
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2016; 00:1–29
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Work Fragmentation in Developer Interaction Data

Heider Sanchez‡, Romain Robbes‡, Luis Carlos Cruz§, Victor M. Gonzalez§

‡: Computer Science Department (DCC), University of Chile, Chile; §: Instituto Tecnologico Autonomo de Mexico,
Mexico

Received . . .

1. INTRODUCTION

Work fragmentation is a phenomenon that has been extensively investigated in the literature. Several
observational studies in company settings have shown that work fragmentation is very common
in the workplace. These studies have also shown that work fragmentation is detrimental to the
actual work taking place: after such a context switch, time is necessary for information workers
to regain their bearings. A particularly harmful kind of work fragmentation is interruptions, where
an external signal (email, chat, phone call, or direct conversation) forces an information worker to
switch activity at an unplanned moment and for an unknown duration.

If the literature contains extensive studies of interaction workers, it lacks in two aspects: (1) most
studies target information workers (fewer target the specific population of software developers), and
(2) the studies are usually field studies, which are limited in the amount of data they contain.

Work fragmentation is indeed an important phenomenon within the context of modern software
development, and the impact there may be even worse since developers build and maintain complex
mental models of the software they are working on—these models may be more sensible to
interruptions, and costly to rebuild.

In this paper, we present a study addressing these issues by (1) being focused on software
developers, and (2) using MSR techniques to base its conclusions on a much larger amount of data
(specifically, thousands of development sessions recorded by Mylyn and the Eclipse Usage Data
Collector). The downside is that the data exploited, being operational data [1], is of lower quality
than data extracted from a full-fledged observational study. Trading quality for quantity allows us to
explore different aspects of the problem, and to generate hypotheses for subsequent studies of work
fragmentation and interruptions in software development. We address the following three questions:

• RQ1: What is the relationship between the observed interruptions and the observed developer
productivity?

• RQ2: Is the observed relationship more pronounced in the presence of prolonged
interruptions?

• RQ3: What is the observed relationship in the vicinity of interruptions?

This work is an extension to the a published paper on 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering. Now, this improved version includes the same

∗Correspondence to: Romain Robbes (rrobbes@dcc.uchile.cl)
†All the authors are supported by LACCIR Project RFP2012LAC004
H. Sanchez is supported by a research grant from CONICYT-Chile
R. Robbes is supported by FONDECYT project #1151195

Copyright c© 2016 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]



2 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

analysis previously made with a new dataset, the Eclipse Usage Data Collector (UDC) interaction
data, which allows us to dig further into more specific aspects, resulting in the following two
complementary research questions:

• RQ4: How is the developer’s performance during the recovery time after an interruption?
• RQ5: What events are more common during recovery time?

A note on terminology: in this paper we (ab)use the word interruption to refer to a gap of
activity observed in IDE activity. We do not presume that all of these activity gaps are actual
interruptions (our results lead us to believe otherwise); rather, we assume they are indicators of
work fragmentation in general (that is, a programmer switching contexts to perform other activities
while developing, such as answering email, looking for the solution of a problem on the Internet,
etc). There also actions taking place outside of the computer, such as taking phone calls, interacting
with people or leaving one’s desk. Of note, work by Zou and Godfrey [2] found that interruptions
were a common cause for a lack of observed activity, and classified all periods of inactivity as
interruptions.

Structure of the paper. We start with a literature review of studies of work fragmentation in
Section 2. This section also contains a review of studies performed with the Mylyn and UDC
datasets that we use. In Section 3, we describe the Mylyn dataset in further detail, highlighting
potential issues in the operational data that we use in the analysis. Section 4, describes the
measurements used in this study, and details the processing of the data that is applied to alleviate
the issues described in Section 3. The same section shows how we convert interaction traces to
multivariate time series representing development sessions, and present the metrics in the analysis.
In Section 5, we answer our first research question: we find an inverse relationship between number
of interruptions and our three productivity indicators. In Section 6, we answer our second research
question, finding that this relationship is more pronounced for development sessions with at least
one longer interruption. In Section 7 we answer our third research question and find that our
productivity indicators are indeed lower in the vicinity of interruptions; we further find three patterns
of interruptions with different characteristics. Starting in section 8, we focus on the UDC dataset;
this section describes the dataset and gives details on the selection and transformation procedures.
In Section 9, we replicate our first three research questions with the UDC data; we find that all of
the previous conclusions agree with this new data, although the size of the observed effects differ.
In Section 10, we answer the fourth research question, finding a gradual increase of productivity
during the recovery time after an interruption and a relation with the nature of the interruption,
whether is positive or negative. Finally Section 11 answers our fifth research question; based on the
type of events executed, we find differences in the activities performed after a positive or negative
interruption. In Section 12 we discus about the differences between both datasets. We close the
paper by discussing the threats to validity of this study in Section 13, before concluding in Section
14.

2. RELATED WORK

2.1. Empirical Studies of Work Fragmentation

Studies of information workers In the modern workplace, people routinely multitask and shift
their attention to multiple areas, projects and activities. An observational study by Gonzalez and
Mark found that information workers experience high level of multitasking, averaging 3 minutes
on a task before switching to another task [3]. This often results in work fragmentation and
interruptions which some studies found has detrimental effects to knowledge workers, such as stress
and frustration [4]. Work fragmentation as result of interruptions usually demands extra effort to
recover and resume pending activities: a study of 24 information workers found that a worker needs
on average 25 minutes to get back on an interrupted task [5]. Similarly, Iqbal and Horvitz [6] found
that people experience disorientation and loss of context when multitasking. Czerwinsky et al. found

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 3

that after experiencing work fragmentation people found it more difficult to perform interrupted
tasks and took longer to complete them [7].

While these studies already show the effect of work fragmentation is hurtful, they are mostly
observational studies over a limited time, and do not address specifically the sub-population of
programmers.

Studies specific to programmers Zou and Godfrey performed an analysis of interaction histories
of 3 industrial programmers for a month [2]. One of their findings was the omnipresence of
inactivity in the interaction data, that they interpreted as interruptions. They corroborated this with
the programmers which agreed that many such periods of inactivity were indeed interruptions.

Similar to other information workers, software developers experience work fragmentation due to
the nature of the activity. Ko et al. [8] performed an observational study of 17 Microsoft developers,
where the average time before a switch was five minutes. Some switches were due to necessary
changes between tasks, but others were due to interruptions.

Parning and Rugaber evidenced the presence of an edit lag in the majority of a large sample of
development session spanning several datasets, hence showing that developers need time to resume
work after an interruption [9]. Parnin and DeLine evaluated several cues to help programmers
resume work after interruptions forcing them to multitask [10].

Maalej et al. [11] performed a study on the program comprehension strategies of software
developers. They found that developers often preferred direct interaction to consulting
documentation. As such, experts on a piece of code were often interrupted in their work to answer
questions from others.

Fritz et al. studied the perception developers have of their productivity. They found that developers
perceived they were more productive on days where they accomplished significant tasks, and when
they were not significantly interrupted [12].

As above, most of these studies operate on small datasets. The study of Parnin and Rugaber is
the closest to ours in terms of amount of data considered. However, the analysis performed on large
datasets in their study focused principally on the edit lag metric, while we investigate metrics which
are indicators of productivity along the entire session.

2.2. Empirical Studies on Mylyn Data

Several studies mining interaction data have been presented. Kersten and Murphy evaluated the
effectiveness of their degree of interest (DOI) model by showing that in a field study of developers,
users of their tools had a significantly higher edit to selection ratio [13]. Fritz et al. evaluated how
well DOI values reflected the developers knowledge of the code, and encountered mixed results
[14]. The lessons they learned allowed them to develop a Degree of Knowledge (DOK) model,
an extension of the DOI containing authorship information, and that was found useful in a variety
of situations [15]. The DOI has been implemented in Mylyn, and the data it generated has been
used in several studies. Based on the data generated by an early version of Mylyn (which recorded
additional data, namely usage of commands), Murphy et al. described how 41 Java developers used
Eclipse, reporting on the most commonly used views and commands [16]

The Mylyn data available in the Eclipse issue tracking system was used in several studies. Ying
and Robillard characterized the edit strategies of developers in the Mylyn dataset, finding three:
edit-first, edit-last, and edit-throughout [17]. Lee et al. developed Micro Interaction Metrics in order
to enhance defect prediction models [18]. We investigated whether the duration of a task could
be used to evaluate the accuracy of expertise metrics, with promising early results [19]. Soh et
al. studied the exploration patterns in the developer sessions of the Mylyn datasets, and classified
their exploration strategies as referenced or unreferenced exploration; they find that unreferenced
exploration were less time consuming [20]. Soh et al. conducted another study of this dataset, finding
that the effort spent by a developer in a patch is not correlated with the implementation complexity of
the patch [21]. Bantelay et al. improved the accuracy of evolutionary couplings metrics for change
prediction (usually computed with commit data); by adding interaction data, recall increased by
13%, with a 2% drop in precision [22]. Zanjani et al. integrated this approach with information

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



4 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

retrieval techniques to support impact analysis based on textual descriptions of change requests
[23].

2.3. Empirical Studies with Usage Data Collector

The Usage Data Collector dataset is a large collection of information about interaction data of
Eclipse’s users. It is publicly available and has been used in several studies mining interaction data.

On refactoring activities, Murphy-Hill et al. used this data to understand how programmers are
using refactoring tools analyzing patterns on refactoring practices, finding that most programmers
don’t make deep use of these tools, leaving untouched most of the configuration parameters and
performing manually most of the refactoring [24]. Liu et al. identified refactoring tactics (floss
refactoring and root canal refactoring, following Murphy-Hill’s terminology), finding that the
majority of them are floss refactoring and detecting differences on activities performed depending
on the type of the refactoring [25]. Sahin et al. analyzed the energy usage changes after refactoring
and used the UDC data to identify the most common refactoring events and selected those that fulfill
the requirements of being common and cause structural changes [26].

On coding tools and strategies, Murphy-Hill et al. investigated command recommendations for
software developers depending on their past history of command usage and tested a set of algorithms
using UDC data to obtain CVS and editing commands, getting positive feedback on a live evaluation
with users [27]. Yoon et al. use UDC data to compare the results obtained from a proposed plug-in
for the capture of low-level events, finding a very similar report on command distribution from both
tools [28].

And on a different note, Khodabandelou used the UDC data to prove a proposed model for mining
user’s intentions and strategies from recorder user’s traces, resulting on a model for UDC developers
activities and the construction of a map followed by them [29].

3. MYLYN DATA DESCRIPTION

3.1. Mylyn Data

For our analysis, we used the Mylyn dataset of development data. Mylyn [13] is an Eclipe plugin
that monitors the program elements a programmer interacts with in order to build a task context. A
subset of Eclipse developers (principally from the Mylyn and PDE Eclipse projects) use the Mylyn
Monitor tool to capture fine-grained usage data of their IDE that they attach to the bug fixes as a
task context they submit to Eclipse. This allows reviewers of the bug fixes to use the same task
context when they review the changes. The task context contains the entire interaction history since
a developer activated the task he or she was working on, and as such is a rather reliable account of
IDE usage over time (barring a few issues explained below).

To collect the data, we crawled the bugzilla data of the Eclipse project (http://bugs.
eclipse.org), and downloaded all the bugs that had as an attachment a Mylyn task context.
In total, there were 6182 bug reports which contained 8102 Mylyn task contexts.

3.2. Interaction History Format

The interaction history is a sequence of ordered events in time [17]. An event is associated to a
direct action of the programmer in program elements, for instance: edit and selection events. Other
interaction events are indirect [13]: they are issued by Mylyn itself while it is maintaining its DOI
model of a programmer’s task context. However these events are not edit or selection events. Each
event captures several pieces of information: the timestamp, the kind of event and the signature of
the code element that was interacted with (package, class, attribute, or method signature—including
name and parameters).

In Table I we show the different kinds of events and their description; in Table II we show an
example of an interaction history. However, certain characteristics in the data present challenges
around the data mining we plan to perform [30]. These cases must be detected and resolved in order

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr

http://bugs.eclipse.org
http://bugs.eclipse.org


WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 5

to get a representative time series model of programmer activity. We describe these issues and our
solutions below.

Table I. Kinds of interaction events [13].

kind mode description

selection direct Editor and view selections via mouse
edit direct Textual and graphical edits
command direct Operations such as saving, building, preference setting
manipulation direct Direct manipulation of interest
propagation indirect Interaction propagates to structurally related elements
prediction indirect Capture of potential future interaction events

Table II. Example of interaction history.

StartTime EndTime EventKind Method

1 10:30:00 - selection m1
2 10:30:40 - manipulation -
3 10:30:40 - edit m1
4 10:31:03.700 - selection m1
5 10:31:03.800 - selection m2
6 10:31:03.850 - selection m3
7 10:32:05 10:33:07 edit (5) m2
8 10:33:10 - prediction -

3.3. Special Characteristics of Mylyn Data

Below, we describe the characteristics of Mylyn data one has to consider before processing them.
This is especially relevant in our case since our study needs a representation of the activity as close
to reality as possible. In Section 4.2 we describe the criteria used to process these characteristics.

Aggregate events. This type of event includes several actions on the same program element.
These actions usually occur within an interval of short duration time. Whenever an aggregation
occurs, the event is expanded to include two timestamps defining a range of time, instead of a single
timestamp, and a number of events. Accordingly, these aggregate events lose their specific time
besides the range of time. The reason of this is that for scalability—in terms of storage—Mylyn
does not register all the user events.

For example, Table II shows an aggregate edit event in row 7. We indicate in parenthesis the
number of actions associated and the field EndTime registers the timestamp of the last occurrence.
Clearly, too much aggregation in a given trace severely compromises the detection of work
fragmentation as this relies on accurate timestamps.

Massive events. Such an event occurs when the same action is executed on more than one
program element in a very short time. This massive action generates consecutive events of the same
kind and with a tiny gap between them.

For example, massive events are produced when we select an entire group of classes from the
navigation tree panel in Eclipse. In Table II we show a massive selection on the methods m1, m2
and m3 in rows 4, 5 and 6. This massive selection produces three consecutive events with a time
gap of not more than 0.1 seconds. These events overstate the activity of developers as each of these
does not correspond to an individual developer action; rather, the entire sequence is.

Very long events. These events have a duration time (|EndTime− StartT ime|) much larger
than the mean. This mainly occurs in aggregate events. We believe that this issue is due to factors
related to Mylyn, since it can register the end time of an event when the task is resumed after a long
downtime. Another cause of these events is when one selects a code fragment and maintains this
action for a long time.

After exploring a sample of traces, we noticed that a long interruption of activity implicitly splits
a trace into two sub-traces. Moreover, we have realized that many long events happen around this
border. That is, they began before the interruption and finished immediately after the interruption,

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



6 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

which confirms the observation above (resumption of a task after a long downtime). However this
has the side effect of hiding the gaps of activity in the sequence of events if care is not taken.
Consequently, the duration of these events is overstated; however, finding their actual duration is
not trivial.

4. PREVIEW PHASES FOR KNOWLEDGE DISCOVERY

We used the phases of the process Knowledge Discovery in Databases (KDD [31]) to discover useful
knowledge from our collection of data: we first select data, then preprocess it, before transforming
it to time series. We close this section by presenting the metrics we use in this study.

4.1. Selection

Our purpose is the analysis of work fragmentation and interruptions in software development.
Therefore, we focused only in the interaction data of the user with the program elements. The
variables of interest for our study are [19]:

1. Duration: the time that a programmer took to perform a programming task.
2. Edition: the amount of code changes that were necessary to perform said task.
3. Navigation: how many program elements were consulted in a task; represented by selection

events.
4. Edit ratio: as in previous studies [13], the ratio of edits over edits and selections is an indicator

of more efficient work since program exploration is reduced.

First, we have kept only the edit and selection events that are associated to a program element.
These type of events are distributed in 8058 traces. On the other hand, edit-type events also occur
when the programmer double clicks on a file. In these events the starting time and ending time
are the same [18]. We consider that the double-clicking actions form part of the user navigation,
therefore these events are transformed into selection events.

Second, we have kept all traces without aggregate information. Unfortunately, we cannot know
the distribution in time of the actions that have been aggregated in a single event: without additional
information, an aggregation of 15 events over one hour is as likely every 4 minutes as it is to have
10 events in the first 5 minutes and 5 more in the last 10 minutes. Therefore, designing a correct
disaggregation task to this traces is very difficult, if not impossible.

In order to keep as many traces as possible, we have also kept a little group of traces with
aggregate information where the aggregate events have a maximum duration time of five minutes
(to minimize uncertainty) or have only two aggregate actions (since the actual event timestamps are
known in this case). Thus, we were left with 6260 traces.

It could be possible that these traces we discarded were biased in one way or another. In Figure 1,
we note that in our data the traces with aggregation information appear from the year 2008 on,
and slowly increase in frequency from then. We would expect such a pattern from a change to the
version of Mylyn, rather than a change to the type of tasks being performed. This is corroborated
with our tests of a recent version of Mylyn, which seems to be even more aggressive in discarding
information (it only keeps information at the class level, discarding method level information). As
such, our assumption is that it is unlikely that this change is due to anything else than the version of
Mylyn that was in use (and hence is not due to different tasks, people, etc). This leads us to believe
that it is unlikely that filtering these traces would introduce other sources of bias.

Finally, we found that 26% of traces had at least an interruption over 8 hours, which is hence large
enough to represent the difference between two working days. In these cases, we treated these long
activity gaps as splitting points in order to decompose a long trace in several development sessions
[32].

After this, we considered a minimum duration time of 30 minutes in order to ensure a minimum
of activity during a session. In this way, we obtained a final total of 4284 useful sessions to be
processed in the next phase.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 7

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Agg.
NonAgg.

0

500

1000

1500

2000

Figure 1. Grouping by date all the traces, with aggregate information (light gray) and without aggregate
information (dark gray).

Figure 2. Replacing five massive events with only two events.

4.2. Preprocessing

After filtering out traces, we describe the final processing steps that yield the final development
sessions that we study:

Sorting. We sort chronologically all the events by their starting time. Before that, we normalize
the timezone of each trace. We found 156 traces (3%) with more than one timezone.

Massive events. We use a short spacing interval to join consecutive massive events in only two,
the first and the last event (Figure 2). We have considered a spacing size of 0.1 seconds (100
milliseconds). All the massive events we found were of type “selection”, which concurs which
our observation above (multiple selection of several entities at the same time). The total number of
selection events was reduced by 45%.

Disaggregation. We disaggregate all the actions associated with each remaining aggregate event
with equidistant separation, as was done by Ying and Robillard [17]. Due to the filtering above, this
was only applied on traces that had aggregate events of short duration (≤ 5 minutes).

Event splitting. Finally, we split all the long duration events to better fit a time series model,
which is composed of a series of actions in specific times with intervals of the same duration. A
normal event does not generally have duration (EndTime is null). However, 12% of normal events
had a duration > 0 seconds and 3%≥ 1 hour, these events are outliers. Therefore, we split each long
event in two events: one at the start and the other at the end of the interval. This is the same criteria
applied for massive and aggregate events.

Table III shows the ratio of variation of the number of events after preprocessing.

4.3. Transformation

Our goal is to build compact and representative models from each session. In this sense, we used
aggregation of events to generate a multivariate time series (MTS). An MTS is a sequence of

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



8 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

multivariate observations taken at continuous time intervals coming from a same phenomenon. We
build the MTS with edit and navigation variables; the time unit is the minute, and the amplitude
is the sum of all the events that occurred in this minute. We selected the minute as unit time
because it seemed to be an appropriate and minimal representation of the user interaction in a
programming task—obviously a subjective decision. Multivariate time series is a useful way of
representing temporal data because they allow us to apply clustering techniques and find recurrent
patterns. Additionally, the partition of the data into sessions do not alter the results since we are
interested in the values by minute, so having longer sessions do not necessarily increase the number
of events per minute.

Mylyn data has another characteristic which is unusual for time series: the time of occurrence
of the events is not periodic (see column StartTime in Table II). That is to say, events occur with
non-equidistant separation gaps between them. However, in a time series, the values must be evenly
spaced and chronologically sorted. For this reason, we compressed the size of the multivariate time
series, pulling apart all the interruptions as a new time series variable. Then, each time series value
represents the interruption duration in this minute (Figure 4).

Consequently, the temporal component represents the real working time of a programming task,
excluding inactivity. This allows us to compute our activity indicators (number of edits, selections,
edit ratio) independently of the amount of inactivity in a session.

We define empirically an interruption as a pause of programming of duration ≥ 3 minutes. This
is based on previous work where we observed that short interruptions lasted usually this long [3].
Based on additional observations from this work, we defined a prolonged interruption as one lasting
for more than 12 minutes. These thresholds are also supported by the Activity Theory models of
Kaptelinin and Nardi [33]. This study presented work fragmentation at two different levels: actions
and activities. Interruptions originated after a period of around three minutes of sustained attention
to the previous action were considered when people were switching at the level of interactions with
artifacts of people. Interruptions originated after a period of twelve minutes of sustained attention
to a previous activity where considered when people were switching at the level of interactions with
projects or topics.

We identified that 98% of sessions had at least one gap of activity. Moreover, we observe that the
short interruptions predominate over the prolonged interruptions (Table IV). This first result tells us
that work fragmentation is extremely prevalent in our dataset.

After the transformation phase, we had the sessions in a proper format to take on the analysis.
Some statistics about the sessions in Mylyn can be seen in the Table V, and the distribution of
the productive time of this sessions is shown in the Figure 3. Both the Table and Figure consider
the productive time of the session, that is the total time without considering the time consumed
by interruptions. Also, the outliers are ignored by setting a threshold of three times the standard
deviation. This filter is used only to show the distribution, to avoid a very long tail provoked by
unusually long sessions.

4.4. Metrics Used in This Study

We use the following six metrics to measure interruptions and productivity, while controlling for
the unproductive time in a session, the length of time of the session itself, and the efficiency of the
development that took place during the session:

Metrics characterizing interruptions:

• Number of interruptions: counts all the interruptions that occur in a development session.
• Duration of interruption: it is the time duration in minutes of the each interruption.

Table III. Number of events after preprocessing.

type event before after % variation
edit 452236 475554 +5%
selection 658768 527652 -20%
total 1111004 1003206 -10%

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 9

Table IV. Prevalence of interruptions according to their duration time.

duration ratio examples
[3− 12min〉 69% short pause, answer a question, thinking,

looking for interruption
[12− 30min〉 18% coffee break, short meeting, extended

interruption
[30min− 2hr〉 9% lunch break, a meeting
[2hr − 8hr〉 4% extended meeting

Table V. Statistics about the sessions in Mylyn.

stat value

total 4,284
min. 2 min
1st Qu. 18 min
median 35 min
mean 48.91 min
3rd Qu. 62 min
max. 535 min

Histogram of the duration of sessions

Productive Time (minutes)

F
re

qu
en

cy

0 20 40 60 80 100 120 140

0
20

00
40

00

Figure 3. Histogram of the duration of the sessions in Mylyn.

Metrics characterizing productivity and activity:

• Productive work time: the duration of a development session, substracting the duration of all
the interruptions present in the session, to control for inactivity.

• Number of edits per minute: the total number of edits events, divided by the productive work
time to control for length of the session. This is an indicator of user activity during the session.

• Number of selections per minute: is the total number of selection events, divided by the
productive work time. Also an indicator of activity.

• Edit ratio: the number of edits divided by the sum of edits and selections, as used by Kersten
and Murphy [13]; an efficient developer spends less time exploring code and more time editing
it.

We measure the effects on productivity using the edits and selections per minute as indicators.
The edit ratio might be also a good indicator, under the assumption that a productive programmer
will perform more coding activities than selections or navigations. However, this is not always the
case.

5. RQ1: RELATIONSHIP BETWEEN INTERRUPTIONS AND PRODUCTIVITY

5.1. Relation between Interruptions, and Edits and Selections

As mentioned above, we use the metrics of edit, selection, and edit ratio as indicators of productivity.
We first examine the number of edits and selections, and how their distribution varies in function of
the number and type of interruptions.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



10 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Figure 4. Example of how to compress a time series.

We split the data in five groups: The first group contain all the sessions without interruptions
(none). For the others groups, we have considered four ranges of number of interruptions delimited
by their quartiles (Table VI). Then, for each group, we display the distribution of events per minute
and edit ratio via boxplots (Figure 5). We observe a large difference between the sessions without
interruptions and the ones who do. Further, we observe that the rate of events per minute decreases
slightly when the session has more interruptions. Therefore, we can intuit that the relationship
between number of interruptions and the productivity indicators that are edits and selections, tends
to be inversely proportional.

Table VI. Thresholds used to group sessions based on their number of interruptions

25% 50% 75%

quartile 3 5 10

none [1−3] [4−5] [6−10] >=11

0
2

4
6

8
12

Interruptions

E
di

ts
 / 

m
in

ut
e

none [1−3] [4−5] [6−10] >=11

0
2

4
6

8
12

Interruptions

S
el

ec
tio

ns
 / 

m
in

ut
e

none [1−3] [4−5] [6−10] >=11

0.
0

0.
4

0.
8

Interruptions

ed
it 

ra
tio

Figure 5. Boxplots showing the relation between the number of edits and selection events per minute, the
edit ratio, and the number of interruptions.

Beyond visual inspection, we also quantify the statistical and the practical significance of these
observations. First, all the differences observed are statistically significant with very low p-values
(see Table VII) according to the Mann-Whitney U-test. This is not surprising, given the shape of the
boxplots and the size of the samples.

More importantly, we used Cohen’s d to measure the practical significance of these results in term
of effect size [34]. Cohen’s thresholds are defined as follows: trivial (< 0.2), small (〈0.2− 0.5]),
moderate (〈0.5− 0.8]) and large effect (> 0.8). As shown in Table VII, we note that the effect size
of the interruptions over the number of edits by minute is (very) large. In selections, the effect is
moderate for sessions having up three interruptions, and large to very large for sessions with over
four interruptions. This reinforces our impressions that interruptions and user activity follow inverse
relationships, and that they are quite pronounced.

5.2. Effect on the Edit Ratio

Finally, we want to know the effect the interruptions over the ratio of edits in each session, as this
is the often seen as a better indicator of productivity than raw activity, since the programmer spends
less time navigating the source code in search of information, and more time actively editing it [13].

We first analyze the relationship between edit ratio and number of interruptions (Figure 5).
We observe that the edit ratio decreases when the session has more interruptions: the effect is

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 11

Table VII. Effect size and significance of the relationship between number of edit per minute, selection per
minute, edit ratio, and number of interruptions

none ≤ 3 [4− 5] [6− 10] ≥ 11

Edits
mean 6.29 2.59 1.55 1.29 0.91
U-test ↪→ < 2.2e-16
Cohen’s d ↪→ 1.23 2.02 2.37 3.31

Selections
mean 4.73 2.93 2.26 1.79 1.54
U-test ↪→ 8.1e-13 < 2.2e-16
Cohen’s d ↪→ 0.66 1.17 1.93 1.78

Edit ratio
mean 0.55 0.39 0.33 0.34 0.33
U-test ↪→ 4.2e-14 < 2.2e-16
Cohen’s d ↪→ 0.84 1.33 1.48 2.12

pronounced between session that do not have interruptions and ones that do, and is more subtle
as the number of interruption grows. A look at the practical and statistical significance of these
results (Table VII, bottom) show that the results are (unsurprisingly) statistically significant, and
that the observed effect sizes are large to very large.

Adding this to our previous result, we observe that both the user activity (in terms of raw quantity
of edits and selections per minute) and the user productivity (in terms of edit ratio), both follow an
inverse relationship with the number of interruptions. This finding agrees with the previous literature
on the harmfulness of multitasking, work fragmentation, and interruptions. Furthermore, the effect
sizes are very large.

6. RQ2: RELATIONSHIP BETWEEN DURATION OF INTERRUPTIONS AND
PRODUCTIVITY

In this section we analyze whether or not the interruption duration is a factor in the relationship
between interruptions and developer productivity. To substantiate this claim, we have built two
groups of sessions with interruptions:

• short: the first group consists of sessions that only have short interruptions (< 12 minutes of
duration). These sessions constitute 18% of the total.

• prolonged: the second group consists of the remaining sessions, which have at least one
prolonged interruption (≥ 12 minutes of duration). These session constitute 80% of the total.

We then displayed the distribution of events by minutes and edit ratio of these two groups and
compared them with the sessions without interruptions (Figure 6). We observe that the number of
events per minute is lower in sessions with at least one prolonged interruption.

As in the previous case, the differences are significant, and we used Cohen’s d to measure the
practical significance of the means (Table VIII). We note that the effect size of the interruption
duration over the number of edits per minute is very large. In selections, the effect is moderate for
short interruptions, and large for prolonged interruptions. We conclude that the relationship between
user activity and interruptions could be adversely affected by interruptions of longer duration.

none short prolonged

0
2

4
6

8
12

E
di

ts
 / 

m
in

ut
e

none short prolonged

0
2

4
6

8
12

S
el

ec
tio

ns
 / 

m
in

ut
e

none short prolonged

0.
0

0.
4

0.
8

ed
it 

ra
tio

Figure 6. Boxplots showing the relation between the number of edits and selections per minute, the edit ratio
and interruption duration

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



12 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Table VIII. Effect size and statistical significance of the relationships between edits and selection per minute,
edit ratio, and duration of interruptions

none short prolonged
Edits

mean 6.96 2.98 1.76
U-test ↪→ < 2.2e-16
Cohen’s d ↪→ 1.23 2.11

Selections
mean 5.20 3.33 2.47
U-test ↪→ 6.197e-13 < 2.2e-16
Cohen’s d ↪→ 0.63 1.24

Edit ratio
mean 0.55 0.40 0.34
U-test ↪→ 3.72e-14 < 2.2e-16
Cohen’s d ↪→ 0.86 1.32

Similar results occurs when we look at the edit ratio (Figure 6): the edit ratio is smaller in sessions
that have prolonged interruptions, compared to the ones that only have short interruptions. At the
bottom of Table VIII, we show the statistical and practical significance of these results. As before,
we observe large effect sizes when comparing sessions who do not have interruptions with ones that
do have, and larger effect sizes for sessions with at least one longer interruption.

These findings seem to indicate that the inverse relationship between productivity and time of
duration is more pronounced in session with at least one longer interruption. This agrees with the
literature for information workers.

7. RQ3: LOCAL RELATIONSHIPS BETWEEN INTERRUPTIONS AND PRODUCTIVITY

The impact of work fragmentation could be more noticeable in the immediate minutes before and
after an interruption occurs. On one hand, after an interruption the programmer carry out activities
meant to recover the lost mental model, like reading the code, debugging, reading notes and cues,
and more resumption strategies [9].

On the other hand, before the interruption there is a preparation phase when the it is imminent
or expected. On this phase the programmer might leave notes or comments in the code to recover
the context after the interruption [10]. Also, when the interruption happened because of a problem
found by the programmer, usually he tries to solve it by reading the code, using the debugger or
reading comments in the control version tool; after this resources are depleted, the next option is to
ask to teammates or other external resources. The latest activities can represent an interruption of
work.

In this research question we expect to see the effects on productivity around an interruption due
to the activities previously described.

7.1. Generic Sessions

In order to better understand the relationship between work fragmentation and productivity, we
need to delve deeper and perform local analyses of the development sessions. In the first step, we
wanted to summarize how the activity of users is distributed over time in sessions which have no
interruptions, short interruptions, and prolonged interruptions.

To summarize the development sessions, we have resized each time series to a single size, using
local means. We have used size = 10, that is, dividing each session in 10 chunks of equal time,
since because it yielded better global visualization (better uniformity) of the user interaction along
a session. For each chunk, we choose the median value of edits and selections for each group, and
compose one summary time series for each group; these are the time series displayed in Figure 7.

We observe that the median activity in sessions with interruptions is less than in sessions without
interruptions, mainly in the edit frequency. Moreover, the edit frequency exceeds the selection
frequency in sessions without interruptions. The opposite occurs in sessions with at least one

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 13

interruption—and is more pronounced when there is at least one prolonged interruption—, where
the code navigation tends to exceed the frequency of edits. These results agree with our earlier
results.

We also notice that the time series without interruptions have much more edits in the middle of
the session than the others. This observation matches the hypothesis that developers need time to
build their mental model for their task, and are less productive early in a session. This is similar
to the edit lag in Parnin’s study [9]: in sessions without interruptions, the edit lag is clearly visible
at the start of the session. This behavior is not visible in sessions with interruptions; indeed, each
session may have several edit lags (after each interruptions), and those would be equally distributed
over the entire duration of the session, resulting in the “flat lines” that we see for these sessions.

These results support our previous observations at a finer level, and corroborate the literature
saying that time is needed to start or get back on task.

2 4 6 8 10

0
2

4
6

8

Sessions without interruptions

Productive Time

F
re

qu
en

cy

Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with short interruptions

Productive Time

F
re

qu
en

cy
Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with prolonged interruptions

Productive Time

F
re

qu
en

cy

Edit
Selection

Figure 7. Global representation of a session with: no interruptions (top); only short interruptions (middle);
and at least one prolonged interruption (bottom).

7.2. Local Analysis

Having presented the global effect of the interruptions over the user productivity, we now focus
on the local activity before and after interruptions. We take a maximum real time interval of 30
minutes around each detected interruption, obtaining a set of 26988 time series subsequences. Then,
we compute the median of all these subsequences as a generic local representation (Figure 8). We
also plot with dashed lines the median values of edits and selections per minute in the sessions
with interruptions in order to give more context to the observed values. Below we describe some
observations:

• In the center, we find the interruption point. There is clearly a negative effect on the time
series, as the area before and after the interruption is the area with the lowest activity. The
activity is well below the median activity of time series with interruptions, showing that the
effect is indeed more pronounced near interruptions.

• On the right, the trend of the time series increases steadily. We hypothesize that the
programmer is immersing again into the programming task, increasing progressively the
activity as represented by the number of edits and selections. We see that in the average case,
it reaches the median activity 12 to 18 minutes after the interruption. It then rises further than
the session median, which is not surprising, as we expect higher than median activity further
away from interruptions.

• On the left, we observe that the number of events near the interruption also goes down well
below the median value. This is might be because of two reasons: the programmer could have
found a problem while coding, who at first will try to solve it by reading the code, switching
out from the IDE, navigating the call stack and debugging, before going to ask another
teammate, according to LaToza et al. [35]; this set of actions end up with an interruption
and reduce the observed activity within the IDE. Also, when the interruption is imminent or
expected, the programmer make use of different suspension strategies like writing physical
notes, making a mental note or leaving a reminder cue on the code or window, as mentioned
by Parnin and DeLine [10]. These activities reduce the activity before the gap and they are
seen in the interaction data mostly as selection events. The latest can be better visualized in

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



14 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Figure 15 with the UDC data as a significant decrease of edit events, being below the selection
events approximately 10 minutes before the interruption.

0.
5

1.
5

2.
5

All interruptions

Time (min)

F
re

qu
en

cy

before after

−30 −23 −16 −9 −4 2 6 10 15 20 25 30

Edit
Selection

Figure 8. Local effect of an interruption in the user activity.

We investigated whether the drop in activity local to interruptions was also accompanied by a
drop in the edit ratio. We computed the edit ratio over slices of 5 minutes before and after each
interruption (smaller intervals would be too sensitive to noise). The boxplots in Figure 9 show that
the edit ratio drops slightly the closer we are to an interruption. The effect is small, but significant
(see Table IX). As a reference, the mean edit ratio for sessions with short interruptions is 0.4, so the
edit ratio close to the interruptions are clearly lower in the 5 to 10 minutes around an interruption.
This matches the observations Parnin made with the edit lag [9].

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Figure 9. Ratio of edits around the interruption.

Table IX. Effect size of the ratio of edits around the interruption.

[1-5] [6-10] [11-15]
before

mean 0.34 0.37 0.39
U-test ↪→ < 2.2e-16
Cohen’s d ↪→ 0.16 0.24

after
mean 0.34 0.37 0.39
U-test ↪→ 5.67e-16 < 2.2e-16
Cohen’s d ↪→ 0.14 0.22

7.3. Patterns of Interruptions

Given the overall activity pattern we noticed in the local analysis, we hypothesize that there are
several kinds of interruptions, matching the scenarios observed in the literature: actual interruptions
distracting the programmer from the task at hand, and switching tasks in case of being stuck in the
current task.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 15

We hence looked for patterns in the interruptions. After applying clustering techniques over all
the subsequences, we always found the formation of three recurrent patterns that show different
effects of the interruption: neutral, positive and negative. The clustering was performed with the
K-Mediods [36] technique, the Silhouette metric [37] to interpret and evaluate the results, the
Dynamic Time Warping [38] as distance measure, and feature extraction techniques to reduce the
dimensionality. For this reason, we classified empirically each interruption by its local effect.

We did so by computing Cohen’s d on the quantity of edits before and after the interruption.
To obtain a significant effect, we need the presence of activity both before and after. Not all the
interruptions meet this criteria however: some are located close to the start or the end of a session,
or too close to another interruption. In total, 53% of the interruptions had 30 minutes before and
after the interruption and were selected for the analysis. The rest 47% of the interruptions can not
be used on this analysis due to the lack of time around them. Table X shows the applied thresholds
and the results, accompanied with a typical example of an interruption in each category. This local
analysis shows that there are indeed three well-defined groups of interruptions, with the two largest
of them having clear effects on the activity in the session.

Finally, we briefly report on the edit ratios for positive and negative interruptions (see Figure 10).
We see distinct patterns as well: positive interruptions have a higher edit ratio after the interruption
(in accordance with the hypothesis of a more efficient activity after having looked for missing
information), while negative interruptions have a lower edit ratio after the interruption (in
accordance with the hypothesis that the programmer may be rebuilding his context after an unwanted
task switch).

Table X. Local Effect of Interruption.

effect pattern

negative (45%): when the
frequency of edit events
decreases after the interrup-
tion (Cohen’s d < −0.2)

0.
0

1.
0

2.
0

3.
0 before after

−30 −22 −14 −7 1 6 12 18 24 30

positive (44%): when the
frequency of edit events
increases after the interrup-
tion (Cohen’s d > 0.2)

0.
0

1.
0

2.
0

3.
0

before after

−30 −22 −14 −7 1 6 12 18 24 30

neutral (11%): when there
is no well defined effect
before or after the interrup-
tion (abs(d) <= 0.2)

0.
0

1.
0

2.
0

3.
0 before after

−30 −22 −14 −7 1 6 12 18 24 30

8. ECLIPSE USAGE DATA COLLECTOR DATA DESCRIPTION

8.1. The Eclipse UDC

The Usage Data Collector (UDC) dataset is a large compendium of information about interaction
data from users of Eclipse, collected from December 2008 to August 2010, with the intention to
keep track of how programmers are using the IDE. The framework listens to the events triggered
by the user or the system, such as: edition and navigation commands; the startup of a plug in; or
the closing of the platform. To be more specific, UDC collects information about loaded bundles,

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



16 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Positive Effect

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Negative Effect

[11−15] [6−10] [1−5]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

before

[1−5] [6−10] [11−15]

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

after

Figure 10. Ratio of edits for positive and negative local effect.

commands accessed via keyboard shortcuts, actions invoked via menu or tool-bars, perspective
changes, view usage and editor usage. The UDC is a large dataset that contains information of
around 1,800,000 users, and has a total of 2,323,233,101 unique rows with 5 attributes each. Table
XI shows a description of the attributes.

Table XI. Attributes in UDC data.

attribute description

userId Unique number that identifies a user
what The action of the event (deactivated, activated, opened, executed, etc.)
kind What kind of event was executed (workbench, view, command, etc.)
bundleId Description of the event’s package
bundleVersion Version of the bundle’s event
description Description of the event
datetime Date and time in UNIX format

8.2. Selection and transformation

We used the pre-processed data by Murphy-Hill, that is published on Google BigQuery [39]. This
is an alternative version of the original UDC dataset, that is cleaned and preprocessed, so that the
transformation phase is simple and focused on our needs. Due to the magnitude of the dataset we
only worked on a fragment of it. We took a random sample of 1,000 users that is larger than the
dataset we were able to obtain for the Mylyn study.

The first step was to query the dataset to get the data from 1,000 random users. We delimited the
query to obtain only those events dispatched by the user, ignoring system events. We also ignored
the bundle version and transformed the UNIX date into a more legible datetime format. From this
query we extracted 4,321,349 unique events, which are around 0.18% of the whole dataset.

After obtaining the data, the next step was to add the attributes required by every event in order
to match as closely as possible the format of the Mylyn data; this allowed us to reuse a part of our
analysis. Hence, we added fields corresponding to the type of the event (edition or selection), its
duration (time elapsing between one event and the next one, used to determine where interruptions
take place and sessions end) and an ID to identify the different working sessions present on the data.
For the latter, we sorted the data by userId and datetime. This was required because by default the
user’s data is mixed and we need it not only chronologically correct but also sorted by users to tag
the working sessions of every user without interferences.

Once the events were classified and sorted, we split the dataset into sessions, defining a session
as a period of registered work between interruptions of 8 hours or larger, as we did with Mylyn. We
split the data by users to avoid a conflict between the last event of a user and the first one of another.
After this, we obtained a total of 28,989 different sessions; but after a filter to keep only those with
at least 30 minutes of productive time (as we did with the Mylyn dataset), we ended up with 15,825
useful sessions, in contrast with the 4,284 we had from Mylyn. Some statistics about the sessions

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 17

Histogram of the duration of sessions

Productive Time (minutes)
F

re
qu

en
cy

0 20 40 60 80 100 120 140

0
20

00
40

00

Figure 11. Histogram of the duration of the sessions in UDC.

can be seen in the Table XII, and a histogram of the duration of the sessions on UDC is shown in
the Figure 11, which ignores outliers by setting a threshold of three times the standard deviation.

Table XII. Statistics about the sessions in UDC.

stat value

total 15,825
min. 2 min
1st Qu. 11 min
median 22 min
mean 31.09 min
3rd Qu. 45 min
max. 131 min

8.3. Classification of events

Mylyn events belong to two main categories: edition and selection. The UDC data doesn’t have
this, so we inferred a classification manually. Note that we reuse the same term of selection in the
following text, as it was used in Mylyn data. Strictly speaking, the word ”navigation” would be better
suited to the variety of events present in the UDC data, but we keep the old term for consistency.

We took into consideration the attributes what, kind and description to choose the best
classification for every event. Starting by the kind attribute, some events are labeled as view which
are precisely those that open, activate or close a view such as the console, the package explorer or
the variables view. Therefore, the events of the kind view were classified as selection-type events.

The classification for the rest of the events is more complex: we needed to check directly the
command description and the bundle it belongs to in order to precisely infer its meaning (e.g., We
could label as edition all those commands with the attributes command and executed). The majority
of them are in fact of that type edition, but some executed commands also can open a view, navigate
through the text or go to another class. For this reason we took a closer look into the bundle name
and what the description can tell us about the events.

Thus, by default, all events of the attributes command and executed were classified as edition and
afterwards we did a thorough analysis to identify those that are actually selection events. This way
we categorized as selection all the events where we could tell (based on the description) if they have
the purpose to, for instance, navigate to another window, open a perspective, find and replace words,
search code, debugging, or perform window management. The description contains the whole path
from the top package to the class that implements the event, so we look for key words to apply the
classification. The proportion of events after the classification is shown in the Table XIII. We used
an iterative process involving two of the authors of the paper to arrive to this result; the process was
iterative, until we reached consensus. A sample of the classification can be seen in the Table XIV.

The edition and selection types are the ones we are interested for this study. The system
classification is composed of the events that activate and deactivate the workspace of Eclipse; it

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



18 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Table XIII. Proportion of events.

event percentage

edition 34.6%

selection 31.1%

system 31.5%

control 0.8%

Table XIV. Sample of classified events.

description type

org.eclipse.ui.edit.delete edition
org.eclipse.ui.file.save edition
org.eclipse.ui.edit.undo edition
org.eclipse.jdt.ui.CompilationUnitEditor selection
org.eclipse.ui.console.ConsoleView selection
org.eclipse.debug.ui.commands.StepOver selection
org.eclipse.ui.workbench system
org.eclipse.team.sync.views.SynchronizeView control

is difficult to determine when and why these events are executed (they can be executed either via
user or system action, and the order of execution in relation with associated events is not clear), so
we decided to establish this particular classification for them. Finally, the events of the type control
are those related to the version control system.

After processing the data, we were able to reuse the same data analysis pipeline we used for
Mylyn, in order to verify whether the results hold with this other dataset.

9. RESULTS OF RQ1, RQ2, AND RQ3 ON UDC

9.1. RQ1: Relationship between interruptions and productivity

We used the same metrics to investigate whether we could observe a similar behavior with the new
dataset. To analyze the effects of interruptions on productivity we divided the sessions according
to the quantiles of the distribution of the number of interruptions they hold. We obtained slightly
different results to Mylyn, and consequently we changed the thresholds used to classify the sessions
by the number of interruptions. Although the change is small, the distribution of the number
of interruptions differs and indicates that on UDC the sessions contains less interruptions. It is
important to reflect this change on the results and compare them against the results with Mylyn on
fair ground, as the same procedure was done with that dataset. The new thresholds are shown in the
Table XV and were used to classify every session according to the number of interruptions that it
has.

Table XV. Thresholds used to group sessions based on their number of interruptions for the UDC data

25% 50% 75%

quartile 2 4 7

For every session, we calculated the number of editions and selections per minute, and the edit
ratio. The boxplots in the Figure 12 show a similar pattern in comparison with the results with
Mylyn. When facing zero interruptions the editions and selections per minute are greater than with
one or more interruptions, and as more interruptions occur this metrics gradually decrease.

The edit ratio behaves similarly in comparison with the data on Mylyn, where the median changes
accordingly with the number of interruptions, decreasing when there are more and reaching the
maximum when there are none. An important difference is that the effect overall appears to be less
pronounced in UDC and we can see it on the effect size tests shown in the Table XVI. Most of the
observed effects are medium, while in the Mylyn datasets the effects were large. Note despite the
differences in effect sizes, the differences are still significant.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 19

Table XVI. Effect size and significance of the relationship between number of editions per minute, selections
per minute, edit ratio, and the number of interruptions on UDC data

none ≤ 2 [3− 4] [5− 7] ≥ 7

Edits
mean 3.97 2.18 1.82 1.70 1.59
U-test ↪→ < 2.2e-16
Cohen’s d ↪→ 0.58 0.88 1.05 1.35

Selections
mean 3.10 2.93 1.80 1.77 1.63
U-test ↪→ < 2.2e-16
Cohen’s d ↪→ 0.44 0.66 0.81 0.85

Edit ratio
mean 0.68 0.56 0.55 0.54 0.57
U-test ↪→ <6.9e-06 <3.6e-09 <5.1e-11 <5.1e-09
Cohen’s d ↪→ 0.37 0.46 0.49 0.55

none [1−2] [3−4] [5−7] >7

0
2

4
6

8
12

Interruptions

E
di

ts
 / 

m
in

ut
e

none [1−2] [3−4] [5−7] >7

0
2

4
6

8

Interruptions

S
el

ec
tio

ns
 / 

m
in

ut
e

none [1−2] [3−4] [5−7] >7

0.
0

0.
4

0.
8

Interruptions

ed
it 

ra
tio

Figure 12. Boxplots showing the relation between the number of editions and selections per minute, the edit
ratio, and the number of interruptions.

9.2. RQ2: Relationship between duration of interruptions and productivity

The next analysis is on the effects of the size of the interruptions, considering short and prolonged
interruptions.

• short: as with Mylyn we considered those sessions that have only short interruptions (< 12
minutes of duration). They constitute 6% of the total.

• prolonged: this group of sessions have at least one prolonged interruption (≥ 12 minutes of
duration). They constitute 93% of the total.

• none: this group of sessions have no interruptions. They constitute 1% of the total.

none [1−5] [6−10] [10−32] >32

0
2

4
6

8
10

Duration (min) of interruptions

E
di

t /
 m

in
ut

e

none [1−5] [6−10] [10−32] >32

0
2

4
6

8

Duration (min) of interruptions

S
el

ec
tio

ns
 / 

m
in

ut
e

none [1−5] [6−10] [10−32] >32

0.
0

0.
4

0.
8

Duration (min) of interruptions

E
di

t r
at

io

Figure 13. Boxplots showing the relation between the number of edits and selections per minute, the edit
ratio and interruption duration

Again the hypothesis holds on UDC data as it did with Mylyn. We can see in the Figure 13 that
with short interruptions the metrics are greater than when facing at least a prolonged one, for more
time is needed to recover after a long interruption. The effect size test results in the Table XVII
matches the previous observations on a less pronounced effect compared to the Mylyn dataset. The
Cohen’s d test results tell us that we can label the effect from medium to large and the median values
act accordingly to our hypothesis and conclusions with Mylyn.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



20 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Table XVII. Effect size and statistical significance of the relationships between edits and selection per
minute, edit ratio, and duration of interruptions on UDC data

none short prolonged
Edits

mean 3.97 2.75 1.79
U-test ↪→ < 2.6e-12 < 2.2e-16
Cohen’s d ↪→ 0.48 0.89

Selections
mean 3.10 2.37 1.78
U-test ↪→ < 4.3e-07 < 2.2e-16
Cohen’s d ↪→ 0.34 0.68

Edit ratio
mean 0.68 0.63 0.56
U-test ↪→ 0.01003 < 4.019e-09
Cohen’s d ↪→ 0.21 0.44

9.3. RQ3: Local relationships between interruptions and productivity

The sessions with UDC went through the same process of transformation into 10 chunks of equal
time. The results in the Figure 14 shows similar (but not identical) patterns compared to the ones
we observed in Mylyn.

2 4 6 8 10

0
1

2
3

4

Sessions without interruptions

Productive Time

F
re

qu
en

cy

Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with short interruptions

Productive Time

F
re

qu
en

cy

Edit
Selection

2 4 6 8 10

0
1

2
3

4

Sessions with prolonged interruptions

Productive Time
F

re
qu

en
cy

Edit
Selection

Figure 14. Global representation of a session with: no interruptions (top); only short interruptions (middle);
and at least one prolonged interruption (bottom).

The median of editions and selections per minute are greater in sessions without interruptions,
and the editions are more common than selections. Sessions with only short interruptions show a
level of edit activity similar to selection activity overall, but with a tendency to rise overtime (except
a drop in the last segment). When facing at least one prolonged interruption we can see the metrics
drop in comparison with short interruptions and the selections are now more frequent than the edit
events. This agrees with the results with Mylyn on this point.

As for the observation that activity was overall higher in the middle of the session we do see this
for sessions without interruptions. For sessions with interruptions, selection activity appears to be
constant over time, while edit activity appears to rise over time with a slight drop at the end.

On a local analysis around the interruptions, we can see a similar interesting behavior of the
edition and selections metrics as we observed with Mylyn. In the Figure 15 we show the frequency
of editions and selections around the interruptions, specifically 30 minutes before and after. We
observed that close to the interruption the frequency of editions and selections drastically drop, and
in a radius of around 10 minutes both metrics are below the overall median. This phenomenon is
also visible on the same version of this plot with Mylyn, agreeing that the activity of programming
gradually decreases before the interruption and takes several minutes to restore the intensity of work
above the median. Similarly than for Mylyn, we can see that the edits pass below the selections
events near the interruption.

After this, we separated the interruptions in three categories: those with positive effects
afterwards, those a with negative effect and those with no clear effect. Both positive and negative
interruptions have a proportion of 44% each of all the interruptions, and the neutrals stand with the
12%, and they are similar to the proportions on Mylyn. The results are in the Table XVIII.

The Table XVIII shows a similar pattern on negative, positive and neutral interruptions in
comparison with the results with Mylyn. After a positive interruption both metrics tend to increase

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 21

0.
0

1.
0

2.
0

All interruptions

Time (min)

F
re

qu
en

cy

before after

−30 −23 −16 −9 −4 2 6 11 16 21 26

Edit
Selection

Figure 15. Local effect of an interruption in the user activity.

Table XVIII. Local Effect of Interruption.

effect pattern

negative (44%): when the
frequency of edit events
decreases after the interrup-
tion

0.
0

1.
0

2.
0

3.
0

before after

−30 −23 −16 −9 −4 2 6 11 16 21 26

positive (44%): when the
frequency of edit events
increases after the interrup-
tion

0.
0

1.
0

2.
0

3.
0 before after

−30 −23 −16 −9 −4 2 6 11 16 21 26

neutral (12%): when there
is no well defined effect
before or after the interrup-
tion

0.
0

1.
0

2.
0

before after

−30 −23 −16 −9 −4 2 6 11 16 21 26

at a high rhythm until reaching the global average value. The editions per minute recover quickly,
approximately 5 minutes after the interruption, but the selections per minute take a little longer to
reach the global average and this metric tend to be below the average for an extended period. It is
important to notice that before the interruption happens the editions per minute metric is below the
average for approximately 16 minutes prior to the interruption.

In contrast, when facing the effects of a negative interruption the metrics take longer to reach the
median. On the contrary to facing a positive interruption, the editions per minute metric is below the
selections per minute, and the former takes longer than the latter to reach the average value. Also,
the editions per minute metric is above the average for the 30 minutes before the interruption.

In general, the effect of positive and negative interruptions is the inverse. The editions per minute
describes better the effect and the selections do not show a major change. There is not a clear pattern
during a neutral interruption.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



22 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

10. RQ4: RECOVERY TIME AFTER AN INTERRUPTION

10.1. Edition and selections during recovery time

The amount of information we have in Usage Data Collector allows us to analyze more specific
sections on a programming session. We further investigated the immediate activities after an
interruption that we name the recovery time, which is a time period taken by the programmer to
resume the interrupted work. We could not do this with Mylyn data, since the process involves a lot
of filtering of interruptions, which left us with too few data points to analyze.

We established the recovery time as the 15 minute period after an interruption, without
considering the time consumed by the interruption itself. The length of the period was chosen
according to the observations by Solingen et al. [40].

It was required to make a selection of those interruptions which had a period afterwards of at least
15 minutes before another interruption. After this query we obtained 5,684 valid interruptions from
a total of 110,077.

From those valid interruptions, we split the time after the interruption occurred into two phases:

• Recovery time: the period after the interruption of 15 minutes in length.
• After recovery time: the period after the recovery time until the next interruption.

The recovery time was split in three phases of 5 minutes each, and the after recovery time into
the following phases:

• Before interruption: the period of 10 minutes before the next interruption.
• Peak: the time between the recovery time and the before interruption phase.

Splitting the recovery phase into three phases allows us to analyze in detail the evolution of
productivity and identify the immediate activities after the interruption, which will be helpful later.
On the other hand, the before interruption phase represents the time where the productivity drops
just before the next interruption, as seen in the results of the last research question. The peak phase is
where the productivity should be reaching its maximum, as the programmers are not taking actions
to retake the lost mental model or preparing for an interruption. The Figure 16 shows how the time
after the interruption was split into phases.

Before

Interruption

Before

InterruptionRecovery Time Peak

Interruption Interruption

Session
Phase 1 Phase 2 Phase 3

15 minutes Variable time 10 minutes

Figure 16. Graphic showing how the time after an interruption was split.

The duration of the peak varies among the also called working spheres, as mentioned by Gonzalez
and Mark [5]. On average, the peak lasts for 12 minutes, while the maximum registered is of 145
minutes. The distribution of duration of the peak is reported in Table XIX.

Table XIX. Quartiles of the distribution of the duration of the peak phase.

25% 50% 75%

quartile 3.38 8.05 16.31

We can see in the Figure 17 the evolution of the metrics through the phases. The three metrics
show a tendency to increase and reach a maximum between the last phase of the recovery time and
the peak of the session. Moreover, the fall of the productivity on the last minutes before the next

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 23

interruptions agrees with the observations on the local analysis of the time around an interruption.
From this we can conclude that the first five minutes after an interruption and the moment before
the next one are the are the phases where productivity is more affected, while the phases around the
peak are where the productivity is more favorable.

[1−5] [6−10] [11−15] Peak Before int

0
2

4
6

8
10

E
di

tio
n 

/ m
in

[1−5] [6−10] [11−15] Peak Before int

0
2

4
6

8
10

S
el

ec
tio

n 
/ m

in

[1−5] [6−10] [11−15] Peak Before int

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
di

t r
at

io

Figure 17. Boxplots showing the detailed evolution of editions, selections and edit ratio during recovery time
and after recovery time.

11. RQ5: COMMON EVENTS DURING RECOVERY TIME

We saw in RQ3 different patterns of activity around interruptions when they had positive or negative
effects; the edits per minute are higher after a positive interruption and the contrary after a negative
one. The effect is more marked in the immediate minutes after the interruption, as can be seen in
the Figure 18.

Positive Negative All recovery

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
di

t r
at

io

Figure 18. Boxplot of the edit ratio during recovery time after a positive or negative interruption, compared
to the edit ratio overall.

To better understand the reasons of the difference between positive and negative interruptions,
we did an analysis of the common events during recovery time, depending on the nature of the
interruption. For this we created a new classification of events on a lower level that takes into
consideration what kind of activity is performed by the programmer. The new classification contains
the categories described in the Table XX and the frequency per minute of the more frequent event
on that category. In a similar manner to the first classification, we followed an iterative process
involving two of the authors to classify the events in these categories.

We calculated the weighted average of every event based on the frequency of execution during
the first phase of recovery time after a positive or negative interruption, and the percentage of users
that make use of that event (so that events that are used by very few users do not distort the results).
The weighted average was calculated as x̄ =

∑n
i=1 wixi/

∑n
i=1 wi, where xi is de frequency of

execution of the event i and wi is the percentage of users that execute the event. This balances
the average of execution for events used by a small number of users. For example, the event
copyLineDown is more frequent than the rename event, but the former is only used by 2.4% of
the users and the latest by 25.2% of them.

To get a baseline, the same frequency calculation was made for the entire dataset, without
distinction of the location of events in the session. We then compared the weighted average changes

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



24 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Table XX. New category of events.

category description frequency

high-nav High-level navigation through classes, windows and artifacts 9.1
file Management of files (saving, closing, opening, etc.) 8.9
edit-text Text edition events 8.1
debug Events executed during debugging sessions 3.3
text-nav Low-level text navigation 3.1
search Text or code search 0.6
find-replace Search and replacement of text or code entities 0.6
perspective Change of perspectives in Eclipse 0.5
control Source control events 0.4
refactoring Refactoring events 0.3
clean-build Events related to the build system (clean, build or run a project) 0.2

to have evidence of what kind of events are more often executed after a positive or a negative
interruption. Table XXI shows the results.

Table XXI. Weighted frequency of execution after positive or negative interruptions.

category positive negative all
Most common events after a positive interruption

edit-text 34.75 22.35 26.62
file 10.56 9.53 10.01
refactoring 1.29 0.84 1.01
perspective 0.38 0.30 0.35

Most common events after a negative interruption
high-nav 7.84 10.14 8.74
find-replace 1.26 1.47 1.11
debug 3.08 7.81 6.35
search 0.57 0.96 0.73
clean-build 0.42 0.62 0.56

Less common events after a positive or negative interruption
text-nav 14.20 12.89 16.13
control 1.21 1.75 1.82

After a positive interruption we can see that the more common activities are text edition,
refactoring, file management and, to a lesser extent, navigation through the text. On the other hand
the navigation around classes, find and replace, searches, debug, clean and build are actions more
common after a negative. The navigation in the code and control version activities are more common
after the Recovery Time.

We can conclude that after a positive interruption there are more assertive actions with a clear
intention like refactoring a class or saving all changes; activities related to program edition.
After a negative interruption there are more uncertainty and doubt judging by the activities
performed like debugging, searching for text or navigating around classes; activities related to
program comprehension. These categories of events agree with our previous hypothesis that positive
interruptions are related to information seeking [9, 35], while negative interruptions are related to
actual task switches where context needs to be rebuilt afterwards.

It is noticeable the relation between type of events. For example, it is natural to think that if there
are many debugging events there are also a lot of clean and build events, as they are necessary to
begin a debugging session and in most cases it is automatically performed by the IDE. There is also
a link between high level navigation and debugging because navigating into a method may take the
programmer to another class.

12. DISCUSSION

Comparison of the datasets Although they represent the same kind of information both Mylyn
and UDC datasets have some peculiarities that make them unique that we discuss here.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 25

The interaction data recorded by Mylyn is the basis for a recommendation tool, and is focused
on Java projects. On the other hand, the interaction data recorded by the UDC is only used for
diagnostic purposes, and is much more generic. For instance, the UDC has interaction data from
Java, Web, and mobile developers, and more specific roles like back-end developers, testers and
C++ or PHP users.

As the UDC was installed by default on all the Eclipse distributions from 2008 to 2010, the size
of the information collected is several orders of magnitude larger than the Mylyn dataset, which was
collected since then on a few dozen of developers who installed it voluntarily and contributed to the
Mylyn and Eclipse projects. This makes of the UDC data a better source of information to analyze
phenomenons on a wide scale.

The UDC and Mylyn also offer different levels of details: while the UDC records fine-grained
type of events, Mylyn records the entity that were affected by the events (Java packages, classes,
and methods). On the other hand, Mylyn has essentially two types of events of interest (edits and
selections), while the UDC has no information about the entities that were affected.

Comparison of the results We conducted a replication of the results of RQ1, RQ2 and RQ3 with
the additional dataset. If we noted similarities in the observations across both datasets, it is important
to discuss the differences in the size of the effects that were observed: the overall effects observed
were larger for the Mylyn dataset than for the UDC dataset.

The fact that all the observations go in the same direction lends us more confidence in our
conclusions. However, the reduced magnitude of the effect gave us pause. We can think of several
reasons for this behavior:

• The models are not directly comparable: Mylyn records edition and selection events directly,
while the UDC records a broader array of user activity. As such, our classification of UDC
events as edits, selections, or other, does not exactly replicate the way the Mylyn model
operates. It is possible that some events are more frequent in the UDC than in Mylyn,
for instance. We debated several ways to fine-tune our model of the UDC data, including
weighting some UDC events more than others, but ultimately decided against doing so. As
the models are not directly comparable, we primarily focus on intra-model comparisons.

• The (comparatively) small size of the Mylyn dataset may have favored outliers: since there is
data from dozens of developers only in the Mylyn dataset, a few outliers may have affected
the results. The UDC model is however based on 1,000 UDC users.

• Non-java users in the UDC: A small portion of UDC users were not primarily programming
in Java; some were using C++, PHP, web frameworks, or a report generation plugin known as
BIRT. These may have had an impact on the results.

The effects of multitasking Certainly, work fragmentation is not a synonym of lower productivity
rates. Multitasking can allow the worker to use dead periods of the project where there is a
decrease of the required activities and do tasks related to other projects, increasing the efficiency
and productivity [41]. At some level, switching between tasks can provide the needed arousal and
alertness to improve the productivity, but higher levels of multitasking can be detrimental and cause
a negative effect. Moreover, as the number of switches between tasks increases, the effectiveness
degrades in a linear fashion [42].

Furthermore, the results indicate a clear diminish of productivity when facing interruptions, but
with a high number of interruptions the change of productivity stops decreasing. This could be
reflecting what observational studies tell us about multitasking, which is that with higher number
of interruptions (increased multitasking) the productivity stops being affected and might increase.
The latter actually occurs in the results but the effect is too subtle. We intend to reflect the effects of
work fragmentation by classifying the interruptions into negative or positive, and in the results we
can see a difference in productivity and the kind of activities performed.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



26 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

Comparison with observational studies Our results and theoretical foundations are based on
observational studies performed on information workers’ development environments [5, 6, 35, 10].
These findings helped us understand the response to work fragmentation according to the recorded
user activity, and it was possible to made a relation between the user’s data and the phenomena that
occur on the working places describe on the studies.

Observing the user actvivity throughout a working session might be the best way to understand the
effect of events that occur on the working place, like work fragmentation. However, implementing
a study of this kind can be very expensive, for the time and material need. For example, to have the
same amount of information we have with UDC it would require to monitor the user activity for a
year or two and have a record of all the activities performed, like the number and duration of the
interruptions. Moreover, this studies require on-site studies, exhaustive monitoring and interviews,
which in some cases could be expensive or difficult to perform.

On the other hand, analyzing interaction data is a convenient way to understand almost the same
kind of events on the environment. Usage data describes the history of activities of the programmer
and it is possible to analyze the effect of events, as shown in this work. The problem with this
is the lack of context of the events and, in our case, the lack of information of the programmers
to enrich the results. Hence, we can not guarantee that an interruption was an actual interruption
of work; due to the definition of an interruption, it could also be a change to a Web design tool,
server configuration tool or the browser, which are common activities in Web developers and not
necessarily detrimental to productivity.

The best might be to find a middle ground between observational activities and analysis of usage
data. It is helpful to enhance the results using information provided directly by the participants via
interviews, like in [14].

13. THREATS TO VALIDITY

The main threats to the validity of our study are construct validity threats due to the operational
nature of the data recorded by Mylyn and the UDC [1]. Most of them are mentioned above but
recalled here for convenience.

For the Mylyn dataset, the main threat to validity is due to the exclusion of development session
with aggregated information. We deemed that disaggregating the data as was done in other work [17]
was not appropriate as we do not know the exact distribution of aggregated events in time, which
is very important for this study. We thus elected to filter out part of the data. We have not found
evidence of bias due to this but it may still be present.

Another threat comes from the metrics we use. Our choices are limited by the data recorded
by Mylyn. We believe our three indicator (edits per minute, selections per minute, and edit ratio)
provide a reasonable measure of productivity (especially with the addition of edit ratio, used in
other work [13]). However we can not exclude that other indicators of productivity (such as actual
changes [43]) may yield different results.

We defined several thresholds empirically: 8 hours of inactivity to split a session in sub-sessions,
30 minutes as the minimum duration for a session, 3 minutes for the minimum duration of a
interruption and ≥ 12 minutes for prolonged interruptions. We also tested with other close values
and obtained similar results. However, a large variation of these thresholds might significantly alter
the results.

We acknowledge that our separation of sessions in short and long interruptions is not perfect, as
it is based on the presence of at least one long interruption, and nothing more. Other factors present
in the group of sessions with at least one long interruption may contribute to the observed effect (for
instance, these sessions may also have more interruptions overall).

The study has threats to its statistical conclusion. In particular, correlation does not necessarily
implies causation: the drop in productivity may not be due to work fragmentation but to other factors
(such as task difficulty). The fact that our results agree with the existing literature does help in
this respect. We note that our local analysis uncovered two well-defined patterns around gaps of
inactivity: ones that we hypothesize are actual interruptions (negative effect post-interruptions), and

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 27

the ones that we hypothesize are more likely information-seeking activities (positive effect post-
interruption). This result points to two different effects and is in need of further study; the additional
evidence uncovered in the UDC does support this hypothesis, since different activities appear to take
place in both types of interruptions. As stated in the introduction, we were careful not to conclude
that every gap of activity is an actual interruption.

We used Cohen’s d, a parametric effect size measure, as it has defined thresholds allowing easier
interpretation of the results. Other effect size measures such as the common language effect size
[44] or A12 [45] may slightly alter the discussion.

This study also has threats to external validity. The gathered data corresponds to a limited group
of programmers, which use both Mylyn and Eclipse regularly. The set of evolution tasks considered
is a subset of the ones present on the Eclipse bug report website. It may be biased one way or
another. One source of bias is the impact of Mylyn itself: Mylyn has been shown to facilitate task
switching and to increase the edit ratio of its users compared to non-users. In the context of this
study, we hypothesize that Mylyn could reduce the effect of work fragmentation: in other words,
the observed effects may be larger for non-users. Additional studies may alleviate these threats and
confirm or infirm the previous hypothesis. Our additional dataset (the UDC) comes from a much
larger and more varied sample of users, and does show similar behavior, which raises confidence in
our results.

The same threats about the metrics, implications and statistical conclusions apply on the results
observed with the UDC. Additionally, our classification of events is a possible threat, as it was based
on our own criteria of what should be an Edition and Selection event. We took this liberty due to
the lack of an actual pre-classification, and on the other hand the extra information available on
UDC events compared to Mylyn. We took special care when establishing the classification, using
an iterative process involving two authors of this paper. We also ran tests of what kind of data was
recorded for specific usage scenarios of the IDE in order to better understand the nature of the
dataset when particular events were unclear.

The workbench activation and deactivation events were a particular issue, for they can be
executed under many circumstances. We performed live test to understand how these events work
and gain confidence about their precise behavior. For instance, we found that they were reliable
markers of when the user leaves and returns to Eclipse—and we used this fact to accurately detect
interruptions—but we had more uncertainty on other scenarios. Therefore, we decided not count
them as “system” events, and thus only use them to define an interruption or the end of a session.

14. CONCLUSIONS AND FUTURE WORK

This paper presented an empirical study on the prevalence of work fragmentation in software
evolution tasks, and its relationship to developer productivity. The study was based on the Mylyn
dataset of software evolution tasks, where work fragmentation is indicated by gaps of activity
(interruptions) in the IDE, and productivity is measured in terms of the number of edits, selections,
and the edit ratio. It was then complemented with data coming from the Eclipse Usage Data
Collector (UDC) dataset, which offered us to complement our previous findings by analysing a
larger sample of users, with a finer-grained classification of events.

We analyzed several thousands software evolution tasks, originating from several dozens of
developers. Our global analysis found an inverse relationship between number and duration of
interruptions and all three of our productivity indicators. These findings agree with the literature
on information workers and software developers.

A subsequent local analysis around interruptions confirmed these results as the activity around
interruptions was found to be lower than average. This analysis also found two well-defined patterns
around interruptions: interruptions yielding a negative effects (consistent with a real-life interruption
involving an expensive context switch), and interruptions with positive effects (consistent with
information-seeking behavior). Further studies are necessary to expand on these findings.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



28 H. SANCHEZ, R. ROBBES, L. CRUZ, V. GONZALEZ

With the Usage Data Collector dataset, we replicated our previous study to compare the results
obtained with Mylyn. We found the same observations on the relationship of interruptions and
productivity; even though the observed effects are less marked, we reach similar conclusions.

The UDC data also allowed us to extend our study with two additional research questions related
to the recovery time after an interruption, and the two patterns of interruptions we observed.

We first analyzed the Recovery Time in detail, finding a higher productivity when the interruption
is positive and we identified a positive evolution of the metrics as the programmer advances through
this stage, reaching a peak of productivity between the last minutes of the Recovery Time and 10
minutes before the next interruption happens.

In addition, we found that after a positive interruption the most common events during the first
minutes of the Recovery Time are those with an assertive intention such as edition, refactoring
and saving files. In contrast, after a negative interruption the most common events are debugging,
searching and navigation around classes, which tell us about a doubtful and uncertain behavior
from the programmer. These findings support out hypotheses that positive interruptions are due
to information-seeking, while negative interruptions are due to context rebuilding after an actual
interruption.

REFERENCES

1. A. Mockus, “Is mining software repositories data science? (keynote),” in Proceedings of MSR 2014, 2014, p. 1.
2. L. Zou and M. W. Godfrey, “An industrial case study of program artifacts viewed during maintenance tasks,” in

Proceedings of WCRE 2006, 2006, pp. 71–82.
3. V. M. González and G. Mark, “”constant, constant, multi-tasking craziness”: managing multiple working spheres,”

in Proceedings of CHI 2004, 2004, pp. 113–120.
4. G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work: more speed and stress,” in Proceedings of CHI

2008, 2008, pp. 107–110.
5. G. Mark, V. M. González, and J. Harris, “No task left behind?: examining the nature of fragmented work,” in

Proceedings of CHI 2005, 2005, pp. 321–330.
6. S. T. Iqbal and E. Horvitz, “Disruption and recovery of computing tasks: field study, analysis, and directions,” in

Proceedings of CHI 2007, 2007, pp. 677–686.
7. M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task switching and interruptions,” in Proceedings of

CHI 2004, 2004, pp. 175–182.
8. A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software development teams,” in Proceedings

of ICSE 2007, 2007, pp. 344–353.
9. C. Parnin and S. Rugaber, “Resumption strategies for interrupted programming tasks,” Software Quality Journal,

vol. 19, no. 1, pp. 5–34, 2011.
10. C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted programming tasks,” in Proceedings of CHI

2010, 2010, pp. 93–102.
11. W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehension of program comprehension,” ACM Trans.

Softw. Eng. Methodol., vol. 23, no. 4, p. 31, 2014.
12. A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Software developers’ perceptions of productivity,” in

Proceedings of FSE 2014, 2014.
13. M. Kersten and G. C. Murphy, “Using task context to improve programmer productivity,” in Proceedings of FSE

2006, 2006, pp. 1–11.
14. T. Fritz, G. C. Murphy, and E. Hill, “Does a programmer’s activity indicate knowledge of code?” in Proceedings of

the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering. ACM, 2007, pp. 341–350.

15. T. Fritz, J. Ou, G. C. Murphy, and E. R. Murphy-Hill, “A degree-of-knowledge model to capture source code
familiarity,” in Proceedings of ICSE 2010, 2010, pp. 385–394.

16. G. C. Murphy, M. Kersten, and L. Findlater, “How Are Java Software Developers Using the Eclipse IDE?” IEEE
Software, vol. 23, pp. 76–83, 2006.

17. A. T. T. Ying and M. P. Robillard, “The Influence of the Task on Programmer Behaviour,” in Proceedings of ICPC
2011, 2011, pp. 31–40.

18. T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, “Micro interaction metrics for defect prediction,” in Proceedings of
ESEC/FSE 2011. ACM, 2011, pp. 311–321.

19. R. Robbes and D. Röthlisberger, “Using developer interaction data to compare expertise metrics,” in Proceedings
of MSR 2013, ser. MSR ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 297–300.

20. Z. Soh, F. Khomh, Y. Guéhéneuc, G. Antoniol, and B. Adams, “On the effect of program exploration on
maintenance tasks,” in Proceedings of WCRE 2013, 2013, pp. 391–400.

21. Z. Soh, F. Khomh, Y. Guéhéneuc, and G. Antoniol, “Towards understanding how developers spend their effort
during maintenance activities,” in Proceedings of WCRE 2013, 2013, pp. 152–161.

22. F. Bantelay, M. B. Zanjani, and H. H. Kagdi, “Comparing and combining evolutionary couplings from interactions
and commits,” in Proceedings of WCRE 2013, 2013, pp. 311–320.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr



WORK FRAGMENTATION IN DEVELOPER INTERACTION DATA 29

23. M. B. Zanjani, G. Swartzendruber, and H. H. Kagdi, “Impact analysis of change requests on source code based on
interaction and commit histories,” in Proceedings of MSR 2014, 2014, pp. 162–171.

24. E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how we know it,” Software Engineering, IEEE
Transactions on, vol. 38, no. 1, pp. 5–18, 2012.

25. H. Liu, Y. Gao, and Z. Niu, “An initial study on refactoring tactics,” in Computer Software and Applications
Conference (COMPSAC), 2012 IEEE 36th Annual. IEEE, 2012, pp. 213–218.

26. C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect energy usage?” in Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ACM, 2014, p. 36.

27. E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software developers’ fluency by recommending
development environment commands,” in Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. ACM, 2012, p. 42.

28. Y. Yoon and B. A. Myers, “Capturing and analyzing low-level events from the code editor,” in Proceedings of the
3rd ACM SIGPLAN workshop on Evaluation and usability of programming languages and tools. ACM, 2011, pp.
25–30.

29. G. Khodabandelou, “Mining intentional process models,” Ph.D. dissertation, University of Paris-Est, 2014.
30. W. Maalej, T. Fritz, and R. Robbes, “Collecting and processing interaction data for recommendation systems,” in

Recommendation Systems in Software Engineering, 2014, pp. 173–197.
31. U. M. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases,” Ai

Magazine, vol. 17, pp. 37–54, 1996.
32. R. Robbes and M. Lanza, “Characterizing and understanding development sessions,” in Proceedings of ICPC 2007,

2007, pp. 155–166.
33. V. Kaptelinin and B. A. Nardi, “Acting with technology: Activity theory and interaction design,” First Monday,

vol. 12, no. 4, 2007. [Online]. Available: http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/
1772

34. J. Cohen, “The earth is round (p < 0.5),” American Psychologist, vol. 49, no. 12, pp. 997–1003, 1994.
35. T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: a study of developer work habits,” in

Proceedings of the 28th international conference on Software engineering. ACM, 2006, pp. 492–501.
36. A. Struyf, M. Hubert, and P. Rousseeuw, “Clustering in an object-oriented environment,” Journal of Statistical

Software, vol. 1, no. 4, pp. 1–30, 2 1997.
37. P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of

computational and applied mathematics, vol. 20, pp. 53–65, 1987.
38. E. J. Keogh, “Exact indexing of dynamic time warping,” Knowledge and Information Systems, vol. 7, pp. 358–386,

2005.
39. W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. R. Nair, and D. Shepherd, Analyzing Software

Data. Morgan Kaufmann, 2015, ch. A Practical Guide to Analyzing IDE Usage Data.
40. R. Van Solingen, E. Berghout, and F. Van Latum, “Interrupts: just a minute never is,” IEEE software, no. 5, pp.

97–103, 1998.
41. S. Aral, E. Brynjolfsson, and M. Van Alstyne, “Information, technology, and information worker productivity,”

Information Systems Research, vol. 23, no. 3-part-2, pp. 849–867, 2012.
42. R. F. Adler and R. Benbunan-Fich, “Juggling on a high wire: Multitasking effects on performance,” International

Journal of Human-Computer Studies, vol. 70, no. 2, pp. 156–168, 2012.
43. R. Robbes and M. Lanza, “Improving code completion with program history,” Autom. Softw. Eng., vol. 17, no. 2,

pp. 181–212, 2010.
44. K. O. McGraw and S. P. Wong, “A Common Language Effect Size Statistic,” Psychological Bulletin, vol. 111, pp.

361–365, 1992.
45. R. Robbes, D. Röthlisberger, and É. Tanter, “Extensions during software evolution: Do objects meet their promise?”

in Proceedings of ECOOP 2012, 2012, pp. 28–52.

Copyright c© 2016 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2016)
Prepared using smrauth.cls DOI: 10.1002/smr

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1772
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1772

	Introduction
	Related Work
	Empirical Studies of Work Fragmentation
	Empirical Studies on Mylyn Data
	Empirical Studies with Usage Data Collector

	Mylyn Data Description
	Mylyn Data
	Interaction History Format
	Special Characteristics of Mylyn Data

	Preview Phases for Knowledge Discovery
	Selection
	Preprocessing
	Transformation
	Metrics Used in This Study

	RQ1: Relationship between Interruptions and Productivity
	Relation between Interruptions, and Edits and Selections
	Effect on the Edit Ratio

	RQ2: Relationship between Duration of Interruptions and Productivity
	RQ3: Local Relationships between Interruptions and Productivity
	Generic Sessions
	Local Analysis
	Patterns of Interruptions

	Eclipse Usage Data Collector Data Description
	The Eclipse UDC
	Selection and transformation
	Classification of events

	Results of RQ1, RQ2, and RQ3 on UDC
	RQ1: Relationship between interruptions and productivity
	RQ2: Relationship between duration of interruptions and productivity
	RQ3: Local relationships between interruptions and productivity

	RQ4: Recovery Time after an Interruption
	Edition and selections during recovery time

	RQ5: Common events during Recovery Time
	Discussion
	Threats to Validity
	Conclusions and Future Work

