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Abstract—Many software engineering data sets, particularly
those that demand manual labelling for classification, are nec-
essarily small. As a consequence, several recent software en-
gineering papers have cast doubt on the effectiveness of deep
neural networks for classification tasks, when applied to these
data sets. We provide initial evidence that recent advances in
Natural Language Processing, that allow neural networks to
leverage large amount of unlabelled data in a pre-training phase,
can significantly improve performance.

Index Terms—Data Sets, Deep Learning, Transfer Learning

I. INTRODUCTION

Deep neural networks have revolutionized the field of ma-
chine learning, leading to significant improvements over the
state of the art in a large variety of tasks and domains (includ-
ing image recognition, speech recognition, machine transla-
tion, summarization, and others). In Software Engineering, the
results have been more mixed. While many approaches have
promising results (e.g., code completion, variable naming,
code translation and summarization), several recent papers
have cast doubt about the effectiveness of neural networks
in some settings [1], [2]. One reason is the performance on
small SE data sets, which we examine in this paper.

The use cases where deep neural networks outperform the
state of the art are those where large amount of data is
available, such as the ImageNet data set [3], which features
more than 14 million labelled images in its largest version.
However, many data sets are much smaller, particularly in
the case of supervised learning, as each data point must be
manually labelled. This manual task is often an expensive
process, and all the more in Software Engineering: while
ImageNet labelling can be crowdsourced, labelling a SE data
set requires significant expertise. It cannot be crowdsourced
easily, and is thus vastly more expensive. In practice, many
SE data sets are manually labelled by researchers, and are thus
limited to hundreds or thousands of data points only. Recent
work reports disappointing performance when training deep
neural networks from scratch on small SE data sets.

In this paper, we investigate whether the small data set issue
can be alleviated in Software Engineering, starting with natural
language (NL) SE datasets (we are actively exploring the
source code case). We show that a form of transfer learning,
namely unsupervised pre-training on large data sets, can be
effectively used to improve the performance on small NL SE
data sets. Several approaches—detailed in Section III—have

shown this strategy to be effective in Computer Vision and
(lately) in Natural Language Processing. These approaches
are all a variation of a common idea: when training a neural
network from scratch, all the model’s weights are initialized
randomly. Pre-training instead initializes the weights with
values obtained by training a model on a related tasks, for
which data is easier to gather; in this case, by using large
amounts of unlabelled data, no manual labelling is necessary.

II. SMALL DATA SETS IN SOFTWARE ENGINEERING

Many labelling tasks, such as identifying objects in images,
drawing bounding boxes for these objects, or identifying
the sentiment of a movie review, do not require specific
expertise. They can hence be crowdsourced at a reasonable
cost, particularly thanks to crowdsourcing platforms such as
Amazon Mechanical Turk.

As manual labelling in Software Engineering requires ex-
pertise in Software Engineering, it is usually done by the
researchers themselves. This approach is expensive, and due
to the amount of effort involved, is often limited to hundreds
or thousands of data points. This is all the more true since the
effort is often duplicated to verify whether annotators are in
agreement with each other. Some examples follow.

Bacchelli et al. manually linked 2,139 emails from 6 open-
source projects with the source code entities they referenced
[4]. Fakhoury et al. labelled 1,700 Java methods (with com-
ments) according to the linguistic antipatterns they exhibited
[2]. Ortu et al. labelled 2,000 JIRA issue reports, and 4,000
sentences with the sentiments expressed in them. Novielli et
al. labelled 4,423 stack Overflow posts with sentiment [5].
Lin et al. labelled the sentiment of each word of 1,500 Stack
Overflow sentences according to their sentiment [1]; they also
labelled 341 app reviews for sentiment. Villaroel et al. [6]
classified 1,200 app reviews, while Maalej at al. [7] classified
4,400 app reviews, in both cases in categories such as bug
reports, and feature requests. Zhou et al. hired students to
analyze 1,674 API elements to determine whether they have
API directive defects [8]. These data sets are several orders
of magnitude smaller than the ones where Deep Learning
approaches are the state of the art, such as ImageNet.

In two cases, some of these data sets have been used as input
for deep learning techniques, with lackluster results. Fakhoury
et al. applied a Convolutional Neural Network (CNN) for
linguistic antipattern detection; they find that the CNN matches



the performance of an SVM, but that parameter tuning of the
SVM further increases performance [2]; in contrast, tuning
the hyperparameters of the CNN is impractical as training it
is very slow. Lin et al. train the Stanford CoreNLP parser,
that uses an RNN, on Stack Overflow, JIRA, and App Review
data for sentiment analysis, and finds that its performance is
below their expectation; in fact, they find that all of the tools
that perform sentiment analysis that they tried, are generally
unsuitable for the Software Engineering domain [1].

III. PRE-TRAINING NEURAL NETWORKS

Neural network pre-training is a form of inductive transfer
learning [9], in which a neural network is first trained on a
source task (supervised or unsupervised), before some, or all,
of the layers of the neural network are trained on a target task.
The training on the source task is often called pre-training,
while the training on the target task is often called fine-tuning.

The intuition behind this practice is that the weights learned
during pre-training are a much better “starting point” than
randomly initialized weights.

a) Pre-training in Computer Vision: Pre-training is a
very widespread practice in computer vision. Early unsuper-
vised pre-training algorithms via autoencoders made training
of deep neural networks easier [10], [11]. With the advent
of the ImageNet data set [3], the practice of supervised pre-
training on ImageNet [12] emerged. In this case, a neural
network is trained to classify a version of the ImageNet data
set (1,300,000+ images, divided in 1,000 classes), and is
then re-purposed to perform similar tasks (such as different
classification, image segmentation, or others [12]). The last
classification layers of the network are replaced either by
new classification layers, or layers performing a different task.
Training on the new task is then resumed to learn weights for
the new layers, and adjust the weights of the first layers.

Perhaps an intuitive explanation of why pre-training works
comes from visualizing the layers of a CNN [13]. Zeiler and
Fergus show that the layers of a CNN learn more and more
abstract features. Taking the example of a neural network with
five layers trained on ImageNet, they show that the neurons
in each layer are activated by different types of features, with
increasing levels abstraction. Neurons in the first layer learn
to detect edges or patches of color; the second layer detects
simple patterns such as corners, circles, or parallel lines; the
third layer more intricate patterns (grids, text); the fourth layer
is more class-specific (e.g. detecting dog faces), while neurons
in the fifth layer tend to be activated by entire objects, with
diversity in their configuration (e.g. detecting various types of
dogs). Clearly, many of the features learned in such a network
are rather general, and can be reused for other detection tasks.

A further practical consequence of this is that after training
a model, researchers can provide it to the community. Other
researchers can then download the model weights to reuse
them in their specific scenarios. The practice has become so
commonplace that some deep learning APIs allow extremely
easy access to these models; instantiating a pre-trained model
is just a (large) download and a few lines of code away.

b) Pre-training in Natural Language Processing: Com-
paratively, pre-training has been, until recently, less prevalent
in Natural Language Processing. Beyond being an area where
sustained interest in applying deep neural networks is more re-
cent, another reason is that NLP data exhibits more variability.
While it is reasonable to build a data set where all the images
have the same dimensions, sentences and documents can vary
greatly in length. In addition, at the most common unit of
modelling—when documents are modelled as sequences of
words—an additional challenge is how to handle words that
are unknown to the model (the “out of vocabulary” problem).

The first advances in this domain has been word-
embeddings, particularly with word2vec [14]. These ap-
proaches learn word representations (word vectors) on an
unlabelled corpus based on co-occurrences of words in a
similar context (usually a window of 2 words before/after
the word of interest). Pre-trained word-embeddings are easily
available and are commonly used in Software Engineering,
and researchers have provided word2vec embeddings specific
to Software Engineering [15].

While a step in the right direction, word embeddings are
far from a full pre-trained deep model: they are shallow. Word
embeddings are essentially the first layer of a neural network
dedicated to NLP.

In the last year, several approaches showed that it was
possible to apply unsupervised pre-training of deeper mod-
els in NLP, showing significant improvements on the target
tasks. Howard and Ruder present a specific training schedule
enabling pre-training of full LSTM [16]; we adopt their ap-
proach, ULMFit, described next. During this study, additional
work was published: Peters et al. introduced Embeddings from
Language Models (ELMo), where more descriptive embed-
dings are created based on the internal state of an LSTM [17].
Radford et al. show that they can pre-train a different neural
network architecture, the Transformer [18].

IV. ULMFIT

In this work, we apply the Universal Language Model Fine-
tuning (ULMFit) approach of Howard and Ruder [16], and test
whether the improvements they observed on text classification
can be obtained on Software Engineering data sets, including
on language models of source code. We first start by describing
the approach in details. ULMFit consists in three steps: 1) a
Language Model pre-training step, where a language model is
trained (unsupervised) on a general domain (source) corpus;
2) a Language Model fine-tuning step, where the language
model is fine-tuned (still unsupervised) on the target corpus;
and 3) a classifier fine-tuning step, where the final classifier
is fine-tuned in a supervised manner.

During language model pre-training, the language model is
trained normally. That is, a Long short-term memory (LSTM)
[19] language model (more precisely, the AWD-LSTM [20])
is trained to predict the next word in the corpus, given the
previous words in a sequence. Howard and Ruder reuse an
existing pre-trained language model, trained on the Wikitext-



103 data set by Merity et. al [20]; this corpus contains 28,595
Wikipedia articles, for a total of 103 million words.

In the second step, language model fine-tuning, the language
model is fine-tuned to the specific characteristics of the target
corpus. In particular, the target corpus is scanned for unknown
words (words that were absent from the source corpus).
The new words are added to the model’s vocabulary: the
embedding matrix is expanded to accommodate them, and
their weights are initialized as the mean of the weights of the
other words. Afterwards, the model processes the target corpus
to adjust the weights of the model to the new corpus. The
fine-tuning approaches uses discriminative fine-tuning, that is,
a different learning rate for each layer of the neural network.
The rationale for this is that different layers model different
kinds of information: the first layers, being more general,
should adapt more slowly to new data than the last layers. The
approach also varies the learning rate over time according to
a schedule. This particular schedule uses slanted triangular
learning rates, where the learning rate initially starts slow,
rises quickly, before dropping gradually.

Finally, in the third step, the language model is re-purposed
for classification: the softmax layer is replaced by two linear
blocks with batch normalization and dropout. As these layers
are initialized with random weights, simply resuming training
would cause too many updates in the earlier layers, risking
forgetting valuable knowledge. Thus, the model is gradually
unfreezed: during the first training cycle, all but the last layers
are frozen, meaning that their weights will not be updated dur-
ing training. In the next cycle, the next to last layer is unfrozen
before training resumes; the process continues until all layers
are unfrozen. This fine-tuning also uses discriminative fine
tuning and slanted triangular learning rates.

V. SENTIMENT ANALYSIS: GOING FARTHER

To test whether pre-training works in the Software Engineer-
ing domain, we applied the ULMFit approach to the Sentiment
Analysis case, using the three data sets from the study by Lin
et al. [1]: Stack Overflow sentences (1,500 sentences), App
Reviews (341 app reviews), and JIRA issues (926 issues).
We trained the AWD-LSTM [20] model both from scratch,
and using the ULMFit pre-training approach. In the latter
case, similarly to Howard and Ruder, we used the pre-trained
Wikitext-103 model by Merity. This model has three LSTM
layers with 1,150 hidden units, and uses an embedding size
of 400. We perform 5-fold cross validation (training on 80%
of the data, and validating on 20%). We report the average
performance over all splits.

We found that the size of the data sets were small enough
that hyper-parameter search was feasible for the fine-tuning
phase (training a model using 5-fold cross validation varies,
but takes between ca. 5-15 minutes). We performed random
hyper-parameter search, varying the most important hyper-
parameters: learning rate, learning rate multiplier, dropout, and
weight decay. Other parameters used the values reported by
Howard and Ruder. For each data set, we tried 275 to 330

random configurations, and report the performance of the best
performing one.

Similarly to Lin et al., as a first measure of performance we
report the accuracy of the best-performing models (both from
scratch and pre-trained) and compare with the accuracy of all
the models that were reported in Lin et al.: Stanford CoreNLP
SO, Stanford CoreNLP, SentiStrength-SE, SentiStrength, and
NLTK. We also report the F-score (harmonic mean of precision
and recall) for all the classes; Lin et al. reported precision
and recall independently. We prefer the F-score since it con-
solidates precision and recall in a single metric, and favours
models that have a balanced performance (a model with, eg,
very low precision and very high recall will have a low f-
score). We report the performance of all approaches on all
data sets in table I, as well as the average of the accuracy
across all three data sets.

We can see that across all the data sets, both AWD-LSTM
approaches perform better and more consistently than the other
approaches in terms of accuracy. This is not surprising, since
they are the only approaches that are trained on the data
itself, with the exception of Stanford Core NLP SO, which is
trained on Stack Overflow (more on this later). As Lin et al.
observed, off the shelf techniques are not ready for use yet, and
specific re-training is required. Specific re-training is indeed
the only way to obtain consistently acceptable performance,
which makes any approach that improves performance for
small data sets valuable.

In this context, the most important observation is that the
pre-trained AWD-LSTM indeed outperforms the one trained
from scratch, and especially does so on the data sets with
the lowest accuracy. Over all datasets, the pre-trained version
improves accuracy by 2.9%, which corresponds to a 21.4%
reduction in error rate. Moreover, the pre-trained AWD-LSTM
is the only approach that has reasonable (exceeding 50%)
F-scores for the positive and negative classes on the Stack
Overflow data set. The only issue we can observe is the neutral
class on the App Reviews data set, which the pre-trained
AWD-LSTM essentially ignores. This is because there are
only 25 instances of that class in the entire data set, which is
extremely small, especially with 5-fold cross validation (other
configurations did fare better for this class, but never well).

Since Stanford CoreNLP SO and the AWD-LSTMs are
trained on the Stack Overflow data set, we can perform
a more head-to-head comparison. We can see that in this
case, our approaches have better performance, in spite of two
limitations: we use five-fold cross validation instead of ten-
fold cross validation, so we train on only 80% of the data, not
90%. More importantly, our approach only requires one label
per sentence, not one label per word. This is a key difference,
as this allows our approach to be re-trained much more easily
on data that is labelled at the sentence level, such as the App
Review and the JIRA data set. Since per-word labels were
lacking on these two data sets, Lin et al. were unable to retrain
their classifier without investing significant manpower to do so.



TABLE I
OUR RESULTS (SHADED) COMPARED TO LIN ET AL. [1] (WHITE BACKGROUND). BOLD INDICATES BEST PERFORMANCE; UNDERLINED, SECOND-BEST.
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SentiStrength 1,043 69.5 25.7 81.3 41.4 213 62.5 80.1 16.7 47.8 714 77.1 88.4 N/A 82.3 69.7
NLTK 1,168 77.9 27.6 87.3 14.8 184 54.0 78.0 15.4 28.9 276 29.8 50.6 N/A 42.4 53.9
Stanford CoreNLP 604 40.3 27.6 49.5 29.2 237 69.5 76.9 20.3 70.8 626 67.6 66.9 N/A 80.5 59.1
SentiStrength-SE 1,170 78.0 25.9 87.5 27.0 201 58.9 77.7 16.8 45.4 704 76.0 91.4 N/A 82.5 71.0
Stanford CoreNLP SO 1,139 75.9 19.9 86.0 36.5 142 41.6 38.1 13.3 55.2 333 36.0 36.1 N/A 52.3 51.2
AWD-LSTM (from scratch) 1,225 81.7 23.0 90.0 39.4 272 79.8 85.5 7.1 78.9 880 95.0 91.9 N/A 96.4 85.5
AWD-LSTM (pre-trained) 1,273 84.9 53.5 91.3 58.2 288 84.5 90.5 0.0 83.7 894 96.5 94.4 N/A 97.5 88.6

VI. CONCLUSIONS AND FUTURE WORK

Labelled SE data sets are necessarily small, as labelling
them is expensive; any approach able to improve performance
in these conditions can be extremely valuable. We investigated
the effectiveness of unsupervised pre-training of neural net-
works on a large unlabelled corpora, followed by fine-tuning
on the target task. While we have shown early evidence that
unsupervised pre-training is beneficial for small NL SE data
sets, extensive future work is needed.

Unlabelled corpus. We used a model pre-trained on
Wikipedia but, “Wikipedia English” is quite different from
the English on Stack Overflow, JIRA, or App Reviews. There,
the language can be much more technical, or more informal
than on Wikipedia. Typos may be much more common too.
We expect that pre-training on unlabelled corpora of Stack
Overflow posts, JIRA issues, or App Reviews would yield
further performance improvement, and plan to quantify it.

Other architectures. In parallel to this work, novel ar-
chitectures supporting pre-training emerged, such as ELMo
embeddings [17] and the Transformer [18]. They could also
be evaluated on small SE data sets as well. In addition, we
only tried a forward LSTM, while Howard and Ruder report
better performance with a bidirectional LSTM.

New data sets. We will conduct similar studies on additional
NL SE data sets to see whether the effect is observable beyond
sentiment analysis, and better characterize the performance
difference when the size of the data set changes. Some
additional data sets may require adaptations of the technique.

Source code. Source code data sets require extensive further
work. For instance, Hellendoorn and Devanbu observed that
the vocabulary in source code can grow much larger than
in NL, as programmers are free to create arbitrarily long
and complex identifiers [21]; careful modelling choices (such
as identifier splitting) are needed to address these issues in
order to maintain vocabulary size under control, and to handle
project-specific identifiers.

Providing models. Finally, as we will be building pre-trained
models based on specific corpora, we plan to release those pre-
trained models to the community, so that other researchers can
reuse them in their work, without incurring the prohibitive cost
of training very large models from scratch.
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[7] W. Maalej, Z. Kurtanović, H. Nabil, and C. Stanik, “On the automatic
classification of app reviews,” Requir. Eng., vol. 21, no. 3, 2016.

[8] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in Proceedings of ICSE 2017.

[9] S. J. Pan, Q. Yang et al., “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10, 2010.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural computation, vol. 18, no. 7, 2006.

[11] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in Proceedings of NIPS 2007.

[12] M. Huh, P. Agrawal, and A. A. Efros, “What makes imagenet good for
transfer learning?” arXiv preprint arXiv:1608.08614, 2016.

[13] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Proceedings of ECCV 2014.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proceedings of NIPS 2013.

[15] V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for
the software engineering domain,” in Proceedings of MSR 2018.

[16] J. Howard and S. Ruder, “Universal language model fine-tuning for text
classification,” in Proceedings of ACL 2018.

[17] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of NAACL 2018.

[18] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training.”

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, 1997.

[20] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing
LSTM language models,” in Proceedings of ICLR 2018.

[21] V. J. Hellendoorn and P. Devanbu, “Are deep neural networks the best
choice for modeling source code?” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 2017.


	Introduction
	Small Data Sets in Software Engineering
	Pre-training Neural Networks
	ULMFit
	Sentiment Analysis: Going Farther
	Conclusions and Future Work
	References

