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ABSTRACT

Statistical language modeling techniques have successfully been

applied to large source code corpora, yielding a variety of new

software development tools, such as tools for code suggestion, im-

proving readability, and API migration. A major issue with these

techniques is that code introduces new vocabulary at a far higher

rate than natural language, as new identifier names proliferate.

Both large vocabularies and out-of-vocabulary issues severely af-

fect Neural Language Models (NLMs) of source code, degrading

their performance and rendering them unable to scale.

In this paper, we address this issue by: 1) studying how various

modelling choices impact the resulting vocabulary on a large-scale

corpus of 13,362 projects; 2) presenting an open vocabulary source

code NLM that can scale to such a corpus, 100 times larger than in

previous work; and 3) showing that such models outperform the

state of the art on three distinct code corpora (Java, C, Python). To

our knowledge, these are the largest NLMs for code that have been

reported.

All datasets, code, and trained models used in this work are publicly

available.
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1 INTRODUCTION

Many works have taken advantage of the “naturalness” of software

[44] to assist software engineering tasks, including code comple-

tion [76], improving code readability [2], program repair [20, 78],

identifying buggy code [75] and API migration [38], among many

others [4]. These approaches analyze large amounts of source code,

ranging from hundreds to thousands of software projects, building

machine learning models of source code properties, inspired by

techniques from natural language processing (NLP).

When applying any NLP method to create any type of software

development tool, a crucial early decision is how to model soft-

ware’s vocabulary. This is all the more important because, unlike

in natural language, software developers are free to create any

identifiers they like, and canmake themarbitrarily complex.

Because of this fundamental fact, any model that is trained on a

large-scale software corpus has to deal with an extremely large and

sparse vocabulary (Section 2). Rare words can not be modelled effec-

tively. Furthermore, if identifiers were not observed in the training

set, many classes of models cannot predict them, which is known

as the out-of-vocabulary (OOV) problem. Hellendoorn and Devanbu

observe this issue for the task of language modeling, showing that

a neural language model (NLM) has difficulties scaling beyond as

few as a hundred projects [41]. Given that neural approaches are

the state-of-the-art in NLP, finding ways to scale them to a larger

software corpus is a very important goal.

Our first contribution is a thorough study of the effects of the

vocabulary design choices that must be made when creating any

NLP model of software (Section 4). The vocabulary design choices

we study include how to handle comments, string literals, and white

space; whether to filter out infrequent tokens; and whether and how

to split compound tokens, such as names that contain camel case and

underscores. We examine how these choices affect the vocabulary

size, which affects the scalability of models, and how they affect the

OOV rate, that is, how often the vocabulary fails to include names

that appear in new projects. We find that the choices have a large

impact, leading to variations in vocabulary size of up to three orders

of magnitude. However, we find that the most common ways to

reduce vocabulary that were previously considered in the software

engineering literature, such as splitting identifiers according to

underscores and case, are not enough to obtain a vocabulary of a

manageable size; advanced approaches such as adaptations of the

Byte-Pair Encoding (BPE) algorithm [34, 79] are needed to reach

this goal and deal with the OOV problem.
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This empirical study motivates our second contribution. Drawing

on our results, we develop a large-scale open-vocabulary NLM for

source code (Section 5). To our knowledge, this is the first BPE

NLM for source code reported in the literature. This NLM model

leverages BPE, beam search, and caching to both keep vocabulary

size low and successfully predict OOV tokens. We show that this

NLM is able to scale: we train it on up to 13,362 software projects,

yielding the largest NLM trained on source code we are aware of.

Finally, in our third contribution we extensively evaluate our

NLM (Sections 6–8). We show that the open-vocabulary NLM out-

performs bothn-gram LMs and closed vocabulary NLMs for the task

of code completion for several languages (Java, C, and Python). To

show that improvement in language modelling transfers to down-

stream SE tasks, we conduct an experiment similar to Ray et al.

[75], who showed that language models can be used to highlight

buggy code. Indeed, we find that our open-vocabulary NLM is more

effective than previous LMs at highlighting buggy code.

More broadly, these contributions may impact future develop-

ment software tools. First, source code LMs have been used in a

diverse variety of tools well beyond the obvious application of au-

tocompletion, ranging from code readability [2] to program repair

[20]. Our improved NLM could lead to improvements to all of these

tools. Second, recent results in NLP [28, 46, 69] show that NLMs

can be used as upstream tasks in transfer learning, leading to state-

of-the-art improvement in downstream tasks: for instance, a model

can be pre-trained as an NLM, and later on fine-tuned as a classifier.

Improved NLM architectures could lead to improved downstream

classifiers, especially if the labelled data is scarce. While transfer

learning from language models has been applied in software en-

gineering [77], it has not been applied to source code due to the

aforementioned vocabulary issues. Finally, the general insights

about vocabulary design that we study are not specific to NLMs,

but arise whenever we build development tools by applying NLP

methods to source code.

We conclude the paper in Section 9, and briefly describe the

artifacts used in this work and how to obtain them in Section 10.

2 BACKGROUND AND RELATEDWORK

We first note that this work is a consolidation of two unpublished

works originally conducted independently: one work focused on the

impact of various vocabulary choices on the resulting vocabulary

size and the training of NLMs [9], while the other work investi-

gated the specific vocabulary choice of Byte-Pair Encoding, and

introduced several improvements to the training procedure [55].

This paper contains joint work that improves on both earlier works

by investigating additional characteristics of the vocabulary, addi-

tional improvements to NLM training, an additional use case for

NLMs, and a more thorough empirical evaluation.

2.1 Language Modeling in NLP

A language model (LM) estimates the probabilities of sequences

of words based on a training corpus. In NLP, these models have

been applied to tasks such as speech recognition [24] and machine

translation [51]. Early language models were based on n-grams:
the probability of a token is computed based on the n − 1 previous

tokens in the sequence. These had success in NLP applications, but

have two issues. First, they operate on small amounts of previous

context, with n often ranging from 3 to 6 (e.g. n = 6 for Java [41]).
Increasing n does not scale well if the vocabulary is large: for a

vocabulary of sizem, there aremn possible n-grams. Second, they

suffer from data sparsity: not all possiblen-grams exist in the corpus.
Smoothing [19] alleviates—but does not eliminate—the issue.

The current state-of-the-art in NLP is neural language models

(NLM) [12]. NLMs represent words in a continuous vector space,

such that words that are semantically similar are close in vector

space [64], allowing the model to infer relationships between words,

even if they do not appear in a specific context during training.

This allows these models to better deal with data sparsity, leading

to better performance. Current NLMs are based on architectures

such as recurrent neural networks (RNN) [63], long short-term

memory (LSTM) [45], or Transformer [85] that model long range

dependencies: a study of LSTM NLMs showed that they use context

as large as 250 words [56], much longer than n-grams.

2.2 Difficulties with Large Vocabularies

ML models in general, and NLMs in particular, do not handle large

vocabularies well. This is for several reasons:

Scalability. During pre-processing, each word is converted to a

numerical representation, first via one-hot-encoding, producing

(sparse) vectors of length equal to the vocabulary. NLMs then con-

vert these to word embeddings, dense word vectors of much smaller

dimensions (usually in the hundreds), in their first layer. For a vo-

cabulary of sizem and embeddings of size n, the embedding layer
is a dense matrix of sizem × n. A largem (e.g., 100,000 or more)

affects the memory required by the model as well as the amount

of computation required for training. The output of an NLM is a

prediction over the next token, which is a probability distribution

over the entire vocabulary. This must be computed once for each

token in the training corpus many times during training. This can

be prohibitively slow for large vocabularies [16, 52].

Out-of-vocabulary (OOV). In traditional, closed-vocabulary mod-

els, the vocabulary must be known in advance and will be built

based on the training corpus. Any new word encountered at test

time, called out-of-vocabulary words, will not be able to be one-hot

encoded as the resulting vector would exceed the expected dimen-

sions. A common workaround is to have a specific unknown token,

and replace any word not previously seen by this token. This loses

information, making the NLM unable to predict any new token,

which is particularly problematic for source code.

Rare Words. Deriving meaningful embeddings for rare words

is difficult since there is very little data to work with. Gong et al.

show that the property that semantically similar words have similar

embeddings does not hold for rare words: they hypothesize that

since the words are rarely seen, the embeddings are rarely updated

and thus stay close to their initialized values [35]. This issue is

likely to impact performance: a very large vocabulary has been

shown to negatively impact it, particularly with OOV words [51].

2.3 Handling Large Vocabularies in NLP

An open vocabulary model is not restricted to a fixed-sized vocab-

ulary determined at training time. For instance, a character LM
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predicts each word letter by letter: its vocabulary is the set of char-

acters; the OOV issue vanishes. However, it needs to model longer

dependencies than a word NLM, impacting performance. Models

using subword units, or subwords, combine the strengths of char-

acter and token LMs. A subword unit is a sequence of characters

that occurs as a subsequence of some token in the training set; the

model outputs a sequence of subword units instead of a sequence

of tokens. Many NLP models have used linguistically-motivated

subwords [11, 24, 59, 65]. Mikolov et al. found that subword models

improved on character models [65]. Sennrich et al. adapt the Byte-

Pair Encoding (BPE) algorithm to decompose words in subwords,

improving rare word translation [79]. Kim et al. combine a charac-

ter CNN with a NLM [57]. Vania and Lopez compare LMs (words,

morphs, character n-grams, BPE) on several languages [83].

Another approach to the OOV problem are cache models and

copy mechanisms [5, 36, 62], which allow the model to re-use words

that have appeared previously. This helps with the OOV problem,

because such models can copy words that are not in their fixed

vocabulary, but it does not help the first time an OOV word appears.

2.4 Language Modeling and Vocabulary in SE

Language Models in Software Engineering (SE). Seminal studies have

laid the groundwork for the use of language models on source code:

Gabel and Su show that software is very repetitive [33], which

motivates the use of statistical modelling for code. Hindle et al.

[44] build language models of source code, finding applications in

code completion. Nguyen et al. [68] augmented n-gram LMs with

semantic information such as the role of a token in the program,

e.g., variable, operator, etc. Tu et al. [81] find that software is even

more repetitive taking local context into account. Rahman et al.

find that while some aspects of software are not as repetitive as

previously thought (non-syntax elements), others are even more so

(API sequences) [74]. Other models of source code include proba-

bilistic higher order grammars (PHOG) [14], which use ASTs, and

several types of RNNs, including LSTMs [26, 41, 88].

SE Applications of Language Models. Probabilistic code models

have enabled many applications in software engineering (see Alla-

manis et al. [4] for a survey). One example is recommender systems

aiming to aid developers in writing or maintaining code: Hindle

et al. used a token-level LM for code completion [44], while later,

Franks et al. improved on performance with Tu’s cache [81] and

built a code suggestion tool for Eclipse [32]. Another application

are recommendation systems for variable, method, and class names

[2, 3, 5] that employ relevant code tokens as the LM context. Camp-

bell et al. [18] used n-gram language models to detect syntax error

locations in Java code, and later used an NLM for the same purpose

[78]. Ray et al. [75] showed that buggy code has on average lower

probability than correct code, and that LMs can spot defects as

effectively as popular tools such as FindBugs.

Several approaches use neural machine translation, in which an

encoder LM is paired to a decoder LM. Examples include recovering

names from minified Javascript code [10, 84], or from decompiled C

code [50]. Other applications include program repair [20], learning

code changes [82], or generating source code comments [47]. Gu et

al. [37] generate API usage sequences for a given natural language

query. They then learn joint semantic representations of bilingual

API call sequences to support API call migration [38]. Yin et al. [90]

mine pairs of natural language and code from Stack Overflow to

support tasks such as code synthesis from natural language.

Large vocabularies in SE. The majority of models of source code

used closed vocabulary models. Hellendoorn and Devanbu rightly

notice that NLMs trained on a software corpus would struggle due

to vocabulary size [41], because identifiers, which are the bulk of

source code, can be arbitrarily complex, and are often compound

words (e.g., thisIdentifierHas6WordsAnd2Numbers), causing an

explosion of possible identifiers. To produce an NLM that can be

trained in a reasonable amount of time, Hellendoorn and Devanbu

impose drastic restrictions which would be expected to reduce

predictive accuracy, restricting the training set to 1% of the original

corpus [6] and the vocabulary to only include words which occur

more than 5 times. Even so, the resulting vocabulary size is still

exceeds 76,000 words. Similarly, Pradel and Sen [70] had a large

vocabulary of 2.4 million unique tokens: they limited it to the 10,000

most common tokens to reduce inaccuracies due to rare words.

To limit this issue, previous work has segmented identifiers via

a heuristic called convention splitting, which splits identifiers on

camel case and underscores [3]. Even though this segmentation can

handle some OOV tokens, it is limited to combinations of subtokens

appearing in the training set and thus unable to achieve a truly

open vocabulary. Additionally, many of these subtokens are still in-

frequent, which hinders the model’s ability to assign high scores to

their compositions. For example, despite using convention splitting,

the implementation of code2seq from Alon et al. [8] only keeps the

190,000 most common vocabulary words.

Several studies have empirically compared different techniques

for automatically splitting identifiers [30, 43]. These works consider

the somewhat different problem of splitting identifiers into words

in a way that matches human judgment. Subword units may not

necessarily produce words that humans recognize, but they can be

trivially reassembled into complete tokens before they are shown

to a developer. Stemming [89] has also been used to reduce the

number of vocabulary words by only keeping their roots; this is

however destructive. Malik et al. combined convention splitting

and stemming for type prediction [60].

Few SE approaches use caches. Tu et al. [81] and Hellendoorn

and Devanbu [41] usen-gram caches. Li et al. augment an RNNwith

a copy mechanism based on pointer networks [86] to improve OOV

code completion [58]. While it can reuse an OOV word after seeing

it, it cannot predict the word’s first use, learn its representation, or

learn its dependencies, unlike our model. Copy mechanisms were

also used for program repair [20], and method naming [5].

3 DATASETS

We use code corpora from three popular programming languages:

Java, C, and Python. We choose these languages because they have

differences that could affect the performance of LMs. Java has ex-

tensively been used in related work [6, 26, 41, 44, 68, 81]. Unlike

Java, C is procedural, and makes it possible to write very terse

code.1 Python is a multi-paradigm dynamic language with little

use of static typing. For Java we used the Java Github corpus of

Allamanis et al. [6], also used in [41]. The C and Python corpora

1For examples, see https://www.ioccc.org/.
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Table 1: Corpus statistics for each code corpus.

Java C Python

Tokens Projects Tokens Projects Tokens Projects

Full 1.44B 13362 1.68B 4601 1.05B 27535

Small 15.74M 107 37.64M 177 20.55M 307

BPE 64.84M 1000 241.38M 741 124.32M 2867

Valid. 3.83M 36 21.97M 141 14.65M 520

Test 5.33M 38 20.88M 73 14.42M 190

were mined following the procedure described in [6]; the C corpus

was mined in [29] and the Python corpus was mined in [31]. For

lexical analysis we used the Java lexer implemented in [41]2; for C

and Python we used the Pygments3 library. Descriptive statistics

are in Table 1.

For Python and C we sampled 1% of the corpus for validation

and 1% for testing. Another 10% of the corpus was sampled as

a separate data set to learn subword encodings with BPE. The

rest of the data was used for training. We also report results on a

smaller subset of 2% of our full training set. For Java, we used a

slightly different procedure to make our experiment comparable to

a previous study [41]. We divide the data into five subsets as in the

other two languages. The validation and test sets are the same as

in [41], and our “small train” set is the same as their training set.

To obtain the full Java train set, we collect all of the files in the Java

Github corpus that do not occur in the validation or test set. Of

these, we sampled 1000 random projects for the subword encoding

data set, and the remaining projects were used as the full train set.

In the vocabulary study, both training sets and test sets are used.

To train LMs, we preprocess the corpora to match [41], replacing

non-ASCII character sequences such as Chinese ideograms inside

strings with a special token (<non-en>), removing comments, and

keeping strings. Note that the lexer in [41] replaces all strings with

length of 15 characters or more with the empty string. In Python,

we do not add any special tokens to represent whitespace.

4 MODELING VOCABULARY

We study a series of modeling choices for source code vocabulary.

These choices may be implicitly made by researchers, with or with-

out evaluating alternatives; they may not always be documented

in their studies. By making the choices explicit, we can study their

impact on the vocabulary. We report results on Java; similar results

can be observed for C and Python. Our evaluation criteria are:

Scalability Training ofmodels should scale to thousands of projects.

Scalability is influenced by the vocabulary size (number of unique

words) and the corpus size (number of tokens). We report both met-

rics on our full java training set, and compare them to a baseline

with percentages. For instance: 11.6M, 100% and 2.43B, 100%.

Information loss Models should be able to represent the original

input as much as possible; out-of-vocabulary (OOV) tokens are

particularly undesirable. We build a vocabulary on the training

set, and compare it with the test set vocabulary; we report the

percentage of new vocabulary words seen in the test set. As large

2https://github.com/SLP-team/SLP-Core
3http://pygments.org/docs/lexers/

vocabularies do not scale, we report OOV for the unfiltered vocab-

ulary, and a smaller vocabulary (the 75,000 most frequent words,

as in [41]). To show trends, we also plot OOV for: full vocabulary,

200K, 100K, 75K, 50K, and 25K. Such as: 42%, 79%, .

Word frequency As rare words have worse representations than

frequent ones [35], increasing word frequency is desirable. Differ-

ent modelling choices can increase or decrease the number of rare

words. We report the percentage of the vocabulary that has a fre-

quency of 10 or less, and plot a bar chart showing the percentage

of vocabulary with frequencies of 1000+, 1000–101, 100–11, 10–2,

and 1. For instance: 83%, .

Baseline: 11.6M, 100% �2.43B, 100% �42%, 79%, �83%,

Our baseline is a vocabulary of unsplit tokens, except strings and

comments that are split by whitespace (not doing so roughly dou-

bles the vocabulary). This vocabulary is extremely large: more than

11 million unique words on Java-large. The OOV rate on the test

set exceeds 40% with the full vocabulary, showing that developers

do create many new identifiers. The most common way to shrink

vocabulary is to replace infrequent tokens with <unk>. Doing so

further worsens OOV issues: after reducing the vocabulary to a

more manageable 75K, close to 80% of the test vocabulary is unseen

in the training set. Many words are infrequent: 83% of vocabulary

words have a frequency of 10 or less, with 25% occurring only once.

4.1 Filtering the vocabulary

Simplest is to filter vocabulary items that are deemed less important.

Filtering is destructive: it thus needs to be thoroughly justified.

English. 11.4M, 98% �2.43B, 100% �35%, 76%, �83%,

Source code can contain many non-English words in identifiers,

strings, and comments, either because developers use other lan-

guages, or for testing or internationalization purposes. Handling

multilingual corpora is an NLP research topic in itself; we evaluate

the simplifying assumption to limit a corpus to English. This is not

trivial: dictionary-based heuristics have too many false positives

(e.g. acronyms). We use a simple heuristic: a word is non-English if

it contains non-ASCII characters. This is imperfect; “café”, “naïve”,

or “Heuristiken” are misclassified. Non-English words are replaced

with a <non-en> placeholder. Even then, the vocabulary shrinks by

only 2%, while OOV drops by only 3% at 75K.

Whitespace. 11.4M, 98% �1.89B, 78% �35%, 76%, �83%,

Some applications (e.g., pretty-printers [3]) may care about the

layout of source code. Others may not, giving importance only to

syntactic or semantic aspects (unless code layout is syntactically

important, such as in Python). Filtering out whitespace reduces the

vocabulary only by a handful of tokens, but reduces corpus size by

22% (1.89B tokens).

Comments 10.8M, 93% �1.26B, 52% �38%, 78%, �83%,

Comments often contain natural language, which is much less

repetitive than code. While tasks such as detecting self-admitted

technical debt [25] rely on comments, others do not. Replacing

comments by placeholder tokens (e.g., <comment>) significantly

reduces corpus size (a further 26%), but its effect on vocabulary is

limited (6%, given that comments are already split on whitespace).

Strings. 9.5M, 82% �1.15B, 47% �39%, 78%, �83%,

Similarly, string literals can be filtered, replacing them by a place-

holder token like <string>. This does not reduce corpus size as
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much (a further 5%), but shrinks vocabulary a further 11%, close

to 9.5 million words. This is still extremely large. We also evaluate

the configuration used in [41]: strings are kept, unsplit, but strings

longer than 15 characters are replaced by the empty string. For

consistency with previous work, we use it as new baseline. It in-

creases vocabulary, OOV and infrequent tokens rate: 10.9M, 94% �

1.15B, 47% �39%, 80%, �84%,

Full token vocabularies range in the millions, and hence do not

scale. OOV and frequency issues are extremely important.

4.2 Word Splitting

Identifiers are the bulk of source code and its vocabulary. While

new identifiers can be created at will, developers tend to follow

conventions. When an identifier is made of several words, in most

conventions, the words are visually separated to ease reading, either

in camelCase or in snake_case [15]. Thus, an effective way to

reduce vocabulary is to split compound words according to these

word delimiters, as was done by Allamanis et al. [3].

The decision whether to split compound words or not has im-

portant ramifications. First, it introduces additional complexity:

the LM can no longer rely on the assumption that source code is

a sequence of tokens. Instead, compound words are predicted as

a sequence of subtokens, albeit in a smaller vocabulary. Second,

subtokens increase the length of the sequences, making it harder

to relate the current subtokens to the past context, as it increases

in size. This makes the approach unviable for n-grams as n would
need to increase significantly to compensate.

Splitting tokens has advantages: most obviously, the vocabulary

can be much smaller. Consequently, the OOV rate is reduced. Third,

a model may infer relationships between subtokens, even if the

composed word is rare, as the subtokens are more common than

the composed word. Finally, using subtokens allows a model to

suggest neologisms, tokens unseen in the training data [3].

Splitting. 1.27M, 12% �1.81B, 157% �8%, 20%, �81%,

Word splitting via conventions drastically reduces the vocabulary,

by a close to an order of magnitude (slightly more than a million

words), at the cost of increasing corpus size by 57%. The impact

on the OOV rate is also very large, as it decreases by a factor of

5 (in the unfiltered case; for a vocabulary of 75K it is a factor of

4). However, the effect on word frequency is limited, with only 3%

more words that are more frequent than 10 occurrences.

Case. 1.09M, 10% �2.16B, 187% �9%, 21%, �83%,

Most commonly, words in different case (e.g. value, Value, VALUE)

will be distinct words for the LM. This could increase the vocab-

ulary, but removing case loses information. A possible solution

is to encode case information in separator tokens (e.g., Value be-

comes <Upper> value; VALUE becomes <UPPER> value). at the cost

of increasing sequence length. Case-insensitivity does decrease

the vocabulary, but not by much (a further 2%), while corpus size

increases significantly (a further 30%). Thus, our following configu-

rations do not adopt it: our new baseline keeps case.

Word splitting is effective, but the vocabulary is still large (a

million words). OOV and frequency issues are still important.

4.3 Subword splitting

As splitting on conventions is not enough, we explore further.

Numbers. 795K, 63% �1.85B, 102% �6%, 18%, �72%,

Numeric literals are responsible for a large proportion of the vo-

cabulary, yet their vocabulary is very limited. Thus, an alternative

to filtering them out is to model them as a sequence of digits and

characters. This yields a considerable decrease in vocabulary with

our previous baseline (37%), for only 2% increase in corpus size. For

OOV, there is a slight improvement for a 75K vocabulary (2%), as

well as for frequency (28% of words occur 10 times or more).

Spiral. 476K, 37% �1.89B, 104% �3%, 9%, �70%,

Several approaches exist that split a token into subtokens, but

go beyond conventions by using Mining Software Repositories

techniques, such as Samurai [30], LINSEN [23], Spiral [48], or even

neural approaches [61]. We applied the Spiral token splitter, which

is the state of the art. We observed a further 26% reduction of the

vocabulary, for a 2% increase in corpus size compared to number

splitting. Spiral was also very effective in terms of OOV, with 9% of

unseen word when the vocabulary is limited to 75K, and 3% when

unfiltered (476K words). The impact on frequency was limited. Even

if this is encouraging, the OOV rate is still high.

Other approaches. Stemming [89] can reduce vocabulary size,

but loses information: it is not always obvious how to recover the

original word from its stem. We found that applying stemming

can further reduce vocabulary by 5%, which does not appear to

be a worthwhile tradeoff given the loss of information. Another

option is character models that achieve an open vocabulary by

predicting the source file one character a time. OOV issues vanish,

but unfortunately, this drastically inflates sequence lengths, so a

character model is not desirable.

While these strategies are effective, they do not go far enough;

vocabulary stays in the hundreds of thousands range. There are

still OOV issues for unseen data; most words are uncommon.

4.4 Subword splitting with BPE

The final alternative we evaluate is subword segmentation via Byte-

Pair Encoding (BPE). BPE is an algorithm originally designed for

data compression, in which bytes that are not used in the data

replace the most frequently occurring byte pairs or sequences [34].

In subword segmentation, this corpus is represented as a sequence

of subwords. Special end-of-token </t> symbols are added to al-

low us to convert from a sequence of subword units back into a

sequence of tokens with ease. The approach was adapted to build

NMT vocabularies [79]: the most frequently occurring sequences

of characters are merged to form new vocabulary words.

BPE builds up the vocabulary of subwords iteratively, at each

iteration a training corpus is segmented according to the current

vocabulary. The initial vocabulary contains all characters in the

data set and </t>, and the corpus is split into characters and </t>.

Then, all symbol pairs appearing in the vocabulary are counted. All

the appearances of the most frequent pair (S1, S2) are replaced with
a unique new single symbol S1S2, which is added to the vocabulary,
without removing S1 or S2 (which may still appear alone). This

procedure is called a merge operation. The algorithm stops after

a given maximum number n of merge operations; this is the only
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Java Code:

p u b l i c A t t r i b u t eCon t e x t ( Method s e t t e r , Ob j e c t v a l u e ) {

t h i s . v a l u e = va lue ;

t h i s . s e t t e r = s e t t e r ;

}

Subword Units:

public</t> Attribute Con text</t> (</t> Method</t> set ter</t> ,</t> Object</t>
value</t> )</t> {</t> this</t> .</t> value</t> =</t> value</t> ;</t> this</t>
.</t> set ter</t> =</t> set ter</t> ;</t> }</t>

Figure 1: Example of Java code as a list of subword units.

parameter. The final output of the algorithm is (1) the new vocab-

ulary, which contains all the initial characters plus the symbols

created from the merge operations, and (2) the ordered list of merge

operations performed in each iteration. New data is segmented by

splitting it into characters and merging in the same order.

BPE has several advantages. First, no word is OOV; the vocab-

ulary always contains all single characters, so unknown words at

test time can be represented using those subwords, if no longer

subwords apply. Second, the vocabulary dynamically adapts to

the frequency of the sequences: common sequences will be rep-

resented by a single word (eg, exception), while rare ones will

be segmented into more common subword units (such as roots,

prefixes and suffixes); this helps with sparsity issues. Finally, BPE

allows for fine-grained control of vocabulary size, by tuning the

number of merge operations. A larger vocabulary will have more

complete words and less sequences, smaller ones will have longer

sequences. An example of a Java code snippet segmented into sub-

words is shown in Figure 1. We computed BPE for 1K, 2K, 5K, 10K

and 20K merges, on a held-out set of 1K project.

BPE Subwords. 10K, 1% �1.57B, 137% �0%, 0%, �1%,

We apply BPE (10K merges) to our Java corpus with preprocessed

as in [41], which we use as a baseline for comparison. As expected,

the OOV issues vanish, even for an extremely small vocabulary. The

corpus size grows, but not more than previous choices we explored.

Since BPE merges based on frequency, the resulting subtokens, no

matter their size, are frequent: more than 97% of the remaining

words occur more than 1,000 times in the corpus, with very few

words that are in the hundreds, and 1% less than ten. Lower amounts

of merges result in a smaller vocabulary, at the cost of a larger

corpus size. Our largest BPE vocabulary, 20K, is 575 times smaller

than our initial baseline; our smallest is 11,500 times smaller.4

Qualitative examination.While the goal of BPE is not to produce

human-readable tokens, we examine how closely the splits BPE

produces match human ones. We inspected 110 random identifiers,

and provide anecdotal evidence of the types of splits produced by

BPE. Our goal is not to provide strong evidence, but rather to give

a sense to the reader of what BPE splits look like in practice.

While some subwords are readable at BPE 1K (File � Output
� Service</t>), some subwords are not (Default � M � ut �

able � Tre � e � Node</t>), but look good at 5K (Default �

Mutable � TreeNode</t>). BPE handles rare words gracefully,

producing longer sequences of shorter units as expected. Some

examples include rare words due to typos (in � cul � ded �

4Note that including non-ASCII characters grows the vocabulary by ≈ 5,000 words in
each case; a solution is to apply BPE at the byte level, as done in [71]

template</t>) or foreign words (v � orm � er � k � medi � en
� au � f � lis � ter</t>). Some rare words are split in root and

suffix (Grid � ify</t>), but some acronyms may be unexpectedly

split (IB � AN</t>). Further, BPE can split words correctly without

case information (http � client � lib</t>, at 5K).

BPE shrinks source code vocabulary very effectively. Moreover,

most of the vocabulary is frequent, improving embeddings.

5 NEURAL LANGUAGE MODEL FOR CODE

We present our NLM for code based on subword units, which is

based on a Recurrent Neural Network (RNN). RNN LMs scan an

input sequence forward one token at a time, predicting a distri-

bution over each token given all of the previous ones. RNNs with

gated units can learn when to forget information from the hidden

state and take newer, more important information into account

[45]. Among various gated units, GRUs [21] have been shown to

perform comparably to LSTMs [45] in different applications [22].

We intentionally selected a small model as our base model: a

single layer GRU NLM built upon subword units learned from BPE

(Section 4.4). For each vocabulary entry we learn a continuous

representation of 512 features, while the GRU state is of the same

size. In all our experiments we used a learning rate of 0.1, dropout of

0.5 [80] and a maximum of 50 epochs of stochastic gradient descent

with a minibatch size of 32 (for the small training sets) or 64 (for

the full training sets). These hyper-parameters were tuned on the

small train and validation sets. After each iteration we measure

cross entropy on a validation set (Section 6). If the cross entropy

is larger than the previous epoch then we halve the learning rate

and this can happen for a maximum of 4 times, otherwise training

stops. During training of the global model we unroll the GRU for

200 timesteps, following [56]. Our implementation is open source

(GitHub URL omitted for review). We also experiment with larger

capacity models (2048 hidden features and GRU state).

5.1 Selecting Subword Units with BPE

In our code LM, we address vocabulary issues by having the model

predict subwords rather than full tokens at each time step. Sub-

words are inferred by BPE (Section 4.4) on a held out dataset of

projects that are separate from the training, validation, and test

sets. We experimented with three encoding sizes, i.e., the maximum

number of merge operations: 2000, 5000, and 10000. To train the

LM, we first segment the train, validation, and test sets using the

learned encoding. We transform each token into a character se-

quence, adding </t> after every token. Then we apply in order the

merge operations from BPE to merge the characters into subword

units in the vocabulary.5 As in [79] we do not merge pairs that

cross token boundaries. Finally, we train and test the NLM as usual

on the data segmented in subword units.

5.2 Predicting Tokens from Subword Units

Autocompletion algorithms present a ranked list of k predicted

tokens rather than a single best prediction. With a model based on

subword units, it is not obvious how to generate the top k predic-
tions, because a single token could be made from many subword

5We use the BPE implementation from https://github.com/rsennrich/subword-nmt
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units. We approximate these using a custom variation of the beam

search algorithm. If the beam is large enough the algorithm can

give a good approximation of the top-k complete tokens.
The NLM defines a probability p (s1 . . . sN ) for any subword unit

sequence. The goal of the beam search is: given a history s1 . . . sN
of subword units that already appear in a source file, predict the

next most likely complete token. A complete token is a sequence of

subword unitsw1 . . .wM that comprise exactly one token: that is,

wM ends with </t> and none of the earlier subword units do. Beam

search finds the k highest probability complete tokens, where we
denote a single token as the sequence of unitsw1 . . .wM , that max-

imize the model’s probability p (w1 . . .wM |s1 . . . sN ). Importantly,
the lengthM of the new complete token is not fixed in advance, but

the goal is to search over complete tokens of different length.

Given a value of k and a beam size b, the algorithm starts by

querying the model to obtain its predictions of possible subword

units, ranked by their probability. The algorithm uses two prior-

ity queues: one called candidates which ranks the sequences of

subword units that still need to be explored during the search, and

one called bestTokens which contains the k highest probability

complete tokens that have been expanded so far. Each candidate is

a structure with two fields, text which is the concatenation of all

the subword units in the candidate, and prob which is the product

of the probabilities of each subword unit in the candidate. Both of

the priority queues are sorted by the probability of the candidate.

In each iteration, the algorithm pops the b best candidates from
the candidates queue, expands them with one additional subword

unit, and scores their expansions. If an expansion creates a token

(the new subword unit ends with </t>) then it is pushed onto the

token queue and the worst token is popped. This maintains the

invariant that bestTokens has size k . If the new expansion is not

a complete token, then it is pushed onto the candidates queue,

where it can potentially be expanded in the next iteration.

5.3 Caching

We also implement a simple caching mechanism for our NLM to

exploit the locality of source code, particularly previously defined

identifiers. At test time, each time an identifier is encountered,

the 5-token history that preceded it is added to a cache alongside

it. Differently to n-grams, we do not store probabilities, as the

NLM will compute them. If the current 5-token history exists in the

cache, the identifiers that followed it are retrieved (this is in practice

very small, usually 1 or 2 identifiers). These identifiers are then

scored by the NLM, and their probabilities are normalized to 1. The

beam search described earlier is then run, and the two probability

distributions are merged, according to a cache weight parameter:

cache_pred×cache_weiдht +beam_pred× (1−cache_weiдht ). The
top 10 of the merged predictions are then returned.

We set the cache weight to 0.3. Note that, like beam search, this

is a test-time only addition that does not affect training.

5.4 Dynamic adaptation to new projects

A global LM, trained in a cross-project setting, will perform better

if it is adapted to a new project [44, 81]. LMs with n-grams also

employ caches for this. Simply training an NLM from scratch on a

new project will not have enough data to be effective, while training

a new model on both the original training set and the new project

would be impractical and computationally expensive.

Instead, we use a simple method of dynamically adapting our

global NLMs to a new project. Given a new project, we start with

the global NLM and update the model parameters by taking a single

gradient step on each encountered sequence in the project after

testing on it. This series of updates is equivalent to a single training

epoch on the new project. (In our evaluations in Section 6, we will

split up the project files in such a way that we are never training

on our test set.) We unroll the GRU for 20 time steps instead of 200

as in our global models, in order to update the parameters more

frequently. We apply only one update for two reasons. First, it is

faster, allowing the model to quickly adapt to new identifiers in

the project. Second, taking too many gradient steps over the new

project could cause the NLM to give too much weight to the new

project, losing information about the large training set.

6 EVALUATION

Intrinsic Evaluation: Language Modeling. A good language

model assigns high probabilities to real sentences and low proba-

bilities to wrong ones. For code, fragments that are more likely to

occur in human-written code should be assigned higher probabil-

ity. Precise scoring of code fragments is essential for tasks such as

translating a program from one programming language to another

[54, 66], code completion [32, 76], and code synthesis from natural

language and vice versa [7, 27, 67, 73].

As in previous work, our intrinsic metric is the standard cross

entropy. Cross entropy defines a score over a sequence of tokens t1,
t2, ..., t |C | . For each token ti , the probability p (ti |t1, ..., ti−1) of each
token is estimated using the model under evaluation. Then the av-

erage per token entropy is Hp (C ) = − 1
|C |
∑ |C |
i=1 logp (ti |t1, ..., ti−1).

Cross entropy is the average number of bits required in every pre-

diction; lower values are better. It not only takes into account the

correctness of the predictions, but also rewards high confidence.

Our NLMs define a distribution over subwords, not tokens. To

compute cross entropy for subword NLMs, we segment each token

ti into subwords ti = wi1 . . .wiM . Then we compute the product

p (ti |t1, ..., ti−1) = ∏M
m=1 p (wim |t1, ..., ti−1,wi1 . . .wi,m−1), where

the right hand side can be computed by the subword NLM. This

probability allows us to compute the cross entropy Hp (C ).
Extrinsic evaluation: Code Completion.We report the per-

formance of our LMs on code completion, which is the task of

predicting each token in a test corpus given all of the previous to-

kens in the file.Wemeasure performance with mean reciprocal rank

(MRR), as is common in code completion evaluation [17, 41, 76, 81].

Each time the LM makes a prediction, we get a ranked list of k = 10
predictions. For each one, the reciprocal rank is the multiplicative

inverse of the rank of the first correct answer. MRR is the average

of reciprocal ranks for a sample of queries Q :

MRR =
1

|Q |
|Q |∑

i=1

1

ranki
. (1)

A simplified description of MRR is that it averages top-k predictive

performance across various k . Note that a correct suggestion at

rank 1 yields an MRR of 1; at rank 2, 0.5; at rank 10, 0.1. Thus, a
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small difference in MRR could indicate a large change in the ranked

list, especially for higher MRR values.

Code Completion Scenarios.We use three scenarios from pre-

vious work [41]: Each static, dynamic, and maintenance settings

simulates a different way of incorporating NLMs in an IDE. The

task is always to predict test set tokens, but the training sets differ:

Static tests. The model is trained on a fixed training corpus, and

later evaluated on a separate test dataset. This is a cross-project

setting: train, validation, and tests sets all contain separate projects.

This simulates a single global LM that is trained on a large corpus

of projects and then deployed to clients without adaption.

Dynamic tests. In addition to the training set, the model can

update its parameters after it has made predictions on files in the

test set (it never trains on test data). Our NLMs are adapted using the

procedure described in Section 5.4. After each project, we restore

the model to the global LM learned from the train set only. This

simulates a setting in which some files from the project of interest

are available for dynamic adaptation.

Software maintenance tests. This scenario is even closer to real

world usage, simulating everyday development where programmers

make small changes to existing code. The LMs are tested on one

file at a time in the test set. For each test file F , the train set plus all
other files in the test project except F is used as training data. As
this requires retraining the NLM once per file in the test set, this

scenario was previously deemed infeasible for NLMs in [41].

Identifiers only. Recent work observed that LMs for completion

perform worse on identifiers than other tokens [42]. Therefore, we

also report model performance, i.e. entropy and MRR, on identifier

tokens only (excluding primitive types). To clarify differences be-

tweenmethods, we also report recall at rank 1 (R@1), the percentage

of all identifier usages which are correctly predicted at rank 1, and

similarly recall at rank 10 (R@10), the percentage when the correct

identifier appears anywhere in the model’s top 10 predictions.

7 RESEARCH QUESTIONS

RQ1. How does the performance of subword unit NLMs compare to

state-of-the-art LMs for code? We compare subword unit NLMs to

standard n-gram LMs [44], cache LMs [81], state-of-the-art n-gram
LMs with nested caching [41], token-level NLMs [88], and heuris-

tic splitting NLMs [3]. We do not compare with PHOG [14] and

pointer network RNNs [58]: both do not have a full implementation

available. We do not evaluate character-level NLMs as they have

not shown benefits for NLP.

RQ2. Can subword unit NLMs scale to large code corpora? Does the

additional training data improve performance? Training on a larger

corpus may improve a model’s performance, but adding more data

tends to have diminishing returns. After some point, a model’s

performance saturates. We evaluate if NLMs can make better use

of large corpora than n-gram models. Moreover, training on larger

data uses introduces scaling issues. Thus, performance in terms of

runtime cost, memory usage, and storage becomes important.

RQ3. How does the performance of subword unit NLMs vary across

programming languages? In principle the learning methods for

NLMs are language agnostic; however, the majority of studies eval-

uate only on Java. We check if code LMs are equally effective on

other programming languages: C’s terseness, or Python’s lack of

type information could negatively impact an LM’s performance.

RQ4. Is the dynamic updating effective to adapt subword unit NLMs

to new projects? New projects introduce many new identifiers that

do not appear even in a large cross-project corpus. An n-gram
LM can exploit the strong locality that characterises code through

caching [44, 81]. Thus we ask whether NLMs can also benefit from

dynamic adaptation via the procedure presented in Section 5.4.6

We compare our dynamic adaption technique against two dynamic

n-gram models: cache LMs [81] and nested cache LMs [41].

RQ5. Are NLMs useful beyond code completion? NLMs in NLP

have shown to be useful in a variety of tasks, including translation

or summarization; they have been recently shown to be state of the

art in transfer learning. While testing all of these scenarios vastly

exceeds the scope of this paper, we test whether NLMs improve

upon n-gram LMs in the task of detecting buggy code [75].

8 RESULTS

Table 2 presents the evaluation metrics of all scenarios; we refer to

it continuously. We used the n-gram implementation7 used in [41]

with the same parameters (n = 6); all NLMs are ours. We compute

MRR on the first million tokens of the test set, as in [41].

8.1 RQ1. Performance of Models

Because the full data set is so large, we compare the different vari-

ants of n-gram models against each other on the small Java training

set, and then we compare the best n-gram LM against our BPE

NLM on the large Java data set. In Table 2, we see that the nested

cache model has the best performance of the n-gram models, with

a large improvement over the simpler models (for example, improv-

ing MRR from 58% to 77% on Java against the basic n-gram model).

This is consistent with the results of [41]. However, our BPE NLM

outperforms it. (Note that cache models can not be evaluated in the

static scenario since the cache would adapt to the test set). Moving

to the large data set, we find that the BPE NLM still outperforms

the nested cache model, even though the nested cache model was

specifically designed for code. While previous work [42] found

that closed NLMs underperformed on identifiers, we find that our

BPE NLMs do not. In the dynamic scenario, 74% of identifiers are

predicted within the top 10 predictions, with up to nearly 56% in

first position.

Open vs closed vocabulary. To specifically evaluate the effect of

relaxing the closed vocabulary assumption, we compare our open

vocabulary NLM to two closed vocabulary NLMs: one that uses

full tokens (Closed NLM), and another that splits tokens accord-

ing to conventions (Heuristic NLM). Those models have otherwise

the same architecture as the open vocabulary. In both cases, we

find that the open-vocabulary NLM significantly outperforms both

closed vocabulary NLMs, and can be trained even in the main-

tenance setting, unlike the closed versions. Of note, our closed

vocabulary NLM performs better than the one in [42], as it utilizes

a fully connected hidden layer and dropout. Finally, in Table 3 we

report the performance of the open vocabulary NLMs with different

6A naive approach to the software maintenance scenario retrains the model from
scratch for every test file, which was rightly deemed infeasible for NLMs by [41]
7https://github.com/SLP-team/SLP-Core, version 0.1
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Table 2: Performance of the various models (bold: best, underlined: second best).

MODEL

Java Java Identifiers C Python

Static Dynamic Maintenance Bugs Dynamic Static Dynamic Static Dynamic

Ent MRR Ent MRR Ent MRR % Ent ↓ R@1 R@10 MRR Ent MRR Ent MRR Ent MRR Ent MRR

Small Train

n-gram 6.25 53.16 5.54 56.21 5.30 58.32 1.81 17.24 34.66 22.26 6.51 55.20 4.14 57.34 5.30 43.63 4.81 47.39

Nested - - 3.65 66.66 2.94 71.43 - 37.46 56.85 43.87 - - 3.61 62.25 - - 4.05 54.02

Cache - - 3.43 69.09 3.32 70.23 - 40.13 59.52 46.57 - - 2.19 75.09 - - 3.22 62.27

Nested Cache - - 2.57 74.55 2.23 77.04 - 49.93 70.09 56.81 - - 2.01 76.77 - - 2.89 65.97

Closed NLM 4.30 62.28 3.07 71.01 - - 1.81 30.96 49.93 37.20 4.51 60.45 3.20 72.66 3.96 81.73 3.34 84.02

Heuristic NLM 4.46 53.95 3.34 64.05 - - 1.04 39.54 58.37 45.28 4.82 52.30 3.67 61.43 4.29 65.42 3.56 71.35

BPE NLM (512) 4.77 63.75 2.54 77.02 1.60 78.69 3.26 45.49 67.37 52.66 4.32 62.78 1.71 76.92 3.91 81.66 2.72 86.28

BPE NLM (512) + cache - - - 77.42 - - - 50.49 68.16 56.30 - - - - - - - -

BPE NLM (2048) 4.77 64.27 2.08 77.30 - - 3.60 48.22 69.79 55.37 4.22 64.50 1.59 78.27 3.66 81.71 2.69 86.67

BPE NLM (2048) + cache - - - 78.29 - - - 52.44 70.12 58.30 - - - - - - - -

Large Train

Nested Cache - - 2.49 75.02 2.17 77.38 - 52.20 72.37 59.09 - - 1.67 84.33 - - 1.45 71.22

BPE NLM (512) 3.15 70.84 1.72 79.94 1.04 81.16 4.92 51.41 74.13 59.03 3.11 70.94 1.56 77.59 3.04 84.31 2.14 87.06

BPE NLM (512) + cache - - - 80.29 - - - 55.68 74.30 61.94 - - - - - - - -

BPE NLM (2048) 2.40 75.81 1.23 82.41 - - 5.98 57.54 72.18 62.91 2.38 80.17 1.36 83.24 2.09 86.17 1.90 87.59

BPE NLM (2048) + cache - - - 83.27 - - - 60.74 73.76 65.49 - - - - - - - -

Table 3: Effect of vocabulary size on Java performance of our

open-vocabulary models (Python and C are similar).

Vocab Size
Static Dynamic Maint. Bugs

Ent MRR Ent MRR Ent MRR % Ent ↓
Small Train

2 000 4.90 62.87 2.33 75.66 1.46 77.48 3.07

5 000 4.78 63.80 2.27 77.14 1.51 78.49 3.38

10 000 4.77 63.75 2.54 77.02 1.60 78.69 3.26

Large Train

2 000 3.59 68.87 1.84 77.69 1.03 78.85 4.09

5 000 3.35 69.87 1.72 79.18 1.06 80.31 4.71

10 000 3.15 70.84 1.72 79.94 1.04 81.16 4.92

vocabulary sizes, obtained after 2000, 5000, and 10000 BPE merge

operations. We see that performance on the small training set is

similar across vocabulary sizes: a large vocabulary is not required

for good performance.

Caches, and larger capacity. Both our cache and increasing model

capacity (from 512 to 2048 features) are beneficial, particularly for

the identifiers. The cache improves MRR by 3 to 4%, with more

improvements for low ranks, which is especially important for

completion. On the small corpus, the large model improves MRR

by nearly 3%, a smaller improvement than adding the cache. Both

improvements are complementary, increasing identifier MRR by

close to 6%.

Open vocabulary NLMs are effective models of source code, even

on a small corpus, yielding state of the art performance.

8.2 RQ2. Large Corpora

We contrast performance between small and large training sets.

Leveraging data. When trained on larger corpora, the perfor-

mance of n-gram models (including nested cache variants) gets

saturated and they are unable to effectively leverage the extra infor-

mation [41]. In contrast, our model can better leverage the increase

in training data when trained on the full corpus. In the static sce-

nario, our NLMs decrease entropy by about 1.5 bits, while MRR

increases by about 6%. More data helps our NLMs learn to synthe-

size identifiers from subwords better and with higher confidence.

The improvements are smaller but still exist when the NLMs use

dynamic adaptation: for all encoding sizes the entropy improves

by 0.5 bits and MRR by 2 to 3%. In contrast, the nested cache n-
gram model entropy improves by less than 0.1 bits and MRR by

less than 0.4%. From that we conclude that subword unit NLMs can

utilize a large code corpus better than n-gram models. As shown

in Table 3, larger training corpora tend to favor NLMs with larger

vocabularies, particularly in terms of MRR; larger models leverage

the additional data even better. For all models, the improvements

are more visible for identifiers: the large train alone contributes

close to 7% of MRR for identifiers, versus 3% overall for the NLM.

Finally, larger NLMs (2048 features) are even better at leveraging the

additional training data, due to their increased capacity. Similarly,

the cache still improves performance further, even with the large

training set; both improvements complement each other.

Resource usage.While the nested cache n-gram model is compet-

itive with Java identifiers, this comes at a significant cost: resource

usage. Disk usage for n-gram models range from 150 to 500 Mb in

the small training set to 6 to 8.5GB in the large training set. RAM

usage is even more problematic, as it ranges from around 5GB in

the small training set, up to 50 to 60GB in the large training set.
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This makes the large n-gram models unusable in practice as they

exceed the memory requirements of most machines.

In contrast, the NLMs do not vary significantly with training set

size; their size is fixed. They range from 15MB (BPE 2K) to 45MB

(BPE 10K) on disk (up to 240MB for the large capacity models).

RAM usage for NLMs vary between 2 to 4GB when training (and

can be reduced at the expense of speed by reducing batch size), and

is considerably lower at inference time (for actual code comple-

tion), ranging from 250 to 400MB. Thus, if we compare practically

applicable models, the small NLM outperforms the small nested cache

n-gram model by up to 5.13% in identifier MRR, and up to 5.75% recall

at 1; the large NLM does so by 8.68% (MRR), and 10.81% (recall at 1).

The open vocabulary makes training NLMs on large corpora

scalable as vocabulary ceases to grow with corpus size; training

time scales linearly with added data. Our largest NLM (BPE 10k,

2048 features), can process around 350 to 550 hundred thousand

tokens per minute (roughly 100 to 300 projects per hour depend-

ing on project size) on a consumer-grade GPU. This makes our

dynamic adaptation procedure, which trains one project for one

epoch, clearly feasible. Training the initial model is still a large

upfront cost, but it takes from a day (small NLM) up to two weeks

(large NLM) on our largest dataset, and needs to be performed

once. At inference time, predicting 10 tokens with beam search

takes a fraction of a second, fast enough for actual use in an IDE,

even without additional optimization. This is not true for the closed

models.

Open-vocabulary NLMs can scale; furthermore, they leverage the

increased training data effectively. Large n-gram models do not

scale in terms of resources.

8.3 RQ3. Multiple Languages

We contrast Java performance with Python and C. We see interest-

ing differences between Java, Python, and C. First, n-gram models

perform considerably worse in Python, while NLMs do very well.

We hypothesize that this is due to the smaller size of Python projects

in our corpus, which reduces opportunity for caching (the average

Python project is 2 to 3 times smaller than the average Java project).

C projects, on the other hand, are competitive with Java projects,

particularly with caching; they are on average 2 times larger. In-

terestingly, the nested and nested cache n-gram models perform

comparatively worse in C than in Java: C projects tend to have a

flatter structure, rendering the nesting assumption less effective

in this case. Finally, the (not applicable in practice) large n-gram

model outperforms our NLMs for C. We observed anectodal evi-

dence that there is considerable duplication in the C corpus, which

may affect this result [1]. For NLMs, the performance is more even

across the board, with overall slightly worse performance for C,

and somewhat better performance for Python.

Our NLM performance results hold for Java, C, and Python.

8.4 RQ4. Dynamic Adaptation

We evaluate the effectiveness of our proposed method for adaption

of NLMs in the dynamic and maintenance scenarios. This is crucial

for practical usage of NLMs, because the dynamic and maintenance

scenarios simulate the setting where the developer is modifying a

large, existing project. Using within-project data provides a large

performance boost: Even though within each scenario, our NLMs

outperform n-grams, most n-gram models in the dynamic scenario

outperform NLMs in the static scenario. The improvement due to

dynamic adaptation is greater than the improvement due to an

NLM. Of note, the situation in the large training set is different: the

static large NLM trained on the large training set outperforms the

cache n-gram LMs in the dynamic scenario, and is competitive with

it in the maintenance scenario, in other words, our large data set is

so large that it almost makes up for not having within-project data,

but within-project information is clearly still crucial.

Once we apply the dynamic adaptation method to the NLMs,

the picture changes. With dynamic adaptation, our model achieves

better cross-entropy than the current state-of-the-art [41], making

it an effective technique to fine-tune an NLM on a specific project.

Using this method, it is even possible to evaluate NLMs on the

maintenance scenario, which was previously deemed infeasible by

[41] since multiple models had to be created, each trained on the

entirety of the test set minus one file. This is possible for us because

the combination of a small vocabulary size and our finetuning

method running for only one epoch make this scenario much faster.

Open vs closed NLMs. Interestingly, the difference in performance

between the open and closed vocabulary NLMs is larger in the

dynamic setting. We hypothesize that dynamic adaptation helps

the open-vocabulary model to learn project-specific patterns about

OOV words; this is not possible for a closed vocabulary NLM.

Dynamic adaptation for NLMs yields the state of the art; static

NLMs are competitive with some dynamic n-gram models, which

bodes well for transfer learning.

8.5 RQ5. Bug Detection

Previous work has observed that n-gram language models can de-

tect defects as they are less “natural” than correct code [75]. In

short, defective lines of code have a higher cross-entropy than their

correct counterparts. To assess whether our code NLM is applicable

beyond code completion, we compare the ability of different lan-

guage models to differentiate between the two on the well-known

Defects4j dataset [53]. Defects4J contains 357 real-world defects

from 5 systems. Both a buggy and a corrected version of the system

are provided and the changed lines can be extracted. We compute

the difference in entropy between the buggy and the fixed version

for each of the diff patches provided. The extracted code snippets

usually contains a few unchanged surrounding lines that provide

useful context for the LMs. We expect a better LM to have a larger

entropy difference between the defective and the corrected version.

We compute these metrics only for LMs in a static setting for

three reasons: 1) we simulated the setting in which a bug detector

is trained on one set of projects and used on unseen ones, 2) it is

not clear how caches would be used in this scenario (should the

LM “know” which file a bug is in?), and 3) doing so could involve

training two LMs for each defect, which is very expensive.

The results are shown in the Java "bugs" column in Tables 2

and 3. As we hypothesized, open vocabulary NLMs feature a larger

entropy drop for clean files than n-gram LMs or closed NLMs. The
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drop in entropy is 70% to 100% for the small training set, depending

on vocabulary size and model capacity (larger is better). Further-

more, these models benefit from a large training set, with a larger

drop of 127 to 173%. We hypothesize that beyond data sparsity for

identifiers, the NLM’s long range dependencies are especially useful

in this task.

Open-vocabulary NLM are better bug detectors than n-gram LMs,

particularly when trained on large corpora.

9 CONCLUSIONS

Source code has a critical difference with natural language: develop-

ers can arbitrarily create new words, greatly increasing vocabulary.

This is a great obstacle for closed-vocabulary NLMs, which do not

scale to large source code corpora. We first extensively studied vo-

cabulary modelling choices, and showed that the only viable option

is an open-vocabulary NLM; all other vocabulary choices result in

large vocabularies, high OOV rates, and rare words.

We then presented a new open-vocabulary NLM for source code.

By defining the model on subword units, which are character subse-

quences of tokens, the model is able to handle identifiers unseen in

trainingwhile shrinking vocabulary by three orders of magnitude. As

a consequence, our NLM can scale to very large corpora: we trained

it on data sets over a hundred times larger than had been used for

previous code NLMs. Our NLM also uses beam search, dynamic

adaptation, and caching to efficiently generate tokens and adapt to

new projects. Finally, we showed that our NLM outperforms recent

state-of-the-art models based on adding nested caches to n-gram
language models for code completion and bug detection tasks, in a

variety of scenarios, and in three programming languages.

Of course, this study has limitations: While we tried to be ex-

haustive and evaluated a large number of scenarios, we could not

evaluate all the possible combinations (hundreds) due to the re-

sources needed, such as some large models or some large training

scenarios. For this reason, we also refrained to evaluate other NLM

architectures such as LSTMs [45], QRNNs [16], Transformers [85],

or additional neural cache variants [62, 86]. For the same reason, as

in [41] we also limited MRR to 1 million tokens, which may cause

discrepancies with entropy metrics as they are not evaluated on

the same test set. We also limited ourselves to three languages, and

did not fully evaluate the impact of code duplication [1].

We also hope that the simplicity and scalability will enable large

capacity models for code, and the transfer learning opportunities

they bring [28, 72]; this has been explored in software engineer-

ing, albeit not for source code [77]. Improved language models for

code have the potential to enable new tools for aiding code read-

ability [2], program repair [13, 18, 40, 75], program synthesis [39]

and translation between programming languages [54, 66]. Finally,

the technique of using subword units is not limited to language

modeling, but can easily be incorporated into any neural model of

code, such as models to suggest readable names [3], summarizing

source code [5, 49], predicting bugs [70], detecting code clones [87],

comment generation [47], and variable de-obfuscation [10].

Table 4: DOIs of artifacts used or produced by this work

Artifact DOI

Java corpus https://doi.org/10.7488/ds/1690

C corpus https://doi.org/10.5281/zenodo.3628775

Python corpus https://doi.org/10.5281/zenodo.3628784

Java, pre-processed https://doi.org/10.5281/zenodo.3628665

C, pre-processed https://doi.org/10.5281/zenodo.3628638

Python, pre-processed https://doi.org/10.5281/zenodo.3628636

codeprep https://doi.org/10.5281/zenodo.3627130

OpenVocabCodeNLM https://doi.org/10.5281/zenodo.3629271

Trained models https://doi.org/10.5281/zenodo.3628628

10 ARTIFACTS

Several artifacts were used to conduct this study: data, source code,

andmodels. To improve replication of this work, the specific version

of each artifact used in this study can be referenced via a DOI. Table

4 lists the DOI of each artifact. This paper can be referenced when

any of these artifacts is used.

Datasets. The datasets described in 3 were published in previous

work: The Java corpus was produced by Allamanis et al. [6], and also

used in [41]. The C corpus was mined in [29] and the Python corpus

was mined in [31]. We use the raw datasets for the vocabulary study,

but preprocess them for NLM training. Further, we defined training

and test sets for the C and Python corpora, and defined the large

training set for the Java corpus.

Source code.We implemented the codeprep library that supports

a variety of pre-processing options for source code. We used code-

prep to gather the vocabulary statistics presented in section 4. Re-

searchers that wish to use the library to pre-process source code

for their own study can find the library at: https://github.com/

giganticode/codeprep.

The open vocabulary language model described in 5, as well

as the scripts implementing the training procedure and the eval-

uation scenarios are available in the OpenVocabCodeNLM library.

Researchers wishing to extend our model can find it on GitHub at:

https://github.com/mast-group/OpenVocabCodeNLM.

Models. The models that were trained and evaluated in section

8 are also made available for further use. Each model was trained

on GPUs for periods ranging from a few hours, up to two weeks.

These models can be used as-is for inference in a code completion

scenario. Alternatively, they may be fine-tuned for other tasks, such

as classification [46, 77].
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