
Open-Vocabulary Models for Source Code
(Extended Abstract)

Rafael-Michael Karampatsis
University of Edinburgh

Edinburgh, United Kingdom

Hlib Babii
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

Romain Robbes
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

Charles Sutton
Google AI, University of Edinburgh

and The Alan Turing Institute

Mountain View, CA, United States

Andrea Janes
Free University of Bozen-Bolzano

Bozen-Bolzano, Italy

ABSTRACT

Statistical language modeling techniques have successfully been

applied to large source code corpora, yielding a variety of new

software development tools, such as tools for code suggestion, im-

proving readability, and API migration. A major issue with these

techniques is that code introduces new vocabulary at a far higher

rate than natural language, as new identifier names proliferate.

Both large vocabularies and out-of-vocabulary issues severely af-

fect Neural Language Models (NLMs) of source code, degrading

their performance and rendering them unable to scale.

In this paper, we address this issue by: 1) studying how various

modelling choices impact the resulting vocabulary on a large-scale

corpus of 13,362 projects; 2) presenting an open vocabulary source

code NLM that can scale to such a corpus, 100 times larger than in

previous work, and outperforms the state of the art. To our knowl-

edge, this is the largest NLM for code that has been reported.

CCS CONCEPTS

• Software and its engineering→ Softwaremaintenance tools.

KEYWORDS

Naturalness of code, Neural Language Models, Byte-Pair Encoding

ACM Reference Format:

Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton,

and Andrea Janes. 2020. Open-Vocabulary Models for Source Code (Ex-

tended Abstract). In 42nd International Conference on Software Engineering

Companion (ICSE ’20 Companion), October 5–11, 2020, Seoul, Republic of Ko-

rea.ACM,NewYork, NY, USA, 2 pages. https://doi.org/10.1145/3377812.3390806

1 INTRODUCTION

Previous work makes use of the "naturalness" of software [4] to

build Language Models (LMs) that assist in a number of software

engineering tasks. When training an LM, one of the decisions to be

made is how to model vocabulary. The difference between natural

language and code is that developers are allowed to create arbitrary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390806

complex identifiers. This leads to a large and sparse vocabulary,

which makes it difficult to train an LM, in particular, a Neural LM

(NLM). First, such vocabulary contains a lot of infrequent tokens.

For each word in the vocabulary, an embedding, its continuous

multi-dimensional representation, is learned. Infrequent words are

rarely seen during the training, and therefore their embeddings are

not learned well [2]. Second, many tokens in the test set are out-

of-vocabulary (OOV), i.e. they are not present in the training set,

which makes it impossible to predict them. Third, the dimensions

of the first layer of the neural network, formed by the embedding

vectors (embedding layer), and the output layer, which returns the

probabilities over the whole vocabulary, become extremely large

with the large vocabulary. As a result, the model is computation-

ally hard to train. Hellendoorn and Devanbu showed that Neural

Language models (which are a state-of-the-art approach in NLP)

are not able to scale beyond a few hundreds of projects [3].

2 VOCABULARY MODELING

To select a vocabulary modeling approach that makes it possible

to train a high-performing NLM that can scale, we evaluate differ-

ent modeling choices. Since having a small vocabulary, frequent

tokens, and keeping OOV low is so important, we primarily con-

sider these characteristics of the vocabulary during the evaluation.

For evaluation we use 13,362 projects. Our baseline is the vocab-

ulary of unsplit tokens, which is extremely large (11.6M tokens)

and greatly exceeds 75,000 tokens, which is considered in the pre-

vious work [3] to be a limit beyond which it is not possible to train

an NLM. There is a significant number of infrequent tokens (83% of

tokens in the vocabulary that occur only 1 to 10 times). The OOV

rate is also high (42%). To calculate the OOV rate, we build vocab-

ulary on a held-out set of 38 projects and count the percentage of

tokens in it which were not encountered in our large set.

We start exploring modeling choices by filtering different cate-

gories of tokens one by one: tokens containing non-ASCII charac-

ters, whitespace, comments, and string literals. Then we split com-

pound identifiers by conventions and encode case information in

special tokens <Upper>, <UPPER>. After that, we split numbers and

apply stemming. Even all the techniques above, combined, are not

able to bring the vocabulary to a manageable size (it is still in the

hundreds of thousands) and handle frequency and OOV issues.

We considered representing tokens as sequences of characters,

which makes the vocabulary, OOV, and frequency issues vanish.

294

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



However, character-level models need to learn much longer se-

quences and were shown to perform worse than their subtoken-

level counterparts [6].

The final choice we evaluate is Byte Pair Encoding (BPE) [1] [7].

BPE first splits tokens into sequences of characters and then on

each iterationmerges the sequences that occur togethermost often.

As a result, infrequent tokens are split into sequences of frequent

subtokens (e.g. http � client � lib), frequent ones remain as

they are (e.g. toString). This fits our needs since the vocabulary

size can be controlled by specifying the number of merges which is

given as input to the BPE algorithm. Moreover, there are no more

OOV; all the subtokens are frequent.

3 NEURAL LANGUAGE MODEL FOR CODE

Since we use BPE to split tokens, our NLM operates on the level

of subwords rather than words, i.e. it predicts a subword at each

step. To make the model output full words, we use a variation of

the beam search algorithm. As a model’s architecture, we choose a

single-layered GRU (a variant of an RNN capable of handling long

dependencies). We train models with 512 and 2,048 features.

To make use of the locality of source code, we use the cache

mechanism: for each token encountered at test time we store its 5

proceeding tokens. To make a prediction, the sequence of the last

5 tokens is looked up in the cache and probabilities are assigned to

the token retrieved from cache. These probabilities contribute to

the probabilities generated by the beam search.

Finally, we dynamically adapt the global model to the current

project by training the model on it for only one epoch. This makes

this adaptation step fast, and also prevents the model from "forget-

ting" what it has learned already.

4 EVALUATION AND RESULTS

We compare our BPE NLMs with two closed-vocabulary NLMs

with the same architecture (one trained on full tokens; the other

trained on tokens split by conventions) and n-gram models [3]. We

train each of our NLMs both on a set of 107 projects (small training

set) and 13,362 (large training set).

We evaluate themodels in static, dynamic, andmaintenance sce-

narios from the previous work [3] on Java, C, and Python corpora

for the tasks of code completion and bug prediction. In this paper,

we present only the results for code completion in a dynamic sce-

nario on the Java corpus and report mean reciprocal rank (MRR)

as the only metric. For all results please refer to our full paper [5].

In the dynamic scenario, the model can update its parameters af-

ter it makes a prediction. After each project, the model restores its

weight to the values it had before testing. MRR is the average over

the multiplicative inverse values of the ranks of the correct predic-

tions. In other words, it is the average of top-k accuracies across

various k , e.g., a correct prediction at rank 1 yields an MRR of 1; at

rank 2, 0.5; at rank 10, 0.1.

RQ1. How does the performance of subword unit NLMs

compare to state-of-the-artLMs for code?Already on the small

training set, our BPE NLM with 512 features reaches an MRR of

77.02% and outperforms the state-of-the-art nested cache n-gram

LM [3] (74.55%) as well as the closed-vocabulary models (64.05% -

71.01%). Adding more features makes the MRR increase by 0.28%.

The use of cache improves the performance further by 0.99%.

RQ2. Can subword unit NLMs scale to large code corpora?

Does the additional training data improve performance?The

performance of the n-gram models does not improve significantly

with the increase of training data [3]. NLMs, on the contrary, do

improve significantly (MRR rises from 77.02% to 79.94%). The NLM

with 2,048 features can leverage the large training set even better

due to its larger capacity (increase in MRR from 77.30% to 82.41%).

The cache still increases the performance (by 0.35% to 0.86%). All in

all, our best NLM with cache reaches the MRR of 78.29% and out-

performs the n-gram nested cache model by 8.72%. Furthermore,

when scaling n-gram models to the large training set, not only the

performance is a problem but also the resource usage. They require

50 to 60 GB of RAMon the large training set, whichmakes them un-

usable in practice. On the other hand, for BPE NLMs, the required

RAM when doing code completion ranges from 250 to 400 MB.

Other results. Our observations also hold for C and Python,

and for different vocabulary sizes (2k, 5k, and 10k). Besides, we

discovered that our dynamic adaptation is extremely effective, es-

pecially on the small training set (up to 13% of MRR increase) and

achieves the state of the art. Notably, our NLMs outperform other

models not only at the code completion task but also at predicting

bugs, particularly when trained on a large corpus.

5 CONCLUSIONS

Weevaluated different vocabularymodeling choices and concluded

that the only viable option tomake NLM applicable in practice is to

use BPE. We also presented a subtoken BPE open vocabulary NLM

which unlike closed vocab models is able to scale for large corpora.

Our NLM uses dynamic adaptation, beam search and caching to

successfully predict next tokens. We evaluated the model in differ-

ent scenarios and showed that it outperforms the state of the art.

We hope that our model, which to our knowledge is the largest

NLM for code ever trained, will open possibilities for transfer learn-

ing and building new tools to aid software engineering.

Acknowledgements. This workwas supportedby the EPSRCCen-

tre for Doctoral Training in Data Science, the UK Engineering and

Physical Sciences Research Council (grant EP/L016427/1), the Uni-

versity of Edinburgh, the Free University of Bozen-Bolzano (IDEALS

and ADVERB projects), and the Vienna Scientific Cluster (VSC).

REFERENCES
[1] Philip Gage. 1994. A new algorithm for data compression. The C Users Journal

12, 2 (1994), 23–38.
[2] Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. 2018.

Frage: Frequency-agnostic word representation. In Advances in neural informa-
tion processing systems. 1334–1345.

[3] Vincent J Hellendoorn and PremkumarDevanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proc. of ESEC/FSE 2017. 763–773.

[4] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Proceedings of ICSE 2012. IEEE, 837–847.

[5] Rafael Karampatsis,Hlib Babii, Andrea Janes, Charles Sutton, and Romain Robbes.
2020. Big Code != Big Vocabulary: Open-Vocabulary Models for Source Code. In
Proceedings of ICSE 2020. in press.

[6] Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and
Jan Cernocky. 2012. Subword language modeling with neural networks. preprint
(http://www.fit.vutbr.cz/ imikolov/rnnlm/char.pdf) (2012).

[7] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine trans-
lation of rare words with subword units. arXiv preprint arXiv:1508.07909 (2015).

295


