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a b s t r a c t 

Developers’ tasks are often interrelated. A task might succeed, precede, block, or depend on another task. 

Or, two tasks might simply have a similar aim or require similar expertise. When working on tasks, devel- 

opers interact with artifacts and tools, which constitute the contexts of the tasks. This work investigates 

the extent to which the similarity of the contexts predicts whether and how the respective tasks are re- 

lated. The underlying assumption is simple: if during two tasks the same artifacts are touched or similar 

interactions are observed, the tasks might be interrelated. 

We define a task context as the set of all developer’s interactions with the artifacts during the task. We 

then apply Jaccard index, a popular similarity measure to compare two contexts. Instead of only counting 

the artifacts in the intersection and union of the contexts as Jaccard does, we scale the artifacts with 

their relevance to the task. For this, we suggest a simple heuristic based on the Frequency, Duration, and 

Age of the interactions with the artifacts (FDA). Alternatively, artifact relevance can be estimated by the 

Degree-of-Interest (DOI) used in task-focused programming. 

To compare the accuracy of the context similarity models for predicting task relationships, we conducted 

a field study with professionals, analyzed data from the open source task repository Bugzilla, and ran 

an experiment with students. We studied two types of relationships useful for work coordination (de- 

pendsOn and blocks) and two types useful for personal work management (isNextTo and isSimilarTo). 

We found that context similarity models clearly outperform a random prediction for all studied task 

relationships. We also found evidence that, the more interrelated the tasks are, the more accurate the 

context similarity predictions are. 

Our results show that context similarity is roughly as accurate to predict task relationships as compar- 

ing the textual content of the task descriptions. Context and content similarity models might thus be 

complementary in practice, depending on the availability of text descriptions or context data. We discuss 

several use cases for this research, e.g. to assist developers choose the next task or to recommend other 

tasks they should be aware of. 

© 2017 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

A task is an atomic and well-defined work assignment for an

ndividual or a team ( Bruegge and Dutoit, 2009; Kersten and Mur-

hy, 2006 ). In software projects, tasks typically describe what de-

elopers should do and might include additional information such

s the work priority, the resources needed, or the component af-

ected. Tasks can be defined, e.g., in issue trackers, in project back-
∗ Corresponding author. 

E-mail addresses: maalej@informatik.uni-hamburg.de (W. Maalej), 

llmann@informatik.uni-hamburg.de (M. Ellmann), romain.robbes@gmail.com 

R. Robbes). 

t  

w

 

(  

ttp://dx.doi.org/10.1016/j.jss.2016.11.033 

164-1212/© 2017 The Authors. Published by Elsevier Inc. This is an open access article u
ogs, or in to-do lists but can also be informal and loosely defined

n emails, personal notes, or in the minds of people ( Maalej, 2009 ).

Both individual developers and development teams use tasks

or organizing their work ( Kersten and Murphy, 2006; Blincoe

t al., 2013 ). Developers use task lists to manage their personal

roductivity. They keep track of what is done, how much is still

o do, and what should be done next. Development teams break

own the work into manageable tasks, distribute the tasks among

he members, and use them to synchronize and coordinate the

ork ( Bruegge and Dutoit, 2009; Blincoe et al., 2013 ). 

Tasks are often interrelated. For instance, a task might follow

i.e. be the next on the list), might block , or might depend on an-
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other task. Two tasks might also be similar , requiring similar ex-

pertise, modifications, or tools. Automatically identifying task re-

lationships would be beneficial to the individual developers and

for the teams. For instance, previous studies have shown that task

switches are frequent ( Mark et al., 2005; Ko et al., 2007; Maalej,

2009 ) and expensive ( Parnin and Gorg, 2006; Iqbal and Horvitz,

2007 ), as developers get blocked, interrupted, or simply must han-

dle multiple tasks at once. With every task switch, developers have

to adjust their mindset to the new task ( Mark et al., 2005 ) and

locate relevant artifacts to work on ( Kersten and Murphy 2006 ).

Identifying similar tasks to work on next might help developers to

manage their personal work and handle task switching more effi-

ciently. 

Moreover, predicting related tasks in a project can help devel-

opers become aware of other “pieces of work” which might de-

pend on their changes (e.g. who is waiting for their work to be

completed) and of other pieces they are dependent on (e.g. to re-

sume postponed tasks when blockers are solved). Task relations

are also crucial for collaborative activities such as code reviewing,

testing, integration, or handoff. Predicting related tasks would thus

help identify with whom developers should synchronize to handle

dependencies, avoid conflicts, and share knowledge ( Blincoe et al.,

2013 ). 

The goal of this research is study whether relationships between

tasks can be predicted based on the similarity of the corresponding

contexts. We focus on two types of relationships useful for work

coordination ( dependsOn and blocks ) and two types useful for per-

sonal work management ( isNextTo and isSimilarTo ). The main un-

derlying idea is simple: if “the most relevant artifacts” used in two

tasks are similar or are used similarity, the corresponding tasks

might be related. To identify relevant artifacts (e.g., a document,

a class, a method, or a tool) for a task, we observe developer’s in-

teractions during the task and define this as its context. 1 Then, to

calculate the relevance of the artifacts to the task, we use a sim-

ple heuristic called FDA, which combines the Frequency of interac-

tions with the artifacts, the interactions’ Duration , and their Age .

To calculate the context similarity, we extend the well-known Jac-

card similarity model with the artifact relevance. Instead of only

counting the artifacts in the intersection and union of two tasks,

we scale these artifacts with their relevance values. This context

similarity model constitutes the first contribution of the paper. 

In a series of simulations with Bugzilla data, a field study, and

a user study with students, we empirically investigated the accu-

racy of the context similarity model to predict various types of task

relationships. We compared various configurations including the

pure Jaccard index and the popular degree-of-interest (DOI) model

( Kersten and Murphy, 2006 ) for calculating artifact relevance. We

also compared context similarity to predict task relationships with

text similarity applied on the descriptions of the tasks. This quan-

titative evaluation of different models in different settings consti-

tutes the second contribution of the paper. Finally, inspired by the

experiment results and additional qualitative evaluation, we dis-

cuss and summarize insights for researchers and tool vendors on

using context similarity models to build task recommendation sys-

tems. This is the paper’s third contribution . 

The remainder of the paper is structured as follows.

Section 2 represents the foundation of the work. It introduces

the concept of context, context relevance models FDA and DOI,

and the model to calculate contexts similarity. Section 3 reports

on the study design to evaluate how well context similarity

can predict task relationships, including the research questions,

data, and methods. Then, Sections 4 –6 report respectively on the

results of the field study, the simulations, and the experiment
1 In the following, we use the term “context” to denote “task context”. 

 

a  

i  
or predicting the following relationships between two tasks:

sSimilarTo, dependsOn, blocks , and isNextTo . We summarize the

uantitative and qualitative results and the comparison of the dif-

erent similarity models. Section 7 discusses the findings and their

mplication for researchers and practitioners, including the limita-

ions and the steps required to build task recommenders. Finally,

ection 8 summarizes related work while Section 9 concludes the

aper. 

. Context similarity models 

When working on their tasks developers interact with tools and

rtifacts. They might edit source code in the code editor, debug it

n the debugger, run tests in a testing tool, create a model using a

odeling tool, or send a clarification request using an email client.

evelopers “consume and produce” artifacts of different types, in-

luding requirements, models, source code, test specifications, or

mails. Each artifact contains information that is useful for a par-

icular task. Developers might modify the artifacts. They might also

ead documents, reference APIs, use tools, or search information.

ll interactions and the concerned artifacts constitute the context

f the tasks. 

efinition 1. A task context consists of all interactions and the con-

erned artifacts a developer performs to work on a particular task

 Maalej et al., 2014a ). 

Maalej et al. (2014a ) defines interactions as: “the actions (i.e.

he interaction events) taken by a developer, such as the clicks of

 specific buttons, the changes to code entities, or views of doc-

mentation pages.” We adopt this definition. To monitor the con-

ext, all interactions with tools and artifacts need to be captured.

his is typically done by a background process that collects data

rom various sensors while each sensor captures specific interac-

ion events of the developer with the system ( Maalej and Happel,

008; Maalej et al., 2014a ). Since developers switch back and forth

etween tasks, a single task might be performed in multiple work

essions. 

Not every interaction with a tool or an artifact is similarly rel-

vant to the task and characterizes its context. A developer might

hange a method by mistake, experiment with several search key-

ords until the right results are identified, or quickly answer a

hat message during a bug fix, while the project is building. 

efinition 2. Context relevance is a model which quantifies the im-

ortance of each artifact to the context compared to other artifacts.

he more relevant an artifact is, the better it describes the context

nd the more likely it contributes to accomplish the task (inspired

y Hjorland and Sejer Christensen, 2002 ). 

.1. Context relevance with FDA model 

In order to calculate the relevance of an artifact within a con-

ext, we propose a Frequency-Duration-Age (FDA) Relevance Model.

he model is based on a simple assumption from daily life: The

ore and the longer we interact with “objects” or with people,

he more relevant they become to the current context. The older

ur interactions with these objects are, the less important they

ecome for our context ( Maalej, 2010 ). A similar concepts called

edit wear and read wear” was introduced first by Hill et al. (1992) ,

ncluding the use of time spent on particular lines in a text ed-

tor. The idea of wear was applied to software development by

eLine et al. (2005) to facilitate the understanding of programs

hrough wear-based filtering. 

The FDA model ranks the relevance of different artifacts used in

 task. An artifact is more important for a task the more often it

s used by a developer ( frequency ). The longer a developer interacts
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ith an artifact, the more important it becomes in a context ( dura-

ion ). In contrast, the older interactions with an artifact according

o current time are, the less important they are for the current task

 age ). Age and duration are both relative to the task. That is, an ar-

ifact that is used toward the end of a task has a smaller age and

ets a higher relevance score than artifacts touched at the begin-

ing of a task. Similarly, we consider the duration within the task. 

For calculating the relevance based on the FDA assumption, we

efine: 

T the set of all tasks t considered. 

IN (t) the set of observed developer interactions while perform-

ing task t . 

AR (t) the set of all artifacts concerned by the interactions in

IN (t) . 

Additionally, we define the following constants for each task: 

D the total duration of all work sessions of a task in seconds ( D

> 0). 

F the total number of interactions that occurred in all work ses-

sions. 

A the total age of all artifacts in seconds i.e., the total elapsed

time since each artifact was most recently concerned. 

Let e i,a ∈ IN (t) be the interaction event of type i concerning the

rtifact a ∈ AR (t) for a task t . Let d e be the duration of the interac-

ion event e and s e be the elapsed time since an interaction event

 happened. Let further IN (a, t) = { e i,b ∈ IN (t) | a = b} be the set of

ll interaction events related to a task t that concern an artifact a .

or a task t , the relevance of a given artifact a is defined as follows:

el(a, t) = 

∑ 

e ∈ IN (a,i ) 

F rq (a, i ) · D ur(a, i ) 

A ge (a, i ) 
(1) 

here 

Frq ( a, t ) denotes the normalized frequency of all interactions

with the artifact a related to task t : 

F rq (a, t) = 

∑ 

e ∈ IN (a,t) ·1 

F 
(2)

Dur ( a, t ) denotes the normalized time in seconds of all interac-

tions with the artifact a related to task t : 

Dur(a, t) = 

∑ 

e ∈ IN (a,t) d e 

D 

(3) 

Age ( a, t ) denotes the normalized time in seconds since the last

interaction with the artifact a : 

Age (a, t) = 

max e ∈ IN (a,t) (s e ) 

A 

(4) 

Rel is proportional to Frq, Dur while inversely proportional to

ge . An artifact relevance Rel enables us to interpret, e.g., which ar-

ifacts developers have used often and for a long time, and which

ool they have used most recently. The calculation of the artifact

elevance via the FDA model is done as follows: First, we deter-

ine the normalized frequency, duration, and age for the given

rtifact. Then, we calculate the artifact relevance in all related in-

eractions as defined by Rel ( a, t ). Calculating the duration of in-

eractions depends on the interaction type. For interactions that

an be observed over a period of time such as writing or edit-

ng, the duration can be observed. For other interactions such as

he selection of an artifact or the execution of a command, we as-

ume that these events last until another interaction is observed,

nless an inactivity event is fired. We define a time threshold to

re inactivity events (if no mouse movements or keystrokes were
bserved). The duration of an interaction is then calculated based

n the start time of the concerned interaction event and the next

bserved event. 

The interaction types are determined by the context monitoring

ystem used. Per default, we expect such a system to recognize the

ollowing types: 

• Selection : artifact selections via mouse or keyboard (including

selecting and using tools and views). 
• Command : general operations such as saving, copying and past-

ing, preference setting, as well as specific development oper-

ations such as building a project, running a test, or setting a

breakpoint. 
• Edit : textual and graphical changes such as adding, removing,

writing, editing text or a code element. 

Depending on the granularity of the monitoring system, other

nteraction types can be included, such as Search, Read, Refactor,

nactivity, Configure. Maalej et al. (2014a ) discuss common interac-

ion types used in recommendation systems and how they can be

onitored or processed. 

.2. Context relevance with DOI model 

Kersten and Murphy (2006) introduced a model called “degree-

f-interest” (DOI) for calculating the relevance of each artifact used

n a task. The DOI value for a certain artifact is continuously calcu-

ated and updated based on the frequency and decay of interactions

ith the artifact. The frequency denotes the number of interaction

vents referring to an artifact. The decay is proportional to the po-

ition in the event stream of the first interaction with the artifact

 Kersten and Murphy, 2006 ). Over time, if the artifact is not se-

ected or edited, its interest value decays. Each selection also leads

o decaying the interest values of other artifacts ( Kersten and Mur-

hy, 2005 ). At any point in time, the interest values of the artifacts

eflect their relevance ranking to a particular task ( Kersten and

urphy, 2006 ). 

By iterating over the sequence of interaction events concerning

 given artifact, the interest value of the artifact (denoting its rel-

vance) is incremented successively based on the type of the cur-

ent interaction event. If the interest is not higher than the decay,

he decay is reset to start at the last interaction with the artifact.

his ensures that artifacts which have decayed to a negative in-

erest get positive interest values when a developer interacts with

hem again ( Kersten and Murphy, 2006 ). 

Kersten and Murphy used the DOI model to filter artifacts irrel-

vant to the current task ( Kersten and Murphy, 2006 ). The set of

elevant artifacts can then be highlighted or reopened when a task

s resumed. Mylyn, a tool which implements this approach for the

clipse IDE is a standard plugin within the Eclipse community ( The

clipse Foundation, 2011; BZ Media LLC., 2008 ). 

Although both relevance models look similar, there are several

ifferences in the technical details. 

Frequency. Both FDA and DOI relevance models implement the

dea of a frequency defined by the number of interaction events

ith an artifact. Both models consider a linear, proportional de-

endency between the frequency and the relevance of an artifact:

he more often a developer interacts with an artifact, the more

mportant the artifact becomes. 

Duration. In contrast to DOI, the FDA relevance model addition-

lly considers the duration of interaction events. The duration is to

easured by calculating the time between observing the event and

bserving the next event while considering an inactivity threshold.

his assumes that an event is active as long as we do not observe

 new event. If for a certain period of time (e.g. 5 min) nothing

appens (i.e. no mouse move, no keystroke) an inactivity event is
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Table 1 

Recency represented by age vs. decay. 

Aspect Decay (DOI model) Age (FDA model) 

Representation of time Since the interaction duration is not considered, 

interactions happen independently from real 

time. Instead, “time” is represented by an integer 

that counts the number of events between two 

interactions. 

Real time is used to determine the age of an 

interaction. Different durations of interactions 

are assumed and represented by real time. 

Events needed for 

calculation 

Two interaction events (start and end of a decay) 

are used to calculate the artifact decay. The 

decay’s start and end are adjusted dynamically 

according to the artifact’s interest and the 

interaction event. 

Only the last interaction event is used to calculated 

the age of an artifact. 

Impact on relevance Linear with subtraction. Linear with division. 

Influence by other 

artifacts 

The time and the frequency of interaction events 

concerning other artifacts influence an artifact’s 

decay. 

Only the time of interaction events concerning 

other artifacts influence an artifact’s age. 
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fired. The longer an artifact is concerned the more relevant it be-

comes within a context. For example, if two artifacts are edited

with the same frequency but one of them is edited for a shorter

period, then this one is less important for the task than the one

edited for a longer period. 

Recency. A major difference between both models is the repre-

sentation of an artifact’s recency as shown on Table 1 . FDA repre-

sents an artifact’s recency by its age, the time since the last inter-

action with this artifact happened. The idea is, that if an artifact

was edited several days before and another artifact is just being

edited, the latter is likely to be more important than the older one.

In contrast, Kersten and Murphy (2006) define recency by a decay

as mentioned before. The idea is that if an artifact is not selected

or edited, its interest value decays over time. Additionally, each in-

teraction also has the effect of decaying the interest values of the

other artifacts in the model. 

2.3. Context similarity 

We define context similarity, introduce common models for cal-

culating the similarity of sets or vectors, and extend these models

by including the relevance calculation as described in the previous

section. 

Definition 3. Context similarity is a model which quantifies how

similar two contexts and the corresponding tasks are. Two tasks

are similar, if a developer would work on them in parallel or after

each other, because the effort needed to switch focus and restore

new information and tools is small. 

Comparing the similarity of two contexts is equivalent to com-

paring the similarity of two artifact collections. There are estab-

lished measures for comparing the similarity of sets and vectors

( Pang-Ning et al., 2006 ), which we discuss in the following. 

Perhaps the most well-known measures for calculating set sim-

ilarity is the Jaccard Index. The Jaccard Index J is defined as the

size of the intersection of two sets divided by the size of the sets’

union: 

J ( T 1 , T 2 ) = 

| T 1 ∩ T 2 | 
| T 1 ∪ T 2 | (5)

When applied to contexts, J is the number of artifacts in the in-

tersection of two tasks divided by the number of artifacts in the

union of these tasks. 

Jaccard only consider whether an element is present in the set

or not (i.e., an artifact is used in the task). It treats all artifacts

equally, ignoring their relevance to the task. Unlike in information

retrieval, where e.g., all characters in a string have the same rele-

vance for a similarity calculation, in the task similarity comparison,

it is crucial to use the relevance of the single artifacts. A context

might include a lot of “noise artifacts”, which might be identified
n the intersection of various tasks but does not increase their sim-

larity. Therefore, we extend Jaccard with the relevance models dis-

ussed above. We define the Relevance-aware Jaccard J̈ of two tasks

 and B as follows: 

 ̈( T 1 , T 2 ) = 

∑ 

x ∈| T 1 ∩ T 2 | 
Rel(x , T 1 ) + Rel(x , T 2 ) 

∑ 

x ∈| T 1 | Rel(x , T 1 ) + 

∑ 

x ∈| T 2 | Rel(x , T 2 ) 
(6)

In the numerator (i.e., the intersection set) we consider all

greement artifacts (i.e., artifacts found in both contexts). Instead

f just counting the artifacts, we sum up their relevance values

ithin each context. The more an artifact is relevant in the two

ontexts being compared, the more it increases the contexts simi-

arity. In the denominator, we also sum up the relevance values for

ll artifacts in both tasks. This way, if two contexts A, and X con-

ain 10 0 0 artifacts each, but only have two highly relevant artifacts

n common, and context B and X also contain 10 0 0 artifacts each,

ut have 100 relevant artifacts in common, the similarity score of

 and X will be lower than B and X. The relevance values can be

alculated by the two relevance models presented previously, ei-

her with FDA or with DOI. We call the resulting similarity models

DA Jaccard and DOI Jaccard respectively. 

. Research design 

Our research empirically studies the various models of context

imilarity (Jaccard, FDA Jaccard, and DOI Jaccard) and explores to

hich extent these models can predict task relationships in vari-

us situations. The main goal is to gain insights into how context

imilarity can be applied to predict related tasks in specific situa-

ions. 

We focus on the following specific research questions: 

1. Models effectiveness and accuracy: Can the context similarity

models predict relationships between tasks, and which model

is most accurate? 

2. Task relationships: How well can various types of task relation-

ships be predicted based on context similarity? 

3. Context vs. content similarity: Which approach can predict task

relationships better: context-based or content-based similarity?

4. Qualitative insights: Do our assumptions about context similar-

ity match with the way developers work and which additional

factors are important for measuring the context similarity? 

We focus on studying the following particular relationships be-

ween tasks: 

• blocks : “Task T1 blocks task T2” means that T1 stops T2 from

being performed, e.g., because T2 requires a deliverable from

T1. 
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Table 2 

Overview of research questions and methods. 

Study RQs Studied task relationships 

Field study 1, 2, 3 isSimilarTo 

Simulation with Bugzilla data 1, 2, 3, 4 dependsOn, blocks, isNextTo 

Experiment with students 1, 4 isSimilarTo 
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2 http://www.nltk.org/book/ch02.html . 
3 http://radimrehurek.com/gensim/tut3.html . 
4 https://bugs.eclipse.org/bugs/ . 
5 https://pypi.python.org/pypi/beautifulsoup4 . 
• dependsOn : “Task T1 dependsOn task T2” means that the work

of T1 cannot be done unless T2 is being done. 
• isNextTo : “Task T2 isNextTo T1” means that a developer chose to

consequently work on T2 after working on T1. 
• isSimilarTo : “Task T1 isSimilarTo T2” means that the work con-

ducted in both tasks is similar with respect of what should be

done and how it should be done. It is important to note the

difference between task similarity and context similarity. The

task similarity is a subjective measure “manually” defined by

developers independently from the observed context elements,

while context similarity is calculated based on the similarity of

artifacts and interactions observed in a task. 

For the model accuracy (RQ1), we aim to compare the context

imilarity models introduced above not only between each other,

ut also with a random model and a text-based similarity model

s a baseline. Comparing the similarity of the textual descriptions

f two tasks might be an alternative way for identifying related

asks. That is, the more overlapped terms are used to describe two

asks, the more related the tasks might be. For this we use Latent

emantic Indexing (LSI) ( Deerwester et al., 1990 ). LSI is a popular

tatistical model that analyzes the relationships between a set of

ext documents and the terms they contain by producing a set of

oncepts (also called topics) related to the documents and terms. 

We performed three different studies to answer the research

uestions: a field study with professional developers, various sim-

lations with data from the Bugzilla repository of the Eclipse com-

unity, and an experiment with students including an online sur-

ey. Table 2 gives an overview about the research questions and

ethods. 

.1. Field study with professionals 

In the field study, we focused on isSimilarTo relationship be-

ween tasks. We collected context data of tasks performed in dif-

erent real development projects. We also collected the subjective

ssessments of the developers for the similarity of the tasks (as de-

ned in Section 3 ) and compared the subjective assessments with

he values predicted by the models described in Section 2 . 

We asked each subject to define about 20 tasks that he or she

lans to process in the next 1 or 2 weeks. Subjects should work

n their tasks as usual, including interruptions, definition of new

asks, issues, etc. The tasks should be defined either in Mylyn or

n an issue tracker and imported via a Mylyn connector in Eclipse.

ach task should also have a short textual description. Each time

ubjects start working on a task, they should activate it in the

Task List” view in Eclipse. This enables the tracking of the con-

ext data including subjects’ interactions with tools and artifacts. 

Mylyn is a task management tool that implements the degree-

f-interest (DOI) model ( Kersten and Murphy, 2006 ) for the Eclipse

evelopment environment. It is the closest mature tool to our

ork. Using Mylyn instead of an ad-hoc implementation minimizes

ool acceptance and usability biases for the evaluation of DOI and

DA. Moreover, comparing FDA to DOI with data collected by DOI’s

mplementation (Mylyn) is the approach that is fairest to the DOI,

eading to more reliable results than if other data collection tools

ere used. Since the analyzed tasks were different in status, we

implified the notion of work session by simply using the available
ontext for the given task as the time of analysis. This might cor-

espond to the whole task if the task is closed or only to part of it

f the task is postponed or interrupted. 

Subjects were also asked to maintain a task similarity sheet , in

hich they specify for each task the first, second, and third most

imilar tasks. After each work day, subjects should indicate the

asks similarities in the sheet as they still remember this infor-

ation. We collected the interaction histories from all subjects to-

ether with their similarity assessments, but did not have access

o the full source code as these were closed source projects. 

Overall we recruited 13 subjects, who worked between Septem-

er 2011 and August 2012. Nine of them submitted useful and

omplete data, including 111 isSimilarTo relationships for 64

nique tasks with their contexts. All subjects had at least 2 years

f development experience and were familiar with Mylyn. 

We also compared the results to a random similarity predic-

ion, and to the text-based similarity model based on LSI ran on

he short textual description provided by the subjects. LSI assumes

hat terms that are close in meaning will occur in similar pieces of

ext. To remove all English stop words from the task description,

e used the Natural Language Toolkit NLTK. 2 We used the python

ibrary Gensim 

3 to create the corpus of the tasks being studied and

alculate the task similarity. The main benefit of this library is that

t takes the whole text corpus (i.e., the set of all available task de-

criptions) into account to generalize the semantics of the text de-

criptions. LSI requires defining the number of topics that should

e extracted. For this we choose 300 because this is often recom-

ended as best-practice for mid-sized documents ( Bradford, 2008;
ˇeh ̊u ̌rek and Sojka, 2010 ). 

.2. Simulations with Bugzilla data 

The second study focused on studying dependsOn, blocks , and is-

extTo relationships between tasks. The study consisted of a series

f simulations ( Walker and Holmes, 2014 ) with task data collected

rom the Bugzilla repository of the Eclipse community. 4 In a simu-

ation, a model is evaluated by first collecting reference data (e.g.,

erfect data, often called a golden standard), which includes the

nput data and output data of the model. The model is then run

ith the perfect input data and its output is compared against the

erfect output. 

Identifying an open repository with all the needed data, in-

luding the tasks, their interaction data (contexts), and information

bout the tasks similarity turned out to be a challenging task. The

clipse Bugzilla repository partly includes this data. This reposi-

ory is used to track bugs and other development tasks for the

clipse products. Some product teams consistently use Mylyn and

ttach the Mylyn Context files (including the interaction data) to

he task descriptions to allow other developers to reproduce the

ontext. Moreover, Bugzilla provides a field to link two kinds of re-

ated tasks: dependsOn and blocks . Many teams tend to enter and

aintain this information for their tasks in Bugzilla. 

We downloaded and crawled the task and context data from

ugzilla using the Python library BeautifulSoup. 5 We first down-

oaded all tasks that have Mylyn Context data attached. This re-

ulted in 6650 unique tasks. In this list, there were only 2605 tasks

hich had at least one related task (dependsOn or Blocks). We

hen filtered each related task pair, in order to keep only the pairs

n which both tasks had Mylyn Context data attached. This step led

o 679 eligible tasks which have 928 related tasks (since a task can

e related to more than one task). The related tasks included 430

http://www.nltk.org/book/ch02.html
http://radimrehurek.com/gensim/tut3.html
https://bugs.eclipse.org/bugs/
https://pypi.python.org/pypi/beautifulsoup4
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Fig. 1. Hit ratios of the context similarity models for predicting similar tasks ( is- 

SimilarTo in field study between subjects analysis. Search space with N = 63 tasks. 
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unique dependsOn tasks and 292 unique blocks tasks. The sample

included the task ids, the task descriptions, the task metadata (sta-

tus, comments, creation time, etc.), the ids of the related tasks, and

the context data describing the interaction of the developers when

working on the task. Most of the eligible tasks (59%) included only

one related task, 9% included two, and 3% three related tasks or

more. 

In addition, we also reconstructed and studied isNextTo rela-

tionships between the tasks. For each task in the Eclipse Bugzilla

dataset that had a context attached, we identified the developer

that attached the context. Since the Mylyn data is time stamped,

we could infer when developers start working on a task and when

they stop working on it: these are the time stamps of the first and

the last event in the Mylyn trace. Based on this information, we

could order the tasks of a developer in time and detect when the

same developer stopped working on a task and started working on

the next task. If this duration is less than 24 h, we assume that the

developers switched to a subsequently ordered task consciously.

Overall 105 developers in our data-set have worked on 4076 dif-

ferent tasks that fulfilled this criteria. As for blocks and dependsOn ,

we also evaluated how well the various models can predict the is-

NextTo relationship and compared the context-based prediction to

the prediction based on the textual description of the tasks as in

the field study. In this study we used the task titles as input for

LSI. 

Finally, we manually analyzed and labeled a subset of these

tasks to check how semantically related the task switches actually

are. Since isNextTo is a hypothetical relationship that is not explic-

itly defined by developers and based on our assumption that con-

secutive tasks should be related, it is worth checking if the rela-

tionships are also meaningful and if the prediction models work

better for the isNextTo tasks which are semantically related. 

3.3. Experiment with students 

The third study focused on isSimilarTo relationship between

tasks. We conducted an experiment with 152 software engineer-

ing students at the Technische Universität München (TUM) in end

of 2011. The study included two phases. First, we defined real de-

velopment tasks and let the students work on them. Second, we

asked the students to assess the similarity of these tasks and ex-

plain their decisions. We then compared the similarity assessments

of the students with the similarity which we foresee for the tasks

based on our models for relevance and similarity. 

The students were randomly grouped into 37 teams of 4–5

members and randomly assigned to one of two projects. The first

project, IM, was an instant messenger for students. The second,

POLL, was a poll tool to vote for course-related questions and eval-

uate the course sessions. 6 Students had to implement the systems

as client-server applications. For IM we defined four mandatory

tasks and for POLL three. We did not give any constraints on how

and when to implement the tasks, but we had assumptions on

their similarity. 

After finishing the tasks, we asked the students to rank the sim-

ilarity of the predefined tasks and explain their rationales using an

online questionnaire. We then compared the questionnaire results

with our assumptions. 

4. Results of the field study 

We report on the results of our field study, in which we com-

pared how well different context similarity models can predict the
6 For the description of the projects and tasks see http://www.teamweaver.org/ 

wiki/index.php?title=Next . 

O  

w  

a  

v  
imilarity between tasks as seen by developers ( isSimilarTo rela-

ionship). Overall, the nine subjects of the field study worked on a

otal of 64 unique tasks and identified 111 isSimilarTo relationships

etween those. We first applied the similarity models on the tasks

f each subject separately (within-subjects analysis) and searched

or the similar tasks over all collected data (between-subjects anal-

sis). We report on the hit ratio, normalized distance performance

easure, and mean absolute error, often used to evaluate predic-

ion accuracy ( Shani and Gunawardana, 2011 ). 

.1. Hit ratios 

Hit ratios are useful for evaluating recommendation models in

articular if the recommendation items are ranked in a given or-

er ( Dumitru et al., 2011 ). A hit ratio computes the probability

hat a given item is predicted as part of the top N recommenda-

ions produced by the model. That is, for the items that were rec-

mmended, it shows how many were ranked first in the recom-

endation list, how many were ranked as the second, third, and

o on. Typically, hit ratio values are plotted against different val-

es of N. The hit ratio curves plot the accumulated percentage of

orrectly retrieved results against the number of recommendations

ade ( Dumitru et al., 2011; Hariri et al., 2014 ). The straight diago-

al indicates what one can expect of a random performance, i.e., a

andom algorithm would in the long run tend to recommend the

orrect task roughly in the middle of the list. 

Fig. 1 shows the prediction ability of the models if we search

or similar tasks in the entire dataset . This means that all the 63

asks are included in the hit ratio computation, regardless of the

ubject. The Normal Jaccard and FDA algorithms exhibit the best

erformance, managing to recommend all the similar tasks by rec-

mmending at most 22 tasks in the worst case. 

Next, we calculate for each task in the sample similar tasks

ased on the similarity of the descriptions. Overall, developers

orked on 64 unique tasks that have a summary, for example

Find and eliminate Bugs”. 61 tasks have a unique text description.

ig. 1 shows that the text-based similarity is not as accurate as the

ontext based similarity calculation based on the Jaccard distances.

ne possible reason is that most task descriptions in the sample

ere short: the shortest task description included 12 characters,

nd the longest, 89 characters. This finding is consistent with pre-

ious studies which showed that developers often encounter dif-

http://www.teamweaver.org/wiki/index.php?title=Next
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Table 3 

Accuracy of ordered similarity prediction for the field study ( isSimilarTo ). 

Within subjects N = 9 Between subjects N = 63 

Eval. metric DOI Jacc. FDA Jacc. Jacc. DOI Jacc. FDA Jacc. Jacc. LSI 

MAE in positions 2 .17 2 .23 2 .04 8 .23 5 .24 4 .68 15 .42 

NDPM 0 .44 0 .60 0 .55 0 .44 0 .60 0 .55 0 .43 

NDPMs with 0 .0 in % 33 .33 25 .64 41 .03 33 .33 25 .64 41 .03 43 .59 
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culties to write a meaningful description for their tasks ( Maalej,

009; Maalej and Happel, 2010 ). Many of the tasks (about half of

evelopers’ work) are informal and do not have a meaningful text

escription ( Maalej, 2009 ). 

.2. Rank-aware prediction 

Since the field study subjects ordered the similar tasks (most

imilar, 2nd. most similar, 3rd. most similar), we also calculated

dditional measures which are often used to evaluate the pre-

iction accuracy with ranked items: Normalized Distance Perfor-

ance Measure (NDPM), and Mean Absolute Error (MAE) in rank-

ngs. Table 3 shows the metrics and the results when searching for

imilar tasks in the data of the individual developers (within sub-

ect analysis) and when searching for similar tasks in the data of

ll subjects (between subjects analysis). 

Mean Absolute Error . The Means Absolute Error (MAE) shows

ow close are the system’s recommendations to our reference rec-

mmendations. It summarizes the differences in ranks, taking into

ccount all the tasks in the list. In the ideal case, the most sim-

lar task should occupy rank 1, the second most rank 2, and the

hird most rank 3. These ranks are compared with the actual ranks

roduced by the recommenders. 

The results in Table 3 show that the models missed the valid

osition of the similar tasks less with the Jaccard distances. If

e take the case of the between subject analysis, on average the

accard distances miss by 5 to 8 ranks, while the text similarity

isses by 15. These results agree with the hit ratio shown on

ig. 1 . 

Normalized Distance Performance Measure . The Normalized

istance Performance Measure (NDPM) assesses the ordering in

hich the items are shown ( Luostarinen and Kohonen, 2013; Yao,

995 ). It only considers the items for which the ordering is given,

.e., the ordering of the 3 most similar tasks. The marginal values

f the NDPM are as follows: 

• 0.0 when the ratings are ordered perfectly (best ordering); 
• 0.5 when the ordering is random; 
• and 1.0 when the ratings are ordered in reverse (worst order-

ing). 

These values are averaged for all the tasks and presented in

able 3 . Note that we only calculated the NDPM of the 39 tasks

out of 55) that have at least two similar tasks. We observe that

he performance ranges from 0.44 to 0.60, meaning that there is a

egree of similarity with the original ordering, but not a very high

ne. Interestingly the context similarity models predict the tasks

ndependently of the number of tasks provided in the same order

f tasks. Note that to ease the interpretation of NPDM metrics, we

lso rescale them in a percentage scale, with 0% being the perfect

ase (0). The Jaccard and the LSI matches in 40% of the cases the

xpected order. 

.3. Threats to validity of the field study 

The results of our field study should be interpreted within the

ontext of the study. The analysis to evaluate the performance
f the context models is based on a relatively small sample (64

nique tasks and 111 relationships). Obviously, a larger sample

ould help to better generalize the results and gain a deeper un-

erstanding for which model works best when. We recruited 13

rofessional developers working in different domains and differ-

nt companies. To get a realistic dataset, we purposefully refrained

rom using the contexts of students’ tasks e.g. in an experiment.

ine of the 13 developers submitted useful data. Two of the origi-

al 13 cancelled the study due to privacy reasons (since much in-

ormation about the source code must be shared), while two oth-

rs did not use Mylyn all the time which led to partial, unreli-

ble, and thus unusable results. The remaining nine subjects sub-

itted data describing a “long-enough” period of development ( ∼
 weeks) from real projects. While all developers worked in Ger-

any, they have different cultural backgrounds (Eastern and West-

rn Europe, Asia, and South America). Overall, we feel that the re-

ults – while certainly not representative to all developers – give

nitial indications about the prediction ability of similar tasks for

evelopers working with Eclipse. 

Concerning the internal validity, we assumed that the subjects

ubmitted correct data, in particular the task similarity relation-

hips and the sessionization of the interaction data when starting

o work on a different task. Originally, we also asked subjects to

ubmit an assessment of the artifact relevance. However, after sev-

ral dry runs and during the real field study we observed that this

nformation was not intuitive and difficult to assess, and thus com-

licated the study. Therefore, we decided to focus on the similarity

valuation. 

Since the overall submitted task list per subject included 10–

5 tasks, we assumed that the task similarity assessments were

orrect. The task lists were rather small and the similarities can

e well assessed manually. Moreover, all subjects performed this

xercise without major clarification requests. 

Subjects might have indicated a similar task on which they

orked on a different day. This might lead to the potential risk

hat they do not remember that task with the same level of de-

ails as tasks from the current day. We think that this threat is

egligible. None of the developers had more than 15 tasks for the

hole period of the study. Moreover, none of the developer re-

orted on work that lasted for longer than 2 weeks. We think

hat this size and dependencies of the tasks can be handled well.

e also think that all participating subjects with useful data were

airly well committed and assessed the similarity of the tasks to

he best of their knowledge. 

Finally, we used Mylyn for data collection and part of the data

nalysis. While Mylyn is a mature tool and the probability of mis-

akes in the data is rather small, this tool was certainly less mature

t the time of conducting the study in 2011. Moreover, using Mylyn

eans that we had to restrict ourselves to the types and granular-

ty of data about interactions and artifacts. In dry runs and self

xperiments, we used other monitoring tools and observed more

ccurate results. However, we think that using Mylyn in the field

tudy is the right choice to minimize usability bias of our less ma-

ure implementation and to allow for a fair comparison between

he DOI and FDA relevance models. 
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Table 4 

Average precisions P and recalls R of the context similarity models to predict dependsOn and blocks relationships 

Bugzilla. The k in P k and R k indicates that the model is evaluated using the k first predicted tasks. 

Jaccard FDA Jaccard DOI Jaccard 

Relationship P 4 P 10 R 4 R 10 P 4 P 10 R 4 R 10 P 4 P 10 R 4 R 10 

dependsOn & blocks 13 .2 7 .0 41 .4 53 .8 9 .0 5 .3 28 .1 40 .1 3 .6 3 .8 11 .8 30 .1 

dependsOn 15 .2 7 .9 43 .5 55 .5 10 .6 6 .0 30 .5 40 .8 3 .7 4 .0 11 .5 28 .7 

blocks 10 .6 5 .7 39 .8 53 .3 7 .0 4 .3 26 .6 39 .9 3 .2 3 .2 11 .7 30 .3 

Fig. 2. Hit ratios of the context similarity models for predicting dependsOn/blocks 

task relationships (Bugzilla data, search space with N = 678 tasks). 
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5. Results of the simulation with Bugzilla data 

We report on the results of the simulation series conducted

based on data collected from the Bugzilla repository of the Eclipse

community. We compared the context similarity models to first

predict dependsOn and block relationships. Then, we constructed

isNextTo relationships from the timestamps and studied those. Fi-

nally, we manually assessed 500 randomly selected isNextTo rela-

tionships to check the corresponding tasks are actually related. 

5.1. Predicting dependsOn and blocks relationships 

Table 4 shows the k-precision and k-recall values of the simi-

larity models to predict the three types of task relationships stud-

ied with the Bugzilla data. We report on k = 4 and k = 10 as these

are common in practice. For instance, Google search autocomplete

shows 4 predicted items in the browser search field and 10 items

in the webpage. Other recommender systems as Amazon also typ-

ically shows 4 to 10 recommendation items to the user. Overall,

the table shows that Jaccard has the highest precision and recall,

followed by FDA Jaccard, followed by DOI Jaccard. The precision

values are rather small but still greater than random (which was

around 1%). The recall values are more encouraging and go up to

55% for Jaccard to predict dependsOn tasks. 

The results of the hit ratios for all dependsOn and blocks task

pairs in Bugzilla that have context data are summarized in Fig. 2 .

Overall, there is a slight difference between the performances of

the similarity models. The pure Jaccard seems to perform best, fol-

lowed by the FDA Jaccard, followed by DOI Jaccard, and then by

LSI. These results are similar to our field study. The Jaccard model

performed best and was able to predict > 60% of the related tasks

up to the 20th position. We think that this is an encouraging result

since the search space is much bigger in this study. 
Recommending to a developer out of hundreds 20 tasks which

thers are working on and which he should be aware of might be

cceptable, even if more accurate predictions and shorter lists is

learly desired in practice. This prediction accuracy can be reached

f developers are using context data or if the summary and prod-

ct component name are available in the task description. Systems

ike Google and Amazon render about 10 results to the users per

efaults. Stack Overflow provides up to 15 potential questions to

e answered by other developers. 

The pure Jaccard performed better than the context aware Jac-

ard. In particular, Jaccard identifies the correct similar tasks in

n earlier recommendation position than the DOI Jaccard. In the

ugzilla dataset, the relevance of the artifacts seems to rather have

 secondary importance for the similarity. This sounds reasonable,

n particular for “blocks” tasks. Two tasks might block each other

ven if they share artifacts which are not relevant for both tasks

e.g., one single API call in common). 

We found that the text-based similarity model performed as

ood as the DOI Jaccard but less accurate than the pure Jaccard

nd the FDA Jaccard models as depicted on Fig. 2 . This shows that

t is possible to identify related tasks by comparing the similarity

f their textual descriptions (i.e. the summary fields of the bug re-

ort). 

We found that adding the metadata about the product and

omponent names (affected by the task) to the task descriptions

ignificantly increases the prediction accuracy of the text-based

imilarity model (LSI). By using only the summary as an input, the

ext-based similarity model discovered 65% of the tasks until the

rst 100th position. By adding the metadata (product and compo-

ent names) the model discovered 85% of the tasks and performed

verall as good as the pure Jaccard. 

We also ran a differentiated analysis for the dependsOn

s. blocks relationships. We found that the hit ratios for both rela-

ionships are almost identical with the hit ratio of the FDA Jaccard

lightly better for dependsOn than for blocks (a slightly sharper un-

il position 100). 

.2. Predicting isNextTo relationships 

Table 5 shows the k-precision and k-recall values of the sim-

larity models to predict isNextTo relationships studied with the

ugzilla data. Again, the table shows that Jaccard has the highest

recision and recall, followed by FDA Jaccard, followed by DOI Jac-

ard. The values are smaller than blocks and dependsOn but still

reater than random. 

We also calculated the hit ratios for the different similarity

odels to predict isNextTo relationships, as shown on Fig. 3 . We

hoose only the developers who switched at least 3 times within a

ay to another task. This resulted in 23 developers who worked on

 total of 1201 tasks (average: 52.26, median: 16.0, std: 88.45). The

evelopers switched 848 times to another task within a day (av-

rage: 36.87, median: 11.0, std: 67.062). For one single developer,

here was at most 439 predicted related tasks, which correspond

o the maximum of the hit ratio graph on Fig. 3 . 

Again, all models clearly outperformed random and the pure

accard performed best. However, for this type of relationship,

here was no significant difference between FDA Jaccard and DOI
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Table 5 

Average precisions (P) and recalls (R) of the context similarity models to predict isNextTo 

tasks in the Bugzilla study. The k in P k and R k indicates that the model is evaluated using 

the k first predicted tasks. 

Jaccard FDA Jaccard DOI Jaccard 

P 4 P 10 R 4 R 10 P 4 P 10 R 4 R 10 P 4 P 10 R 4 R 10 

4 .4 2 .7 17 .1 25 .9 3 .2 2 .2 12 .5 21 .0 3 .1 2 .1 12 .2 20 .8 

Fig. 3. Hit ratios of the context similarity models for predicting isNextTo tasks in 

the Bugzilla study. 
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accard. Moreover, overall, the increase of all hit ratios is smaller

han for dependsOn and blocks. It seems that, on average, the con-

ext similarity can better predict work dependencies than time de-

endencies of tasks. 

Severity and task switches. We were nevertheless curious as to

hy the developers do not switch to similar tasks, and formulated

he hypothesis that there may be more urgent tasks to do. In or-

er to look into this, we investigated whether developers tended to

witch to more urgent tasks in same-day tasks, compared to tasks

n other days. 

Normally tasks in Eclipse are prioritized by the Eclipse commu-

ity to clarify how and when a task or a feature request should get

xed. The severity clarification of a task (e.g. “critical”) are used to

efine a task as important and inform the responsible development

eam working on a software product and component. We have re-

efined the seven text-based severity levels 7 to a scale of 1–7. A

everity level of 1 means a task blocks some component or the

omplete software system and should get fixed immediately and

hould have a high priority in the community. 

We suppose that developers switch from one to another task

ithin a day when the following, next task is from a high inter-

st or priority and should get closed as soon as possible, even

f it is not similar to the previous task. To assess this, we divide

ask switches in a subset of our dataset, concerning 57 developers,

ccording to duration of the task switches: less than a day (941

witches), and more than a working day (3524 switches). 

We find that the average severity rating of the tasks where

ork started after a short task switch was lower (4.62), than the

nes when the task switch was longer (4.80). This means that the

hort task switches involve in general tasks that are more severe,

ielding a degree of support to our hypothesis that developers may

witch to important tasks even if they may be dissimilar. A Welch’s
7 https://www.mediawiki.org/wiki/Bugzilla/Fields . 

s  

t  

c  
 -test (p-value:8.95e-5) shows a significant difference between the

everities of the two types of tasks. However, the difference in

everities is relatively small, which tells us that there are a vari-

ty of other factors at play. 

Similarity in products and components We found evidence

hat developers try to focus on similar tasks, at a coarser level

f granularity. In the dataset of 941 task switches that happened

n the same day, we find that 57 developers work on 46 different

oftware products and 105 different software components. These

7 software developers, when switching to tasks at longer time

ntervals (3524 switches), work on 86 different software products

nd 204 software components. 

We find that for short task switches (a day or less), developers

ormally keep their focus on the same software products (82.6%

f the cases), while for longer task switches, they focus more fre-

uently on different software products (the product stays the same

n 78% of the cases). This difference is significant according to a

elch’s t -test (p-value: 0.0125). 

The same analysis at the level of software components finds

hat during short task switches, developers keep working in 67%

f the cases on the same software component. For longer task

witches, the proportion drops to only 48% of the cases. The dif-

erence is also significant (Welch’s t -test, p-value: 3.37e-30). 

Conclusions. We find that in a subset of our Eclipse Bugzilla

ataset, developers are overall working on dissimilar tasks, even on

he same day. These larger context switches may reduce their pro-

uctivity. A possible reason for this is that they may have to switch

o important defects to fix, although the observed effect is small;

ther factors may be at play. Despite this, we find that developers

re more likely to try to stay on the same product and component

uring 24 h. Thus at a high level they try to minimize the number

f their context switches. These results show that there is poten-

ial for a recommender system that recommends similar tasks in a

ne-grained fashion. 

.3. Manual analysis of isNextTo task pairs 

We conducted a detailed manual analysis on a subset of the

ataset, focusing in particular on developer task switches, i.e., on

ow developers transition from working on a task to the next one,

ased on their activity as recorded in Bugzilla. The intent of this

nalysis was threefold: 

• Assess how often developers switch to tasks that are related to

each other in our dataset. This is important to check our as-

sumptions that developers might be interested to work on re-

lated tasks consecutively. 
• Find out from the documented activities how developers use

context in practice, i.e., why they attach Mylyn context data to

their tasks. 
• To build an initial dataset of tasks that are manually found

to be related, and to evaluate the performance of our various

models on it. 

The process we employed to build this new dataset was to first

elect the task switches in the PDE dataset, restricting our selection

o the task switches containing pairs of tasks that both had Mylyn

ontext files attached. We chose the PDE dataset as it is one of

https://www.mediawiki.org/wiki/Bugzilla/Fields
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the largest, but is not so large as becoming unmanageable. In total,

this dataset contains 497 task switches, which is enough to form

a good understanding of the data and the entities featured in it,

without being too large. 

Once the data was selected, we inspected it. The previous step

produced a list of pairs of tasks with their URLs on Bugzilla, so that

we could easily inspect them. We reviewed each pair of tasks with

two goals: the first was to determine to which degree the tasks

described in the bug reports were related, while the second was

to identify how Mylyn contexts were used, highlighting any spe-

cific comment that could help with that overall goal. For the first

use case, the entire task description was considered, while for the

second one, only the comments related to Mylyn were considered.

We determined that two tasks were related based on the lan-

guage use in the task description or the comments. We tried to

answer the question whether the tasks appear to concern similar

parts of the software, either explicitly (are the same entities men-

tioned?) or implicitly (are the same concepts mentioned?). As part

of that we also considered the stack traces that were occasionally

included in the comments. We used three degrees of relationships

between the tasks: if we found strong evidence that the tasks con-

cern similar parts of the software, we would rate the tasks as “re-

lated”. If the evidence was weaker, we would rate them as “maybe

related”. In other cases, we would rate the tasks as “not related”. 

All in all, we rated 342 task switches as “not related”

(i.e. 68.8%), 101 as “maybe related” (i.e. 20.3%) , and 54 as “related”

(i.e. 10.9%). This means that we found around one third of the task

switches related or maybe related, while two thirds are not re-

lated. Thus, it seems more common in the aggregate that devel-

opers switch to unrelated tasks, which is aligned with the findings

of the previous section. Going into the details, however, we found

differences between developers. Some developers are much more

focused than others, usually working on a single component, and

spend the majority of their times on switches to related or maybe

related tasks. On the other hand, other developers switch to un-

related tasks more often, and skew the average since these devel-

opers have the most task switches. Further, a closer inspection of

those developers shows that they often have the role of integrator

of functionality (external contributions), rather than developing it

themselves. 

As far as the usages of the Mylyn context goes, we find several

usages, of which two are predominant: 

• Use Mylyn task contexts to support code reviewing. In the

eclipse projects, code is systematically reviewed by another

project member or a project integrator before being accepted.

In this scenario, the context file can be opened by the re-

viewer in order to focus the reviewing activity on the entities

the developer worked on, while still being in the IDE. This is

an advantage compared to the conventional process of review-

ing a contribution as a patch, where only the changes are high-

lighted. 
• Use Mylyn as a handoff mechanism in bug triage. When an ex-

pert is notified of a bug, the expert may elect to delegate the

bug to another project member. In order to transfer some of

their expertise, the expert may create a context model with the

code entities that they believe need to be changed or under-

stood in order to perform the task. After loading the context

file in their IDEs, the developers will find the IDE focused on

these entities, which should ease their program comprehension

effort s, as they do not have so many entities to consider, which

can be a big issue in a large system. 

Finally, we observe large variations in performance in the dif-

ferent subsets of tasks and their degree of relationships. For each

task switch in the dataset, we run our context similarity models

with the first task as input and measure the rank of the second
ask in the result list. We repeat this procedure for each of the

odel: i.e. Jaccard, FDA Jaccard, DOI Jaccard, as well as for LSI ap-

lied on the tasks’ descriptions. The results are shown on Fig. 4 . 

We found that, in all cases, the average rank of the predicted

ask in the list of results is the lowest (i.e. most precise) in the sub-

et of tasks that are rated as related (the average rank for “related”

asks varies between 52 for LSI, and 114 for DOI), with intermedi-

te performance in the subset of “maybe related” tasks (the aver-

ge rank for “maybe related” tasks varying between 119 for Jaccard

nd 162 for DOI). The lowest performance is in the group of “un-

elated” tasks, with average ranks varying from 197 for Jaccard, to

16 for DOI Jaccard. This shows that – as expected – the context

imilarity approaches perform better on more related tasks, with

arying degrees of performance. We also run paired Wilcoxon rank

um tests between the various average ranks and found that all

ifferences between “related”, “may be related” and not related are

tatistically significant with p ≤ 0.01. 

The DOI Jaccard is the model with the highest ranks in aver-

ge, and thus the lowest performance (114–162–216). The three

ther variants are closer together, with the FDA Jaccard perform-

ng slightly worse than the other two (78–132–212), with no clear

inner on the top two: the LSI model (52–131–282) performs bet-

er for the “related” tasks, while the Jaccard model performs better

or the “maybe related” category (69–119–197). 

.4. Threats to validity of the simulation with Bugzilla data 

The external validity of the Bugzilla study is rather high, since

he study data include many tasks of many developers from dif-

erent Eclipse products (i.e., teams). Therefore, we think that the

esults generalize well, at least to the Eclipse community. One lim-

tation, however, is that the data represent only developers who

se Mylyn and share their context data in Bugzilla and only Eclipse

eams that maintain the dependsOn and blocks relationships in the

ssue trackers. Other developers might have different work habits

nd patterns. As we identified in the manual labeling there are

ecurrent work patterns in the tasks with context data attached

s developers often share their context data with specific goals in

ind. 

While the heterogeneity of the studied projects, task types, and

evelopers increase the external validity of the study, these dif-

erent settings (e.g. size of contexts, type of work done, different

evelopers role, products etc.) might have influenced the predic-

ion results acting as “hidden variables”. To mitigate this threat,

e checked several obvious variables for correlations. We did not

nd any correlation between the size, the project, the severity, the

evelopers, and the performance of the models. The tasks studied

ere heterogeneous lasting from a few minutes to days. 

We cannot completely exclude the possibility of script and anal-

sis code errors, since this was a multi-year lasting project and in-

ludes multiple levels of analysis including multiple models, data,

tudies, and relationships. We took special care and conducted

ode reviewing for the crucial computations. 

When exploring the isNextTo relationships, our analysis of

everity mapped severity levels to an ordinal scale (from 1 to 7).

hile we cannot assure that the difference between the different

evels, e.g. between “blocker” and “critical” is the same as between

trivial” and “enhancement”, there is a clear semantic order of the

evels. Using a nominal scale (which does not assume that the dis-

ance between items is similar), may slightly change the results.

e were not interested in quantifying the severity level of the next

asks, but rather checking if, on average, developers tend to switch

o more sever tasks if the switching time is shorter. 

Finally, the manual labeling to assess how related isNextTo tasks

re might include mistakes or limitation to the representativeness.

e had to create a sample that is large enough but also manage-
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Fig. 4. Boxplots showing the average ranks of the predicted task for the three labeled categories: related, may be related, and not related (yes, may be, and no). N = 497 

assessed isNextTo relationships of the Eclipse PDE project. 
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Table 6 

Summary of qualitative analysis (N = 92). 

Observation Count 

Functionality and architecture indicate task similarity 55 

Different technologies let tasks appear dissimilar 32 

Participants think about tools instead of artifacts 21 

Participants think about artifact types instead of artifact instances 18 
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ble since the labeling task is time intensive. It requires consult-

ng each task in the pair, reading the descriptions, comments, and

f necessary looking at additional data such as the changeset or

dditional documentation in the internet. For this reason, we also

ecided to limit the labeling to one single project. This enabled

he labeler to acquire knowledge about the project and use it for

ll pair labeling. Each task pair was labeled independently twice

y two authors (the second and third). There was a disagreement

nly in a few cases (4 pairs) which does not influence the results.

 broader representative sample would certainly lead to more re-

iable results. However, the consistent results across the different

rediction models, as well as the good performance of the text

imilarity increases our confidence about the results. 

. Experiment results with students 

We analyzed the results of the task similarity assessment ques-

ionnaire we handed the students after they worked on the tasks

e pre-defined, and compared their similarity assessment with

urs. In the experiment we checked the following hypothesis: Hy-

othesis H 0 : Our task similarity definition based on context simi-

arity is intuitive for developers. Hypothesis H 1 : Developers under-

tand task similarity in a different way. Overall, 127 students (84%)

nswered the questionnaire. A full matching of similarity means

hat a student ranks all tasks exactly in the expected order. More

han half of the ranks exactly match with the expected positions.

 Chi-Squared test rejected H 1 with 95% confidence. 

.1. Qualitative analysis 

Each time students ranked the tasks similarity, they were asked

o explain the reason for their decision (open question in the ques-
ionnaire). We manually analyzed the justifications, in an iterative,

ndependent, peer-conducted process, focusing on additional simi-

arity drivers. 92 of the 127 submitted questionnaires included jus-

ifications. The analysis resulted in interesting observations sum-

arized in Table 6 . 

Functionality and architecture indicate task similarity. 55

articipants considered the similarity of the functionality instead

f the artifacts as indicator for tasks similarity. Even though we

efined two tasks as similar, if they use the same tools and ar-

ifacts, the functionality, i.e. the functional requirement that needs

o be implemented, played the most important role in the justifica-

ions. One student stated: “the functionality of sending a message

s pretty much the same like login in or log out. The user triggers

n event and you tell the server he sent a new message. Receiving

essages is a bit different... ”. One other student wrote: “task 3 is

ost similar because most code has to run on the client side... ”.

tudents often compared tasks on a conceptual level, relating the

esign, architecture, or workflow of the desired solution. 

Different technologies let tasks appear dissimilar. 32 partic-

pants claimed that if the technologies (e.g., framework or pro-

ramming language) involved in the tasks are different, both tasks

ere considered as completely dissimilar. In this case tools and ar-
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tifacts involved in the tasks seem to recede into the background.

One student stated: “working on [internal behavior] is totally dif-

ferent than working on gui stuff”. One other wrote: “tasks 1 and

2 comprise editing java code [... ] using a database backend on

the server. Task 3, by contrast, mainly involves modifying cascading

style sheets which are exclusively relevant for the client.”

Participants think about tools instead of artifacts. We

counted 21 participants who compared tasks based on the tools

that were used, but rarely referred to concrete artifacts created,

modified, or managed with those tools. Instead of explaining differ-

ences between tasks based on different artifacts (e.g., index.html,

or Message.java), they explained the differences by the tools they

used (HTML editor vs. Java editor). They also tend to use special-

ized tools for specific types of artifacts rather than trying to solve

the tasks with the IDE. One student justified his decision: “while

implementing task 1 and task 2 [we used] the Source Code Ed-

itor and for the beautifying task [we used] another editor.” An-

other wrote: “my most important tool [for this task] was Adobe

Fireworks. It is dissimilar by definition”. 

Participants think about artifact types instead of artifact in-

stances. Instead of explaining differences between tasks based on

concrete artifacts (e.g., index.html, main.css, or Message.java), 18

participants rather see the differences based on the artifact types

(HTML, CSS, or Java documents). Concrete file names seem to play

a subordinate role. One student wrote: “for implementing function-

alities we mostly used source code editor and java files, for beau-

tifying an application we need to change the css file”. 

6.2. Threats to validity of the experiment with students 

As for the experiment with the students, we exclude nonre-

spondent bias (i.e., due to missing data sets) as the majority of

students have answered the questionnaire. One threat might be the

lack of experience with task management in software projects. As

the study was designed to be more close to real situations than

a lab setting, students might have also worked on different tasks

than the predefined ones, and developed their position about task

similarity. To minimize interventions biases, nothing was enforced

during the experiment. Only the submission of a working system

led to a successful completion of the projects. 

The number of tasks assessed by students was rather small. In

everyday’s work answering the question on “what’s next” might

include the similarity assessment of a bigger number of tasks.

However, a larger number of tasks would have complicated the

study leading to difficult and probably imprecise assessments by

the students. For the field study, the assessments concerned a

larger number of tasks up to 10 tasks. Predicting the similarity of

a larger number of tasks might lead to a different performance.

However, we think that this does not bias the results due to the

high number of identical rankings predicted by our model. 

Our study only compares development tasks excluding other

tasks as design, requirements, or managements. Therefore, even if

we think that our assumption and heuristic for task similarities ap-

ply for different types of tasks, the evaluation results should be

interpreted within implementation settings and not generalized to

the full spectrum of developer’s work. Finally, asking experienced

developers instead of students might lead to additional qualitative

insights. 

We note that the fact that our results are going in similar di-

rections in the three datasets (from the field study, the simulation,

and the experiment) gives us increased confidence in our results. 

7. Discussion of implications 

We revisit the research questions of this work and discuss the

implications and limitations of our findings. 
.1. Effectiveness of context similarity for predicting task relationships

The first and perhaps the most import finding from our studies

s that the various context similarity models significantly outper-

ormed a random prediction for all datasets and task relationships

iscussed in the paper. This finding clearly answers the first part of

he first research question and confirms our main assumption: that

he contexts similarity reveals the existence of a relationship be-

ween the corresponding tasks. This context-based approach seems

o work at least for two types of relationships useful for work coor-

ination ( dependsOn and blocks ) and two types useful for personal

ork management ( isNextTo and isSimilarTo ). Additional types of

elationships (e.g. subtask or incorporates) ( Thompson et al., 2016 )

hould be studied separately. We think that our assumption holds

n these relationships as well. Also, the context similarity predic-

ion worked similarity well or better than predicting task relation-

hips by comparing the textual descriptions of the tasks. 

In our first and second research questions, we also aim at com-

aring the context similarity models discussed in Section 2 : in par-

icular, which one predicts more accurately certain types of task

elationships. The results of the Bugzilla study and the field study

uggest that the simplest model Jaccard outperform the DOI Jac-

ard and FDA Jaccard. However, this should be interpreted with

are, since the differences between the various models in particu-

ar within the first 20–50 predicted tasks were rather small. There-

ore, we think that there is no clear winner. This result might

till question the need for extending well known similarity met-

ics such as Jaccard by context relevance. 

Overall FDA Jaccard generally outperformed DOI Jaccard. The

ifference between Jaccard and FDA Jaccard was smaller in the

eld study. This is not surprising since the Bugzilla study included

ore task data points. 

We also checked whether the size of context data in a single

ask influences the prediction accuracy. We clustered the context

ata into small, medium, large, and very large contexts and con-

ucted a Chi-Squared test of independence. The test rejected the

ypothesis that the accuracy is dependent on the size for all simi-

arity models ( p < 0.02). 

We observed a small difference between the relevance models

OI and FDA in the evaluation. The hit ratios of the FDA model

ere slightly better than those of the DOI model. Interestingly, the

ure Jaccard model and the text-based similarity performed almost

lways best for predicting similar tasks. A scaling function that

eights the interaction events (e.g., selects, edits, views, etc.) in

he context data might change the prediction accuracy of the rel-

vance models. neither Moreover, we originally designed the FDA

odel to distinguish between tools and other artifacts. In the eval-

ation, we had to use existing Mylyn data which does not include

ool interaction. We think that interaction with tools contributes

o defining the context and comparing its similarity and might

ead to improve the prediction accuracy. This is in line with the

ualitative findings shown in Section 3.3 . Two tasks appear to be

imilar, when they require the same tools, even for different arti-

acts. When determining the relevance of a tool, the usage duration

ecomes important, since a single tool might be used to manage

ultiple artifacts, so that switching between tools happens infre-

uently (compared to artifacts). The less tools and artifacts devel-

pers need to solve a task, the more important the duration be-

omes instead of the frequency. 

.2. Context-based vs. content-based similarity 

Using the textual descriptions of the tasks as indicator for the

ask similarity seems to work roughly as well as using the context.

ne major advantage of the context-based approach is that it does

ot require the task descriptions. Previous studies have confirmed
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hat a large number of developers’ tasks are not explicitly docu-

ented or described and rather exist in the head of the developers

 Maalej, 2009; Mark et al., 2005; Maalej and Happel, 2010; Bach-

ann et al., 2010 ). Characterizing and identifying the relationships

etween these rather informal tasks based on context might help

evelopers better manage their work. 

One disadvantage of our approach is that the developers need

o start working on a task in order to have a first set of inter-

ctions which characterize the context. Certainly, our approach of

ontext similarity cannot handle completely new tasks. This is a

ajor limitation. Nevertheless, as developers’ work is often frag-

ented ( Sanchez et al., 2015 ) there is a plenty of ongoing par-

llel tasks: some defined as tasks with descriptions, some only

nformal or with quick references. The context of these ongo-

ng tasks can be analyzed to identify relationships between them.

aToza et al. (2006) surveyed Microsoft developers and found that

2% agreed that they have “to switch tasks often because of re-

uests from my teammates or manager”, more frequently than

witching work because the task is blocked. We think that a com-

ination of the context-based (interaction-based) and text-based

ask is needed for such a similarity model to be applicable in prac-

ice. 

To predict the tasks’ relationships based on contexts, the tasks

o not have to be completed but they have to be started. That is,

ontext data must be available for the comparison at the predic-

ion time. Context data would be available for interrupted or post-

oned tasks. Predicting task relationships can be done at any of

hese points or simply “on demand” during the work on a task.

ur results show that context data are available in the studied

rojects and often used during code review work ( Section 5.3 )—

ndependently from whether the code review is defined as a sep-

rate task, conducted as a part of the original development task

tself, or sometime not even defined as a task. We observed simi-

ar scenarios for testing and integration work. 

Several previous studies (e.g. Maalej, 2009 and Bachmann et al.,

010 ) showed that a large portion of developers work ( ∼ 50%) is

ather informal and neither strictly defined as task nor assigned

n issue trackers and task lists. This is the case even in profes-

ional software development teams (or perhaps especially for these

eams). For instance, Bachmann et al. (2010) hired a very experi-

nced Apache developer to analyze committed Apache source code

nd trace it to bugs/tasks in the project’s issue tracker. The au-

hors found that only 48% of the commits are documented in

he issue tracker while the remaining code changes are informal.

aalej (2009) surveyed 782 professional developers and found

ery similar results. Only 30% of respondents confirmed that the

ajority of their tasks are defined in issue trackers. The remaining

0% claimed that a half or more of the work is rather informally

pecified without a task description. A further example is of agile

eams who often use sticky notes instead of tasks in issue trackers.

We think that the context of a task includes additional dimen-

ions which we did not consider in this paper. Our evaluation re-

ults show that developers (at least beginners) think, that the con-

ext similarity depend on other factors than the interactions, arti-

acts, and tools. For instance, the similarity of functionality to be

mplemented in the tasks and the similarity of architecture com-

onents and technology used are two strong indicators for context

imilarity. These dimensions partly represent the developers’ men-

al models ( Singer et al., 1997 ). In addition to their behaviors ex-

ernalized in interactions, tools, and artifacts, the thoughts about

hat is the functionality, how to associate the work into the archi-

ecture, as well as how to use the technology seem to be an im-

ortant part of the context. Neither FDA nor DOI use these dimen-

ions. We think that considering them (e.g., by mining or associat-

ng keywords to context) might improve the prediction accuracy of

 context similarity model. 
.3. Application areas for context similarity models 

One main motivation of this work was to evaluate whether re-

ated tasks can be recommended to developers based on the con-

ext of current task and context of other tasks. Our research results

re encouraging but also show that hybrid models would probably

e needed in practice. Also additional research is still needed to

chieve more accurate results with higher precision and recall val-

es. Overall, we expect two main areas of applying context simi-

arity models to predict task relationships: developer’s productivity

nd collaboration and awareness. 

.3.1. Developer’s productivity: recommending similar tasks 

Development work is frequently interrupted requiring develop-

rs to switch between tasks back and forth ( Parnin and Rugaber,

011; Maalej, 2009 ). Each time developers postpone tasks and re-

ume others their time is wasted by reestablishing the contexts in

heir mind. We envision a recommendation system that suggests

o the developers the tasks they should work on next where the

ffort needed for the switch is minimized. If one would apply the

rinciples of Getting Things Done ( Allen, 2001 ) to the domain of

oftware engineering by comparing the contexts of the tasks and

ecommending the tasks with most similar contexts, this would

robably reduce context switches, save time, and increase produc-

ivity. The context might consist of the interaction of the develop-

rs with the tools (such as Debuggers and Web browsers) and the

rtifacts (such as source code elements, documentation pages, and

ommunication threads). But context might also include additional

nformation to reflect the mental state including technology or ar-

hitecture standards used. Two contexts are similar if their most

elevant context information, including artifacts and tools, are the

ame. 

In order to check whether developers tend to switch to similar,

elated tasks in practice, we ran the Jaccard similarity index on the

ext descriptions of a random sample of 10 0 0 ”isNextTo task pairs”

rom our sample Bugzilla dataset. We found that developers tend

o switch to relatively dissimilar untreated tasks on the same day:

he overall average Jaccard similarity index was only 0.19. This re-

ult might indicate that there is potential for recommendation sys-

ems that assist developers to switch to similar tasks to what they

re currently doing. 

However, the context is quite complex and choosing the next

ask to work on depends on several additional factors—also accord-

ng to the principles of Getting Things Done. First, the priority of

he tasks is clearly important for the work management. Urgent

asks might have a priority. The following is a challenging ques-

ion: how similar, how related, and how complex should a task

o the current work be, to be more meaningful for a developer to

ork on it than on an other urgent task? 

Finally, in addition to a task recommender, it might also be use-

ul to explore analytics tools that simply show the similarity or de-

endencies of the tasks a developer worked on together with other

ersonal productivity and performance metrics such as the num-

er of tasks closed, number of edits, overall satisfaction etc. This

ould lead to a better reflection and learning of developers about

he “optimal” work management decisions in future. 

.3.2. Collaboration and awareness: recommending dependent tasks 

Recommending others’ tasks that are related to the current

ork of the developer and she should be aware of is certainly use-

ul in collaborative settings. A simple use case might be to rec-

mmend creating and maintaining dependsOn and blocks depen-

encies in issue trackers—something currently being done manu-

lly, and certainly not perfect. A developer might need to be aware

f the status of tasks that blocks her current work. Alternatively,

he might be blocking others’ tasks and this might help identifying
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priorities. Predicting tasks relationships can thus support collabo-

ration and coordination, setting work priorities, assignments and

work plans. 

We think that identifying and recommending related tasks

based on their contexts can also support knowledge sharing among

developers. From a related task, a developer can e.g., learn from

the discussion what is important to note, where to find additional

reference information, or simply whom to ask if one has a ques-

tions ( Maalej et al., 2014b ). Also recommending similar tasks might

tighten the knowledge sharing in how to solve similar issues. 

Task relations are crucial for collaborative activities such as

code reviewing, testing, integration, or handoff. Predicting related

tasks would help identify with whom developers should synchro-

nize to handle dependencies, avoid conflicts, and share knowledge

( Blincoe et al., 2013 ). We noticed in our qualitative analysis of is-

NextTo tasks, that a popular usage of Mylyn contexts is supporting

code reviewing and task handoffs—two highly collaborative scenar-

ios (see Section 5.3 ). Context similarity prediction can thus sup-

port such scenarios so that, e.g., code integrators can review simi-

lar contributions, instead of switching to contributions on different

areas of a large software system. 

8. Related work 

We focus the related work discussion to approaches of (a) per-

sonal productivity management based on task context, (b) ap-

proaches to quantify relevance and similarity of artifacts and con-

texts in software engineering, and (c) approaches for identifying

similar, related tasks for development teams. 

The conceptual cornerstone of our work is David Allen’s

methodology Getting Things Done ( Allen, 2001 ). There are

several task management tools that implement GTD. Things

( Cultured Code GmbH, 2011 ), MyLifeOrganized 

8 and Remember

The Milk (RTM) 9 are few examples. Common features include or-

ganizing tasks according to task categories, define contexts of the

tasks or group tasks by tags, and managing areas of responsibility.

While Allen recommend to organize the tasks by their contexts to

increase productivity, none of these tools monitors the interaction

of users to characterize the context and calculate the task similar-

ity. 

Several approaches have been proposed to support knowledge

workers in their personal productivity management by using the

context. Dragunov et al. proposed TaskTracer, a tool that helps

multitasking knowledge workers to rapidly resume past activities

and restore contexts ( Dragunov et al., 2005 ). Similarly, Shen et al.

introduced a similar tool called TaskPredictor ( Shen et al., 2006 ),

and later TaskPredictor2 ( Shen et al., 2009 ), which both use ma-

chine learning approaches to detect task switches and to predict

the user’s current task. TaskTracer, TaskPredictor and TaskPredic-

tor2 also monitors developers’ interactions and associates interac-

tion events with tasks. However, these systems aim at supporting

developers to quickly restore contexts when resuming tasks (e.g.,

reopening the files), while we aim at predicting and retrieving re-

lated tasks according to their contexts. 

Rattenbury and Canny (2007) proposed a task representation

and visualization tool called CAAD (Context-Aware Activity Dis-

play). It automatically gathers information about the user current

task and processes this information to infer the context. By mon-

itoring the user interactions with tools and artifacts and applying

pattern mining, CAAD detects structures that encode the task con-

text. It uses these context structures to predict artifacts relevant
8 http://www.mylifeorganized.net/products/my-lifeorganized/ 

GTD- Getting- Things- Done.htm . 
9 http://www.rememberthemilk.com 

s  

s  

t  

w  
o the user’s current task and to visualize the user’s work behav-

or. Brdiczka (2010) propose a similar approach to construct a task

epresentation based on artifact interactions. The author suggests

o monitor a user’s desktop activities and leverages artifact us-

ge information without intervening with the content of the ar-

ifacts. Using a spectral clustering algorithm, they groups artifacts

nto tasks using a similarity matrix. 

In software engineering, Kersten and Murphy introduced the

egree-of-interest model (DOI) for a task-focused programming.

ylyn implements the DOI and is today one of the most recog-

ized task management tools for the Eclipse IDE ( The Eclipse Foun-

ation, 2011; BZ Media LLC., 2008 ). Mylyn monitors a developer’s

nteractions in Eclipse and filters source code elements, which are

rrelevant for the current task. The goal is to increase the devel-

per’s productivity by reducing information overload ( Kersten and

urphy, 2006 ). Mylyn does not predict similar tasks based on the

ontext information. Switch! ( Maalej and Sahm, 2010 ) is a context-

ware artifact recommender, assisting developers in switching arti-

acts based on interaction history and types of development tasks.

hile Switch! assists developers to switch to the next artifact

eeded in a task, in this paper we discuss the recommenda-

ion of the next task based on task similarity. A similar concept

alled “edit wear and read wear” to DOI was introduced first by

ill et al. (1992) , including the use of time spent on particular lines

n a text editor. The idea of wear was applied to software devel-

pment by DeLine et al. (2005) to facilitate the understanding of

rograms through wear-based filtering. 

With TASKREC, Vo et al. aim at recommending relevant tasks

or users according to their situation and environment capabilities

 Vo et al., 2009 ). Assuming that “people accomplish similar tasks

n similar situations” they propose a measure for task-based situa-

ion similarity based on context attributes. This approach is similar

o our since it is also based on the same assumption that task sim-

larity can be predicted based on the context of executing the task.

owever, the domain, definition of tasks, and similarity models are

ifferent. Vo et al. focus on physical smart spaces with sensors and

ctuators, while we focus on knowledge workers and their interac-

ion history as context. 

Finally, UMEA ( Kaptelinin, 2003 ) also monitors user interactions

ith artifacts. It uses a strategy for creating and managing task-

elated work contexts based on activity theory. It supports the user

n organizing resources relevant to a (higher-level) task in order to

ake them easily available when the user resumes this task. We

ocus on organizing tasks based on their context similarity rather

han task hierarchies. Our models are tailored to typical situations

n developer’s work, as it considers particular artifact and interac-

ion types. 

Both relevance and similarity are two well-studied concepts in

tatistics, machine learning, and information retrieval. Some of the

ssumptions of this work are based on these results such as Jac-

ard. In software engineering several authors have studied the rel-

vance and similarity. For instance, Parnin and Gorg (2006) looked

t various ways to compute file relevance for a task and used (in-

luding recency and frequency). Sridhara et al. (2008) discussed

ix different state-of-the-art similarity techniques applying on soft-

are. They find out that all of them did not perform well on a

igher level. Grechanik et al. (2010) developed a search engine for

olution domains to find highly relevant applications. They discov-

red that there is need for a system that can find relevant appli-

ations faster and more precise than other search engines. Jeh and

idom (2002) proposed SimRank to measure the similarity of the

tructural context in which objects occur based on their relation-

hips with other objects. Two objects are similar if they are related

o similar objects. For a given domain, SimRank can be combined

ith other domain-specific similarity measures. In this work we

http://www.mylifeorganized.net/products/my-lifeorganized/GTD-Getting-Things-Done.htm
http://www.rememberthemilk.com
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ocused on a specific view of task similarity based on comparing

he developers’ interaction histories when working on the task. 

Rastkar and Murphy (2009) studied the computed similarity of

00 bug reports from the Eclipse Mylyn project. They compared

ug reports found similar through a comparison of changesets to

he set of bug reports found similar through contexts. The authors

sed a normalized cosine similarity metric for both approaches.

hile the aim of this work is similar to ours (predicting task rela-

ionships) the authors studied only computed relationships (simi-

arity) and did not compare the predicted relationship to the man-

ally identified relationship by developers. Moreover, the author

sed textual names of the artifacts to uniquely identify the con-

ext elements and not the interaction. Finally, the authors focused

n comparing the context without relating it to the tasks (i.e. bug

eports). 

Rocha et al. (2015) described an approach to predict simi-

ar bugs a developer should work on next to reduce context

witches. They used the text descriptions as the summary of the

ug and a cosine algorithm to predict a next, similar bug (see also

albert and Weimer, 2008 ). We also identified related, including

imilar bugs, by using context-based approaches as well as text-

ased approaches (LSI) to predict similar bugs based on their tex-

ual description and extend their research. Our goal was rather to

tudy and compare multiple approaches than to suggest and eval-

ate a particular approach. 

Alipour et al. (2013) suggested a new approach to find related

specially duplicate bugs by using contextual information. They de-

ived this information from different sources as commit log com-

ents, bug reports, and the category of the bug to find duplicate

ndroid bugs. We did not study the duplicate relationships but

nvestigated the isSimilarTo as indicated by developers. Moreover,

he definition of context according to Alipour et al. is different to

urs since we focus on context including the interactions of the

eveloper when fixing a bug. In practice, the various contextual

nformation might be complementary. 

Lamkanfi et al. (2011) used four classification algorithms to pre-

ict the severity of a bug. To predict bugs they used also meta in-

ormation of the bug reports as the product and component name

s well as the bug description. In our study we found that develop-

rs often switch to bugs have a high severity that have not conse-

uently be contextual similar to each other. We expect additional

esearch to find significant factors a NextBug has a high severity.

esearchers could learn from a history of bug context data and

ould study what artifacts are touched frequently when fixing a

ritical bug, a block bug or a trivial bug. A trivial bug might be a

I bug as changing the color of a UI element. 

Finally, there is a large body of research about coordination

nd collaboration issues of development teams, e.g., studying de-

elopers social networks ( Zanetti et al., 2013 ), mining of the re-

ision histories ( Zimmermann, 2009 ), or analyzing the text com-

ents of the bug reports ( Runeson et al., 2007 ). Our work brings

 new, complementary perspective to identify when developers

hould synchronize and of which changes they should be aware

f by comparing the context of tasks (i.e., the interaction history).

erhaps the most related work is of Blincoe et al. (2013) , who an-

lyzed the information needs of developers working on tasks in

arallel using the Bugzilla repository. The authors identified sev-

ral issues coordinating tasks between developers in large projects.

e hope that the context similarity models and the differentiated

valuation contribute to identifying and recommending tasks on

hich the developers should coordinate. 

Ying and Robillard (2011) investigated the differences of occur-

ences of an interaction event (edit) in a programming task. They

nvestigated that there are significant differences in the number

f occurrences of the interaction event working on enhancement

asks, minor, and major bug fixes. These results can be used to
cale the context similarity models and reach a higher accurate

rediction rate, by enabling the weighting of the interaction events

or edit if a specific kind of task has to be recommend in the upper

ront positions. Recently, Soh et al. (2015) studied noises in context

ata, and found that Mylyn context data can miss on average about

% of the time spent performing a task and contain on average

bout 28% of false edit-events. The authors conclude that interac-

ion traces must be carefully cleaned before being used in research

tudies. We had the same assumption when we introducing the

DA relevance models. The results of this study might be used to

urther remove noise when calculating the contexts similarity. 

. Conclusion 

Development tasks have a broad variety of task relationships

etween them ( Thompson et al. 2016 ). A task might e.g. follow,

lock, depend on, or be part of another task. Tasks might also be

imilar on what their output should be and how they should be

erformed. Automatically identifying task relationships would be

hus useful to developers in various scenarios. 

This work investigates how context data, extracted from devel-

per interactions with development artifacts, can be used to pre-

ict relationships between tasks. We took a broad approach and

valuated several context similarity models (Jaccard, DOI Jaccard,

DA Jaccard) on two types of task relationships useful for work co-

rdination ( dependsOn and blocks ) and two types useful for per-

onal work management ( isNextTo and isSimilarTo ). We also com-

ared the results with relationships prediction based on mining

he task descriptions. We evaluated our assumption in different

cenarios: a field study with professionals, an array of simulations

sing Eclipse Bugzilla data (including manual analysis of task rela-

ionships on a subset of the data), and an experiment and a survey

ith students. 

Overall the results are encouraging. The context similarity mod-

ls and task relationships evaluated point in the same direc-

ion in the three studies: context can be used to predict task

elationships—significantly better than a random prediction and at

east as good as mining the textual descriptions of tasks. It seems

lso, the more related the tasks are, the better the context simi-

arity predicts the relationships. As for the accuracy of the context

imilarity models evaluated there was no clear winner in our stud-

es. 

We made several interesting observations. For instance, devel-

pers in the Bugzilla study tend to switch to tasks with dissimi-

ar contexts in the same work day, even if they attempt to keep

orking on the same software product or component. This indi-

ates that a task recommenders based on context similarity might

e useful, as developers are successful in staying focused on the

ame broad components, but not so much on similar fine-grained

asks. Our manual analysis shows that contexts are used for knowl-

dge sharing and coordination, e.g. as support for code reviewing

hen having a similar context may be useful as well. 

We think that our results can be used to build task recom-

enders, yet the accuracy of the prediction models evaluated is

ertainly far from being perfect to be applied in practice. From the

tudents survey we identified dimensions that might make task

ontexts more accurate such as the technology and tools used. We

lso think that a task recommender will need to consider other

nformation such as the text description, discussions and annota-

ions tasks, as well properties such as the task severity, complex-

ty or simply the level or concentration and remaining work time

 Allen, 2001 ). 

Certainly, our approach of context similarity cannot handle

ompletely new tasks. Context data must be available for the com-

arison at the prediction time. This is a major limitation. To predict

he tasks’ relationships based on contexts, the tasks do not have to
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be completed, but they have to be started. In contrast, previous

research has also shown that about half of development work is

rather informal and not documented as tasks with textual descrip-

tions. Identifying related tasks based on text similarity would not

be possible in this case too. Typically, there is a plenty of ongo-

ing pieces of work in development projects: some defined as tasks

with descriptions, some only informal. In practice, we think a hy-

brid approach of context- and content-based prediction of task re-

lationships might be the most appropriate. 
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