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Abstract—Many software engineering studies or tasks rely on
categorizing software engineering artifacts. In practice, this is
done either by defining simple but often imprecise heuristics, or
by manual labelling of the artifacts. Unfortunately, errors in these
categorizations impact the tasks that rely on them. To improve the
precision of these categorizations, we propose to gather heuristics
in a collaborative heuristic repository, to which researchers can
contribute a large amount of diverse heuristics for a variety
of tasks on a variety of SE artifacts. These heuristics are then
leveraged by state-of-the-art weak supervision techniques to train
high-quality classifiers, thus improving the categorizations. We
present an initial version of the heuristic repository, which we
applied to the concrete task of commit classification.

I. INTRODUCTION

Mining Software Repositories (MSR) uses data from soft-
ware repositories (e.g., GitHub, Stack Overflow) to perform
empirical studies and provide actionable advice to developers
and managers, or to train machine learning models to provide
recommendations. MSR has seen very high interest from the
research community due to the availability of open-source
repositories and applications in the industry. Use cases include
change recommendation, bug triage, bug localisation, defect
prediction, or program repair, among many others.

For many of these tasks, an important preprocessing step is
to select the subset of artifacts of interests. To take a single
example, many studies are interested in changes to software
systems that are correcting defects. These bug fixes are useful
for tasks such as empirical studies of their characteristics,
defect prediction, or program repair, to name a few. Unfor-
tunately, selecting artifacts is not a trivial task. The data used
in MSR studies is often very noisy. The primary reason for
this is that developers use tools that happen to generate useful
data for software researchers as a side effect; developers care
about getting the job done, not easing the life of researchers.

For source code changes for instance, they are not, for the
most part, explicitly classified as bug fixes or not. In practice,
researchers have to develop heuristics to identify bug fixes,
which often consist in searching for a set of keywords in
commit messages. These heuristics are necessarily limited. A
manual validation of such a heuristic found that it had a 36%
false positive rate, and an 11% false negative rate [1]. This is
without considering additional data quality issues in commit
messages, such as the fact that up to 14% percent of commit

messages can be empty [2], or that commit messages may be
in other languages than English, cases in which a keyword-
based heuristic would fail to produce results. Moreover, up to
15% of bug fixes can be tangled [3], or contain other unrelated
changes such as non-essential changes [4], or refactorings [5].
The alternative to using heuristics is manual labelling of SE
artifacts, which does not scale beyond a few hundreds or
thousands of artifacts without significant effort [6].

Such imprecisions in preprocessing steps can compound
each other. The SZZ algorithm is a heuristic that takes as
input a bug fixing commit (BFC) and uses the change history
to find the commit that introduced the bug, or bug-introducing
commit (BIC) [7]. A precise algorithm to identify BICs from a
data corpus would be very valuable to train machine learning
models to precisely classify changes as clean or defective [8],
which would be very useful during code review. Unfortunately,
SZZ is affected by many of the issues described above as it
builds on previous heuristics; a manual investigation reported
the F-score of SZZ at 42 to 44% on two datasets [9]; this
impacts change-based defect prediction models [10].

While we focus on bug fix identification as a single, running
example, this problem is more general, spanning any classifi-
cation of interest (e.g., tangled commits [3]), on any artifact
of interest (e.g., bug reports [11], Stack Overflow [12]), for
which simplistic heuristics are used to categorize the artifacts.
We argue that using heuristics is not the problem, rather it
is using not enough of them, for lack of a way to effectively
gather, integrate, and combine them.

Instead, we propose a two-pronged approach: 1) build a
collaborative, open repository of heuristics, in order to gather
an exhaustive registry of SE artifact types, their categorization
tasks, and associated heuristics and 2) use state of the art tech-
niques to combine these heuristics, in order to increase their
reliability when categorizing SE artifacts in a categorization
task. We instantiated this approach for the task of classifying
commits as bug fixing or not, using a variety of heuristics
to do so. A preliminary evaluation shows that the approach
already exceeds the accuracy of the baseline heuristic; we
expect the accuracy to improve further by adding additional
heuristics, and have plans to apply the approach to additional
tasks. Thus, we invite researchers to define new tasks and
contribute heuristics to our heuristic repository.

ar
X

iv
:2

10
3.

01
72

2v
1 

 [
cs

.S
E

] 
 2

 M
ar

 2
02

1



II. COMBINING HEURISTICS WITH SNORKEL

Snorkel in a nutshell. We use the Snorkel framework [13]
to define and combine heuristics, as a form of weak supervi-
sion. Weak supervision replaces small, hand-annotated datasets
with larger but noisier datasets annotated by heuristics.

This is intuitively what MSR researchers do now, except
that Snorkel supports combining a large number of varied
heuristics, instead of being limited to a small number of
keywords. Snorkel represents heuristics as labelling functions
[13], which are short programs that can annotate data with
noisy labels. Apart from simple pattern matching, e.g. looking
for keywords in a commit message [14], labelling functions
can apply more complex logic to single data points (e.g. known
bug patterns [15]). Furthermore, labelling functions can use
information sources other than the artifact itself:

• external data (e.g., a bug report linked to a commit);
• an existing hand-annotated dataset;
• an existing low-quality classifier for the task.
These labelling functions have several important character-

istics: 1) they can have limited coverage on the data, and
can abstain to annotate a given piece of data (e.g., label a
commit message as BUG-FIXING if it contains a keyword,
but do not necessarily annotate it as NOT-BUG-FIXING if it
does not), 2) since they are heuristics, they are assumed to be
imperfect and noisy, 3) they can be correlated (e.g., keywords
bug and fix in “fix bug #1234”) or contradict each other
(e.g., keywords fix and typo in “fix a small typo”).

Snorkel then leverages the labelling functions to learn a
generative model of the labels, which it can use to label
previously unlabelled data with probabilistic labels. The gen-
erative model learns which labelling functions are correlated,
or conflicting, and learns to estimate their accuracy; in short, it
learns to optimally combine the heuristics to label data. This
is an unsupervised process that does not require previously
labelled data as ground truth. This label model can then
annotate datasets with probabilistic labels (e.g., the commit
“fix bug #1234” is 90% likely to be BUG-FIXING, while
“fix a small typo” is 70% likely to be NOT-BUG-FIXING).
The label model is more accurate than simply modelling each
labelling function as a “vote“ and picking the majority class.
Snorkel gracefully handles noise: while less noisy heuristics
are obviously better, the only requirement for a heuristic to
improve performance is to perform better than chance [13].

Training classifiers. In essence, the label model acts as
a kind of classifier. However, it can also be used to label
data for a more powerful classifier such as a deep neural
network. These classifiers significantly outperform classifiers
trained on a smaller amount of hand labelled data; they usually
outperform the label model itself, as they can learn from
additional correlations in the data, and generalize to situations
not covered by the heuristics. Note that the heuristics can
leverage external knowledge to label the data, even if this
data will be inaccessible to the end classifier. The higher
quality of the resulting labelled data can still end up in
improved performance. A case study at Google describes such

as scenario [16] involving data sources that are not usable in
production (e.g. data that is too slow or too sensitive to access).

Task redefinition. Finally, a key advantage of Snorkel’s
approach, with respect to hand-labelled data, is that it makes
it much easier to redefine a task if needed. For instance, if a
binary classification task changes to 3-way classification, it is
much easier to add or redefine labelling functions, rather than
relabelling the entire dataset from scratch.

III. BOHR: THE BIG OLD HEURISTIC REPOSITORY

While Snorkel on its own is ideal for a small team working
on a single task, we argue that the data quality issues facing
the MSR community call for something more. The MSR com-
munity is a large group of researchers, working on a very wide
variety of tasks spanning from a set of possible SE artifacts.
While each of these tasks can be addressed in isolation, this
is a missed opportunity. For instance, several tasks rely on
distinguishing bug fixes, refactorings, or tangled changes from
other commits; all would benefit from a consolidated effort at
improving this preprocessing step.

The repository. To facilitate the sharing and reuse of
knowledge necessary for the community to progress on these
tasks, we are building BOHR (the “Big Old Heuristic Repos-
itory”), a repository of SE artifact labelling heuristics and
associated classification tasks. The goals of BOHR are to:
1) increase the visibility of heuristics by grouping them in a
single location; 2) ease their definition and use by abstracting
away their application to SE artifacts; 3) ease the reuse of
heuristics for new tasks and artifacts, 4) ease contributions by
lowering barriers to contribute to the repository; and 5) ease
the generation of label models and datasets to train an end
classifier, and ensure their reproducibility. We are in the
process of instantiating this vision: for now, BOHR supports
two types of software engineering artifacts, commits and issue
reports, and we have applied it to commit classification tasks.

Defining heuristics. BOHR facilitates the definition and
application of heuristics to SE artifacts, by converting them to
homogeneous objects with immediately accessible structure.
Heuristics take these objects as input, and thus can easily
hone in on properties of interest (Listing 1). Moreover, BOHR
provides links between different types of artifacts, e.g. a
heuristic applied to a commit can access the bug report linked
to it. Common types of heuristics are abstracted away: e.g.,
adding a keyword only requires modifying a keyword list in a
text file; a heuristic that relies on a common external tool can
use its output without knowing how to run the tool.

@Heuristic(Commit)
def bugless_if_many_files_changed(commit: Commit):

return !BugFix if len(commit.files)>6 else None

Listing 1. Example of heuristic applied to a commit artifact

Contributing heuristics. To lower barriers to entry,
BOHR is hosted on github (https://github.com/
giganticode/bohr), and is thus accessible to the research
community at large. Further, BOHR’s repository also makes it
easy for researchers to contribute new heuristics. A researcher

https://github.com/giganticode/bohr
https://github.com/giganticode/bohr


Fig. 1. Pull request example

that wants to contribute a new heuristic can simply fork the
repository, implement the heuristic, and submit a pull request
(PR). The PR will trigger a bot that re-runs the label model and
posts informative metrics on the label model’s performance
as comments to the PR, as shown in Figure 1. For the
simplest cases (e.g., translating keywords in languages other
than English to increase the coverage to commit messages in
other languages), it might not even be necessary to install
anything before contributing. To make sure that heuristics
developed for a specific dataset can be reused and generalize
well for other datasets, metrics are calculated on a stand-
alone test-set(s). The PR bot provides insights into the newly
developed heuristic, such as its coverage of the dataset, how
much it overlaps and conflicts with other heuristics, and what
is its individual contribution to the overall increase of accuracy.

Once a label model is created for a given task, BOHR can
facilitate the generation of the final dataset (e.g., selecting the
attributes of interest to include in the dataset), which can then
be used as-is, or passed to an end classifier for training.

Defining tasks and task variants. While Snorkel labelling
functions directly return a label for the task at hand, we are
currently adding an additional layer to separate heuristics from
concrete tasks. This will allow to ease the definition of new
tasks, by reusing existing heuristics. Another use case for this
is the definition of task variants: for some tasks, the inclusion
criteria may vary (e.g., some works do not consider bug fixes
in test code as bugs [17]). We consider this a significant
advantage of the approach: instead of implicitly encoding these
decisions in the dataset, they will be explicitly encoded as
heuristics. Researchers will be able to decide whether or not
to include a specific decision in the set of heuristics they use
for a task (e.g., they can choose to consider fixes to test code
as bug fixes). This benefit is in addition to the effort saved by
avoiding to relabel a dataset when the task definition changes.

TABLE I
ACCURACY, MACRO F1 AND PER-CLASS PRECISION AND RECALL FOR

DIFFERENT MODELS AND DATASETS.

Dataset Model Acc. F1 Precision Recall
bugless bug bugless bug

L
ev

in
[2

0] Tufano et al. 0.651 0.557 0.621 0.902 0.982 0.220
GitCProc 0.764 0.748 0.741 0.813 0.896 0.592
Label Model 0.803 0.798 0.815 0.786 0.843 0.750
Transformer 0.825 0.816 0.796 0.882 0.929 0.690

B
er

ge
r

[1
] Tufano et al. 0.720 0.629 0.699 0.857 0.970 0.300

GitCProc 0.787 0.773 0.835 0.708 0.821 0.729
Label Model 0.773 0.769 0.891 0.650 0.728 0.850
Transformer 0.800 0.790 0.860 0.712 0.813 0.779

H
er

zi
g

[1
1] Tufano et al. 0.589 0.531 0.543 0.877 0.966 0.232

GitCProc 0.654 0.634 0.594 0.835 0.915 0.407
Label Model 0.720 0.719 0.677 0.779 0.810 0.635
Transformer 0.708 0.700 0.645 0.838 0.890 0.535

IV. EXAMPLE: COMMIT CLASSIFICATION

As a first task, we defined a commit classification
task with BOHR. We classify whether commits are bug
fixes (BUG-FIXING class), or other types of commits
(NOT-BUG-FIXING class). This classification is very often
done using ad-hoc, simple keyword-based heuristics, as is the
case in several studies [8], [18], [15], [19]. These heuristics
look for keywords indicating bugs, and assume that commit
messages not matching any keyword are not bug fixes.

Heuristics used. In this first task, we principally employ
keyword-based heuristics as well, reserving an investigation
of other heuristic sources for future work. In contrast to
previous work, however, our heuristics cover a much broader
set of keywords (several dozens), which cover both classes.
Our heuristics also leverage Snorkel’s ability to use external
resources for labelling, that an end classifier may not have
access to. In particular, we keep track of links between
commits and issue reports, and we also define heuristics that
look for keywords in issue labels and issue contents. Since
less than 10% of commits have such links in practice, relying
on issues in an end classifier would be problematic.

Datasets. To build a label model and a end classifier, we
build a dataset of 200 000 commits gathered from Github via
the Github API. Our dataset has 68 000 commits for which
we have a link to an issue; the remaining commits do not
have such links, so that both type of commits are represented
in the dataset. To evaluate the accuracy of our label model
and end classifier for commit classification, we use three
existing, hand-labelled datasets as test sets, shared by three
different studies [11], [20], [1]. Of note, Levin et al. also train
a classifier [20], however, we do not compare to it directly
since they use cross-validation on their hand-labelled dataset
for training and validation, while we use it as an unseen test
set. The dataset of Herzig and Zeller is a dataset of issue
reports that was manually classified, rather than commits; to
use it as a test set, we searched for all the commits that linked
to these issue reports. We use these commits, not the original
issue reports, as our test set.



Training a label model. We trained our label model on
200 000 commits, which took 30 minutes on a dedicated
machine. The label model is able to output labels to roughly
80% of the commits. This is because this label model is still
limited: it only looks at keywords in the commit message, issue
labels, and issue contents. Up to 40 000 commit messages do
not match any keywords, showing that there is a margin for
improvement by adding additional sources of heuristics, such
as heuristics that look at source code changes in addition to
the commit message, or even additional keywords: anecdotally,
we also see commits that are in languages other than English
in the training set. On the test datasets, the label model also
abstains to annotate between 10 and 20% of the time; and
when it does, we assign the NOT-BUG-FIXING label.

Training an end classifier. We also train an end classifier
by fine-tuning a 6-layer Transformer [21] deep neural network,
with an open vocabulary [22]. The model was pre-trained
using the RoBERTa training regime [23] on Stack Overflow
comments, so that its initial model weights are adapted to
the Software Engineering domain [6]. We then fine-tuned
as a classifier on the 160 000 commit messages that the
Label Model could label. Unlike the label model, the trained
classifier never abstains.

Baseline. As baseline for comparison, we use heuristics
that were used in the literature. GitCProc [14] is a tool
that was used in several studies, such as the programming
language study of Ray et al.; it matches 17 keywords to the
BUG-FIXING class. Tufano et al. [19] used another heuristic,
using only 6 keywords to precisely select bug fixes only.

Results. Table IV shows the performance of the two base-
lines, as well as the label model and the Transformer end
classifier. We report accuracy and F-measure, as well as pre-
cision and recall for each tasks. We can see that the heuristic
used in Tufano et al. has consistently the highest precision
in identifying bug fixes—as intended, but it also has a very
low recall; its uneven performance cause it to consistently
score low in terms of F1. On the Levin and Herzig datasets,
there is a gap between the second heuristic, GitCProc, and our
two approaches (the Label Model and the Transformer). On
the Berger dataset, the Transformer is performing best, with
GitCProc following, and the Label Model a very close third;
note that this dataset is the smallest of the three. On two out of
three datasets, the Transformer outperforms the Label Model,
which is promising for the future; we expect that a Transformer
trained on change data in addition to commit messages will
perform better still, particularly since the LabelModel trained
on commit messages abstains 10 to 20% of the time.

Potential for task variants. We also examined the perfor-
mance of individual labelling functions on the three datasets.
We saw that several labelling functions had ample variations
in performance on the datasets. Relatively common terms
such as test, patch, version, or close were either
positively or negatively associated with a commit being a bug
fix, depending on the dataset. This may indicate that, when
labelling each dataset, different researchers had a somewhat
different definition of what a bug is. While this complicates the

definition of a general classifier, this also shows the potential
of an approach making heuristics explicit: if the definition of
the task changes, it is much easier to change heuristics, than
to relabel an entire dataset.

V. CONCLUSIONS AND FUTURE WORK

We presented BOHR, a repository in which researchers can
contribute heuristics to label SE data. BOHR uses state of the
art weak supervision techniques to combine these heuristics
to train classifiers operating on SE data. We have shown the
potential of the approach, by applying initial heuristics to the
task of commit classification. We presented very early results,
and expect significant work ahead, along a few lines of work.

Improving binary commit classification. There are several
ways to further improve the binary commit classification task.
We plan to add additional heuristics that look at other data
sources, such as actual change patterns, to create an improved
labelling model. We also plan to define models that look at
data beyond the commit message, such as change metrics or
actual source code changes [24]. A further way to improve
performance will also be to scale up the end model, by training
a larger capacity model on a larger dataset. Another possible
improvement is to develop classifiers that rely less on the
commit message and principally—or exclusively—consider
the changes instead: many commits have messages that either
are empty, uninformative, or in other languages than English.

Extending commit classification. We will continue our
initial experiments with variants of the commit classification
task. In particular, there are several valuable types of commits
that are not specifically classified. These include several types
of large commits [25], commits that contain tangled changes
[3], or refactorings [5], in addition to commits that are simply
adding new features. We will develop new heuristics to detect
these kinds of commits, based on commit messages, issue
contents, and source code changes, thus developing several
variants of the commit classification task.

Extending BOHR and involving the community. Devel-
oping new classification tasks and variants will be crucial
to improve the useability and extensibility of BOHR. In the
process, we will also extend BOHR to support more types of
SE artifacts. This will allow to use BOHR to categorize issues,
discussions, documentation, app reviews, or entire projects, to
name a few. Given the amount of possible tasks and variants,
we will not be able to do this alone. We would thus like
to involve the community in this effort. We plan to make it
possible for other researchers to add new tasks easily, and call
on the community to do so.

VI. DATA AVAILABILITY AND AKNOWLEDGEMENTS

Information on how to access the code, heuristics,
and datasets used in this study is available at:
https://github.com/giganticode/bohr/wiki/
NIER-2021. This work was partially funded by the IDEALS
and ADVERB projects, funded by the Free University of
Bozen-Bolzano. Parts of the results of this work were
computed on the Vienna Scientific Cluster (VSC).
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[9] G. Rodrı́guez Pérez et al., “Towards an empirical model to identify when
bugs are introduced,” 2018.
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