happened in version 5.2 of SONARSOURCE/SONARQUBE. The new type

improves some functions implemented by the deprecated one.

From the top-3,000 provided evolution rules, we found 720 where the left side

corresponds to a type available in our original dataset of 622 Java systems; these are

exactly the types investigated in this section. For example, the APIWAVE dataset in-

cludes the following rule: org.neo4j.helpers.Function → org.neo4j.function.-

Function, and our dataset includes the type org.neo4j.helpers.Function, which

matches the left side of this rule.

Considering these 720 rules, there are 44 rules whose left side is a deprecated

type. For example, the APIWAVE dataset includes the rule: org.apache.commons.-

logging.Log → org.slf4j.Logger, where org.apache.commons.logging.Log is a

deprecated type. In fact, APIWAVE may produce rules not related to API deprecation.
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For example, the rule java.util.List → java.util.Collection is discarded because

List is not in our dataset, and it is clearly not in the context of API deprecation.

Considering the 44 evolution rules where the left side is a deprecated type, we

found that 32 types have a replacement message, while 12 types do not have such

messages. For example, the right side of the evolution rule org.hibernate.criterion.-

Expression → org.hibernate.criterion.Restrictions corresponds exactly to the

replacement message found in org.hibernate.criterion.Expression, as shown in

Listing 10 (line 3).
1 /**
2 * Factory for Criterion objects. Deprecated!
3 * @deprecated Use {@link Restrictions} instead
4 */
5 @Deprecated
6 public final class Expression extends Restrictions { ... }

Listing 10: Example of replacement message (line 3) that matches an evolution rule inferred by APIWAVE -
HIBERNATE/HIBERNATE-ORM

5.2.2. Research Questions

In this study, we assess whether a recommendation tool can be designed and im-

plemented. Thus, we investigate two research questions:

RQA. What is the tool precision to recommend replacement messages?

We define precision as TP/(TP+FP), where TP (True Positive) happens when a rec-

ommendation provided by APIWAVE matches the replacement message in a deprecated

type; and FP (False Positive) happens when a recommendation provided by APIWAVE

does not match the replacement message in a deprecated type.

RQB. What is the tool recall to recommend replacement messages?

We also calculate recall = TP/(TP+FN), where FN (False Negative) happens when

a replacement message in a deprecated type is not covered by APIWAVE data. In this

case, we restrict our analysis to three popular systems: SONARSOURCE/SONARQUBE,

JUNIT-TEAM/JUNIT, and GOOGLE/GUAVA. This is performed because we need to

know all relevant elements (i.e., TP+FN) to compute recall, which requires manual

assessment of all deprecated elements of a given system.

5.3. Results

RQA. What is the tool precision to recommend replacement messages?
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We compute a precision of 73%: 32 out of 44 recommendations are true positives.

As an example of true positive, we have the rule junit.framework.Assert → org-

.junit.Assert. The replacement message for the type in the left side matches the type

in the right side of the rule, as shown in Listing 11 (line 4).
1 /**
2 * A set of assert methods. Messages are only displayed when an assert fails.
3 *
4 * @deprecated Please use {@link org.junit.Assert} instead.
5 */
6 @Deprecated
7 public class Assert { ... }

Listing 11: True positive example - JUNIT-TEAM/JUNIT

As an example of false positive, we present the rule android.support.v7.app.-

ActionBarActivity → android.app.Activity. The real replacement message for

this type does not match the one suggested by this rule, as shown in Listing 12 (line 2).

As noted, developers who deprecated this type are suggesting the usage of the alter-

native type AppCompatActivity. This shows that client applications may sometimes

adopt other solutions than the ones pointed by replacement messages.
1 /**
2 * @deprecated Use {@link android.support.v7.app.AppCompatActivity} instead.
3 */
4 @Deprecated
5 public class ActionBarActivity extends AppCompatActivity { ... }

Listing 12: False positive example - ANDROID/PLATFORM_FRAMEWORKS_SUPPORT

RQB. What is the tool recall to recommend replacement messages?

The analysis on SONARSOURCE/SONARQUBE reveals recall of 28.2%: we found

recommendations for 13 out of 46 replacement messages. As an example of true

positive, we show the org.sonar.api.BatchComponent case. The rule org.sonar-

.api.BatchComponent → org.sonar.api.BatchSide is the most popular one for

the org.sonar.api.BatchComponent type. The replacement message for this type

matches this rule, as presented in Listing 13 (line 3).
1 /**
2 * @since 2.2
3 * @deprecated since 5.2 use {@link BatchSide} annotation
4 */
5 @Deprecated
6 public interface BatchComponent { ... }

Listing 13: Example of true positive in SONARSOURCE/SONARQUBE

For JUNIT-TEAM/JUNIT, the recall is 30.7%: we detect recommendations for 4 out

of 13 replacement messages. The rule org.junit.matchers.JUnitMatchers→ org-
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.hamcrest.junit.JUnitMatchers is the most popular one for the type org.junit-

.matchers.JUnitMatchers, and indeed represents an example of true positive. The

replacement message for this type matches this rule, as shown in Listing 14 (line 2).
1 /**
2 * @deprecated use {@code org.hamcrest.junit.JUnitMatchers}
3 */
4 @Deprecated
5 public class JUnitMatchers { ... }

Listing 14: Example of true positive in JUNIT-TEAM/JUNIT

Finally, for GOOGLE/GUAVA, the recall is 37.5%: a recommendation tool based on

APIWAVE rules would provide 3 out of 8 replacement messages. As an example of true

positive, we have the rule com.google.common.base.Objects.ToStringHelper →

com.google.common.base.MoreObjects.ToStringHelper. This rule matches the

replacement message found in the source code, as presented in Listing 15 (line 3).
1 /**
2 * @deprecated Use {@link MoreObjects.ToStringHelper} instead.
3 */
4 @Deprecated
5 public static final class ToStringHelper { ... }

Listing 15: Example of true positive in GOOGLE/GUAVA

5.4. Final Remarks

The presented study shows promising results, with good precision (73%) and rea-

sonable recall (28%, 30.7%, and 37.5%), suggesting that a recommendation tool for

elements deprecated without messages can help developers on finding alternatives API

elements. Notice, however, that the low recall values are justified by the heuristic and

dataset used by APIWAVE. More specifically, when comparing two versions of a class,

APIWAVE extracts evolution rules from cases where only one type is removed and only

one type is added in the import statements. The positive side of this approach is that it

is more likely to obtain rules with higher precision. However, this comes at the cost of

producing fewer rules. Moreover, APIWAVE mines a limited number of client projects

(top-1000 most popular GitHub projects), thus, naturally, it may miss some evolution

rules. Future studies may adopt different heuristics and increase the dataset to improve

precision and recall.
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6. Related Work

In a large-scale study, Robbes et al. [27] investigate the impact of API deprecation

in a Smalltalk ecosystem. Later, they extended this study to the Java programming

language [28, 29]. The authors detected that some API deprecation have large impact

on the ecosystem and that the quality of deprecation messages should be improved.

The authors show evidences that APIs are sometimes deprecated with missing and

unclear messages, however, their focus is on impact analysis, so they do not deeply

investigate deprecation messages themselves. Hora et al. [13] studied the impact of API

replacement and improvement (i.e., not API deprecation) on a large-scale ecosystem

also written in Smalltalk. The results of this study also confirm the large impact on

client systems, and hints that deprecation mechanisms should be more adopted.

McDonnell et al. [21] investigate API stability and adoption on a small-scale An-

droid ecosystem. The authors found that Android APIs are evolving fast and client

adoption is not following the evolution pace. Also in the Android context, Linares-

Vásquez et al. [20] analyze how API changes trigger questions and activity on Stack-

Overflow. Results suggest that Android developers normally have more questions when

the API behavior is modified. Recently, Bogart et al. [1] studied how developers rea-

son about and apply changes in the context of three software ecosystems: Eclipse,

R/CRAN, and Node.js/npm. The authors state differences in practices, polices, and

tools applied when performing/avoiding a breaking change. They present that break-

ing changes are rare in Eclipse; R/CRAN values consistency; and breaking changes in

Node.js/npm are necessary for progress and innovation.

Several approaches are proposed to support API evolution and reduce the efforts of

client developers. Henkel and Diwan [9] propose CatchUp, a tool that uses a modified

IDE to capture and replay refactorings related to API evolution. Chow and Notkin [3]

present an approach that is supported by API developers: they annotate changed meth-

ods with replacement rules that will be used to update client systems. Hora and Valente

[10] propose apiwave, a tool to support keeping track of API evolution and popularity.

Kim et al. [17] help to automatically infer rules from structural changes, computed

from modifications at or above the level of method signatures. Kim and Notkin [16]
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propose LSDiff, a tool to support computing differences between two versions of one

system. In this case, the authors take into account the body of the method to infer rules,

improving their previous work [17]. Nguyen et al. [26] propose LibSync, a tool that

uses graph-based techniques to help developers migrate from one framework version to

another. Dig and Johnson [6] support developers to better understand the requirements

for migration tools. For instance, they found that 80% of the changes that break client

systems are refactorings.

Dagenais and Robillard [5] present SemDiff, a tool that suggests replacements for

API elements based on how it adapts to its own changes. Schäfer et al. [30] propose

to mine API usage change rules from client systems. Wu et al. [33] present AURA, an

approach that combines call dependency and text similarity analyses to produce evolu-

tion rules. Meng et al. [23] propose a history-based matching approach (named HiMa)

to support framework evolution. In this case, rules are extracted from the revisions

in code history together with comments recorded in the evolution history of the frame-

work. Other studies focus on the extraction of API evolution rules that only make sense

for a system or domain under analysis [11, 12].

In summary, related studies are intended to better understand API evolution and to

propose solutions to API migration. None of them, however, study API evolution in

the context of API deprecation and their replacement messages.

7. Conclusion

This paper presented an empirical study about the adoption of replacement mes-

sages on deprecated API elements. We focused on three major questions: (i) the

frequency of deprecated API elements with replacement messages, (ii) the impact of

software evolution on such frequency, and (iii) the characteristics of systems correctly

deprecating API elements. The study was performed in the context of 622 Java and

229 C# popular and real-world systems. We reiterate the most interesting findings:

• 66.7% of the API elements in Java are deprecated with replacement messages

per system (on the median). For C#, this value is 77.8%.
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• Overall, the percentage of deprecated API elements with replacement messages

does not improve over time.

• Systems that deprecate API elements in a correct way tend to be smaller and they

have proportionally more contributors.

To investigate the practical application of our findings, we evaluated the feasibility

of a recommendation tool designed to infer replacement messages by mining solutions

adopted by developers. This preliminary investigation showed promising results, with

good precision (73%) and reasonable recall for three real-world systems (28%, 30.7%,

and 37.5%). This suggests that a recommendation tool for elements deprecated without

messages can help developers on finding alternative API elements.

As future work, we plan to extend our analysis to other programming languages.

For example, we can compare systems implemented in statically and dynamically typed

languages. We also plan to categorize the systems under analysis regarding other char-

acteristics (e.g., domain, corporate backed) to reveal and understand differences re-

garding API deprecation. Moreover, in addition to looking at each of system charac-

teristics in isolation, one can build a regression model on the percentage of deprecation

with replacement messages with each characteristic as an independent variable. Fi-

nally, as previously discussed, further work includes the design and implementation of

a recommendation tool to assist client developers by automatically inferring missing

replacement messages in deprecated types, methods, and fields.
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