
Assessing the Threat of Untracked Changes in So�ware
Evolution

Andre Hora
FACOM, UFMS, Brazil
hora@facom.ufms.br

Danilo Silva, Marco Tulio
Valente

ASERG Group, DCC, UFMG, Brazil
{danilofs,mtov}@dcc.ufmg.br

Romain Robbes
SwSE Group, Free University of

Bozen-Bolzano, Italy
rrobbes@unibz.it

ABSTRACT
While refactoring is extensively performed by practitioners, many
Mining Software Repositories (MSR) approaches do not detect nor
keep track of refactorings when performing source code evolution
analysis. In the best case, keeping track of refactorings could be
unnecessary work; in the worst case, these untracked changes could
signi�cantly a�ect the performance of MSR approaches. Since the
extent of the threat is unknown, the goal of this paper is to assess
whether it is signi�cant. Based on an extensive empirical study, we
answer positively: we found that between 10 and 21% of changes at
the method level in 15 large Java systems are untracked. This results
in a large proportion (25%) of entities that may have their histories
split by these changes, and a measurable e�ect on at least two MSR
approaches. We conclude that handling untracked changes should
be systematically considered by MSR studies.

CCS CONCEPTS
• Software and its engineering→ Software evolution;

KEYWORDS
Mining Software Repositories, Software Evolution, Refactoring
ACM Reference Format:
Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes. 2018.
Assessing the Threat of Untracked Changes in Software Evolution. In ICSE
’18: 40th International Conference on Software Engineering , May 27-June
3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3180155.3180212

1 INTRODUCTION
Mining Software Repositories (MSR) techniques are helping to im-
prove our understanding of software development and contributing
to the implementation of a new generation of software engineer-
ing tools. Many of the existing MSR techniques are based on the
analysis of changes performed on source code repositories [30].
For example, change-based techniques have been proposed to sup-
port library migration [27, 45, 66], change prediction [69], bug
�xing [36], warnings prioritization [5, 9, 11, 34, 35], and expertise
calculation [3, 44, 51, 62], to name a few.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180212

Generally, these techniques operate on the level of the individ-
ual methods and classes changed on each commit. For example,
by mining the history of the methods in a system, change-based
techniques can learn that methods that depend on type A are often
updated to depend on an improved type A’. A recommendation
can then be provided to alert developers about the methods not yet
updated in the system. However, these techniques require tracking
the changes along all versions of each individual method (or class)
in the system under analysis. The challenge is that some changes
invalidate this tracking when it is solely based on the names of the
tracked entities. Speci�cally, refactorings may introduce disconti-
nuities in name-based tracking strategies. For instance, a method
rename or move can be misinterpreted as the disappearance of a
method and the appearance of a brand new one, splitting its history,
and thus invalidate the tracking. We call the changes that a�ect the
names of code entities untracked changes (this de�nition is detailed
in Section 2). If not properly handled, untracked changes may have
a negative impact on the accuracy of MSR-based techniques.

While the threat of untracked changes has been acknowledged
in the literature (several examples are presented in Section 3), to our
knowledge, the actual extent of these changes on MSR studies has
not been investigated. Assessing the extent of threats toMSR studies
is essential; prior work has investigated bias in bug-�x datasets
[8], or non-essential changes [30]. In this paper, we perform such a
study: we assess the frequency, extension, and impact of the threat
of untracked changes. We detail our methodology in Section 4 and
our selection of case studies (15 popular Java systems) in Section 5.
We then answer the following research questions:

• RQ1. What is the frequency of untracked changes? In Section 6,
we �nd that between 10 and 21% of method-level changes
and 2 and 15% of class-level changes are untracked. The most
common ones are due to rename, extract, and move method.

• RQ2. What is the extension of untracked changes? Section 7
shows that 25% of entities have at least one untracked change
in their histories, and thus may have their history split. In
the most changed entities, the proportion raises to 37%.

• RQ3. What is the impact of untracked changes in existing MSR-
based approaches? In Section 8, we investigate the concrete
impact of untracked changes in twoMSR approaches, namely
API evolution and API co-usage rule mining. We �nd that,
on the median, up to 6.9% and 5.3%, respectively, more rules
are discovered when untracked changes are considered.

Thus, the contributions of this work are twofold: (i) we provide an
empirical study to assess the frequency and extension of untracked
changes at a large scale and (ii) we measure the concrete impact of
untracked changes in two MSR-based approaches.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

We discuss the implications and threats to validity of our study in
Sections 9 and 10, respectively. Finally, we cover related work (stud-
ies of threats to MSR studies, and approaches to detect untracked
changes) in Section 11, and conclude in Section 12.

2 TRACKED AND UNTRACKED CHANGES
This section de�nes the two categories of changes that we analyze
in this study. During software evolution, two kinds of changes can
occur to code entities such as classes and methods: tracked and
untracked changes. A tracked change preserves the entity name and
modi�es its source code. Thus, an entity in version n can be directly
matched to its following version n+1. In contrast, an untracked
change modi�es the entity name, and may also modify its source
code. They occur due to, for example, rename or move refactorings.
In addition, an untracked change may also spawn a new entity, for
example, as the result of extract method refactorings. Therefore,
an entity in version n is not matched to its version n+1, unless
the untracked change is resolved with the support of a refactoring
detection approach (e.g., [32, 57, 58]).1

Figure 1 illustrates examples of tracked and untracked changes in
four source code versions. Each box represents a class and its meth-
ods, and each arrow represents an evolutionary change between
two consecutive versions. Class Foo and its method mA() undergo
some tracked changes (solid arrow), since they do not change entity
names. Thus, to understand the evolution of Foo and mA(), one
can trace them backward or forward. For example, the last version
of mA() can be straightforwardly traced back to its �rst version,
and vice-versa. On the other hand, class Bar and its method mB()
undergo some untracked changes (dashed arrow). Method mB() is
renamed to mX() in version 2, and then to mY() in version 4; class
Bar is also renamed to Baz in version 4. In this case, mY() in version
4 may not be traced back to its originating method mB() in version
1, due to the method renaming. Consider now the more challenging
scenario: method mC() is moved from class Bar to Qux in version 3,
and then, method mE() is extracted from mC() in version 4. Notice
that two non-trivial untracked changes happen: move and extract
method. In this case, methods mC() and mE() in version 4 have both
their origin in version 1 of mC(). Therefore, if the untracked change
is not resolved, method mE() may be simply misdetected as a new
method, and its actual origin may not be found.

class Foo {
 mA() {…}
}

class Bar {
 mB() {…}
 mC() {…}
}

class Foo {
 mA() {…}
}

class Bar {
 mX() {…}
 mC() {…}
}

class Foo {
 mA() {…}
}

class Bar {
 mX() {…}

}

class Foo {
 mA() {…}
}

class Baz {
 mY() {…}

}

class Qux {
 mC() {…}

}

class Qux {
 mC() {…}
 mE() {…}
}

tracked change
untracked change

version 1 version 2 version 3 version 4

Legend

Figure 1: Example of tracked and untracked changes.

Untracked changes at the class level (e.g., class renaming or
moving) behave similarly, and, if unresolved, can be misdetected
in the same fashion, albeit on a larger scale, since losing track of a
class means also losing track of its methods.
1Another name to tracked and untracked changes could be history-preserving and
history-destroying changes, respectively.

3 THE THREAT OF UNTRACKED CHANGES
In this section we present three MSR research lines a�ected by
untracked changes. We illustrate each scenario with real-world
examples extracted from open-source projects. We conclude the
section by generalizing our discussion to other a�ected research
lines, and state the problem we investigate.

3.1 Scenario 1: Mining Code Evolution
The �rst scenario comes from a research line intended to mine
code evolution. The main idea is to compare two versions of a code
entity, and to learn from the di�erences. Applications of this line
are broad, including learning how bugs are �xed [36], detection of
behavioral breaking changes [59], and extraction of rules to support
library migration [27–29, 45, 66]. Figure 2 illustrates an example in
the context of library migration, from project WordPress-Android.2
Version n has a reference to class Vector that is replaced by a
reference to List in version n+1. The example shows a tracked
change: method Blog() in version n is directly matched to method
Blog() in version n+1. By comparing the di�erences between both
method versions, one may infer the rule Vector ! List.

public Blog(int blog_id) throws Exception{
 //instantiate a new blog
 Vector<Object> blogVals = WordPress.wpDB.loadSettings(blog_id);
 if (blogVals != null) {
 //...

public Blog(int blog_id) throws Exception{
 //instantiate a new blog
 List<Object> blogVals = WordPress.wpDB.loadSettings(blog_id);
 if (blogVals != null) {
 //...

ve
rs

io
n

n
ve

rs
io

n
n+

1

Figure 2: Two versions of method Blog(). Rule Vector !
List can be inferred by comparing both method versions
(project WordPress-Android).

Consider the example in Figure 3, from project OkHttp.3 Version
n has an invocation to FileInputStream() that is replaced by an
invocation to Okio.source() in version n+1. The example presents
an untracked change: method newInputStream() in version n is
renamed to newSource() in version n+1. Thus, unless the method
renaming is resolved, this change may be seen as a removal of
newInputStream() and an addition of newSource(). In this case,
these methods would not be matched, and, consequently, the rule
FileInputStream()! Okio.source() would not be inferred.

public Source newSource(int index) throws IOException {
 //...

 try {
 return Okio.source(entry.cleanFiles[index]);
 } catch (FileNotFoundException e) {...}
}

public InputStream newInputStream(int index) throws IOException {
 //...

 try {
 return new FileInputStream(entry.cleanFiles[index]);
 } catch (FileNotFoundException e) {...}
}

ve
rs

io
n

n
ve

rs
io

n
n+

1

Figure 3: Method newInputStream() is renamed to
newSource(). Rule FileInputStream() ! Okio.source()
may not be detected, after a renaming (project OkHttp).
2Change available at: https://goo.gl/NHvjgH
3Change available at: https://goo.gl/2NvgC1

Assessing the Threat of Untracked Changes in So�ware Evolution ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

The literature recognizes the issues caused by untracked changes
such as class or method renaming. Commonly, they are treated as
threats to validity or limitations. For example, in the context of
API evolution, Hora et al. [27] state: “API changes are automatically
produced by applying the [...] technique on the set of method call
changes between two versions of onemethod”. Similarly, in the context
of bug �xing, Kim et al. [36] notice: “Our approach is based on
comparing a source code �le of two versions, so the bugs captured
and �xes suggested are only �le-by-�le based”. In both cases, rename
refactorings are not resolved. Raemaekers et al. [50] plainly state:
“We detect renamed or moved units as units that are removed �rst and
added later”. In the domain of behavioral breaking changes, Soares
et al. [59] note: “A similar thing occurs when renaming a class. We
cannot compare the renamed method’s behavior directly”.

3.2 Scenario 2: Prioritizing Code Warnings
The second scenario comes from a research line meant to prioritize
warnings (or code violations) reported by static analysis tools, such
as FindBugs [4], PMD [13], and Checkstyle [10]. These tools are
used to �nd common programming issues, related to performance,
security, legibility, etc. In practice, static analysis tools are known to
report too many warnings. Consequently, most reported warnings
are unlikely to be �xed by developers, which are known as false
positives [35, 48]. In this context, researchers propose approaches
to �lter out false positives (e.g., [5, 9, 11, 14, 34, 35, 65]). A common
approach is to detect the most �xed warnings over time, which
are more likely to be relevant than warnings never �xed by any
developer. For example, the warning “method parameters should
be �nal”4 is systematically �xed in project Easy Properties.5 Thus,
such warning could receive a high prioritization in this project.

Consider now the example in Figure 4, which shows two versions
of method invoke() in project Apache Tomcat.6 Version n contains
a warning (i.e., “explicit initialization with null”7) that seems to
be �xed in version n+1. However, the warning is not �xed but
only moved to methods findMethod() and buildParameters()
in version n+1, as the result of a extract method refactoring. In this
case, approaches may misclassify the warning as �xed if the extract
method refactoring is not taken into account.

static Method findMethod(...) {
 Method matchingMethod = null;
 //extracted code
static Object[] buildParameters(...) {
 Object[] parameters = null;
 //extracted code

public Object invoke() {
 Method matchingMethod = null;
 //extracted code
 Object[] parameters = null;
 //extracted code

public Object invoke() {
 Method matchingMethod = Util.findMethod(...);
 Object[] parameters = Util.buildParameters(...);
 //...

ve
rs

io
n

n+
1

ve
rs

io
n

n

Moving warning
“explicit

initialization”

Figure 4: Warning “explicit initialization with null”
is moved from method invoke() to findMethod() and
buildParameters(), after a extract method (project Tomcat).

4http://checkstyle.sourceforge.net/con�g_misc.html#FinalParameters
5Change available at: https://goo.gl/mBL0QK
6Change available at: https://goo.gl/5LbyQT
7http://checkstyle.sourceforge.net/con�g_coding.html#ExplicitInitialization

As in Scenario 1, the literature also notices theses threats, where
missing ormisclassi�ng resultsmay be producedwhen code changes
are not tracked. For example, Ayewah and Pugh [5] state: “If a
method is renamed or moved to another class, any issues in that
method will be reported as being removed [...]”. Peters and Zaidman
[48] note: “[Our tool] is unable to determine if an entity in revision
n has been renamed in revision n+1”. Kim and Ernst [34] mention:
“We exclude removed warnings due to any �le deletion. If there is a
�le deletion during a �x, all warnings in the �les are removed” (note
that a class rename can be misdetected as a �le deletion).

3.3 Scenario 3: Detecting Code Authorship
The last research line is intended to detect code authorship. In
short, the idea is to infer expert developers who are best quali�ed
to maintain certain code �les (e.g., [1, 3, 18, 19, 23, 44, 47, 51, 56, 62]).
Approaches in this area often take advantage of facilities provided
by SCM tools such as Git, SVN, and CVS. For example, Git provides
the facility git blame8, which shows what revision and author last
modi�ed each line of a �le. By using this information, approaches
in this domain can discover the developer who created a �le, the
developer who most modi�ed a �le, among others. However, this
process is sensitive to refactoring, such as moving [3].

Consider the example in Figure 5, which presents a move method
refactoring in project OkHttp.9 Methods computeAge() and com-
puteFreshnessLifetime() are moved from class ResponseHead-
ers in version n to class ResponseStrategy in version n+1. As
SCM tools cannot track �ne-grained refactorings, the actual author
of these methods (i.e., JakeWharton) is lost, after a move method.
In this case, the author in version n+1 would be misdetected as
swankjesse, i.e., the one who performed the move refactoring.

public class ResponseStrategy {
//...
long computeAge(ResponseHeaders response, long nowMillis) {...}
long computeFreshnessLifetime(ResponseHeaders response) {...}
//...

}

public class ResponseHeaders {
//...
public ResponseHeaders(URI uri, RawHeaders headers) {...}
public ResponseHeaders combine(ResponseHeaders network) {...}
private long computeAge(long nowMillis) {...}
private long computeFreshnessLifetime() {...}
//...

}

public class ResponseHeaders {
//...
public ResponseHeaders(URI uri, RawHeaders headers) {...}
public ResponseHeaders combine(ResponseHeaders network) {...}
//...

}

ve
rs

io
n

n
ve

rs
io

n
n+

1

Author:
swankjesse

Author:
JakeWharton

Figure 5: Actual author of methods computeAge() and
computeFreshnessLifetime() (i.e., JakeWharton) is lost, after
a move method (project OkHttp).

These limitations are recognized by related literature. For in-
stance, Avelino et al. [3] state: “The full development history of a
�le can be lost in case of renaming operations, copy or �le split. We
address the former problem using Git facilities. However, we acknowl-
edge the need for further empirical investigation to assess the true
impact of the other cases”. Similarly, Spinellis [62] note: “The git
blame command works by traversing backwards a repository’s his-
tory [...]. Consequently, deleted snapshots would create a discontinuity
between them, and prevent the tracing of code between them”.
8https://git-scm.com/docs/git-blame
9Change available at: https://goo.gl/5HYf5p

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

3.4 Other Scenarios
The aforementioned scenarios show some MSR research lines and
studies a�ected by the threat of untracked code changes. Notice,
however, that the list of presented research lines is not intended to
be exhaustive. In addition to the previous ones, other lines include
studies and threats in the context of (i) bug introducing change
detection10 (e.g., [2, 12, 26, 37–39, 53, 54, 67, 68]): “It is also possible
to miss bug-introducing changes when a �le changes its name since the
algorithm does not track such name changes” [38]; (ii) code evolution
understanding (e.g., [6, 7, 42, 61, 62]): “To distinguish cases where a
method was removed and a new one added from cases when a method
was renamed, we use a heuristic that maps methods with di�erent
names [...]” [7, 42]; (iii) code evolution visual supporting (e.g., [21,
22]): “[Our tool] does not perform any recovery of refactorings such
as renaming, pull or push down methods” [22], among other.

3.5 Problem: What is the Extent of the Threat
of Untracked Changes?

The threat of untracked changes may be faced (at a higher or a
lower level) by several MSR-based studies. In practice, however,
this threat is commonly not assessed by researchers, therefore, we
are still unaware about its real size. Based on that, one important
question appears: what is the frequency, extension, and impact of the
threat of untracked changes? Answering this question has practical
consequences: researchers can better quantify the threat’s impact in
MSR-based studies. Consequently, they will have better support to
decide whether the threat is large enough that they should address
it, or if they can ignore it. In the remainder of this paper, we aim to
answer this question.

4 ASSESSING UNTRACKED CHANGES
4.1 Detecting Untracked Changes
RefDi�. We rely on RefDi� [58] to detect both tracked and un-
tracked changes. RefDi� is a tool that identi�es refactorings per-
formed in the version history of a system. The tool relies on a
combination of heuristics based on static analysis and code similar-
ity to detect 11 well-known refactoring operations that can lead to
untracked changes at the class or method levels. RefDi� also detects
tracked changes at both class and method levels, as summarized in
Table 1. Essentially, RefDi� receives as input two versions �1 and
�2 of a system, and outputs a list of changes performed in �2, when
compared to �1.

Table 1: Types of tracked and untracked changes.

Change Type

Tracked Same Class, Same Method

Untracked

Rename Class, Move Class, Move and Rename Class,
Extract Interface, Extract Superclass, Rename Method,
Move Method, Extract Method, Inline Method, Pull Up
Method, Push Down Method

10These studies are often a�ected by the same issues presented in Scenario 3, since
they often make use SCM facility tools.

RefDi�’s authors provide two evaluations of their tool. First, they
evaluated the tool using an oracle with well-known refactoring in-
stances performed by students in seven Java projects. As presented
in Table 2 (column Eval #1), RefDi� achieved a precision of 100%
in all refactoring types; overall recall was 93.9%, ranging from
60% (Pull Up Method) to 100% (Rename Class and Move Method).
Although the tool detects these refactorings, in their evaluation,
RefDi�’s authors did not consider two refactoring operations: Move
and Rename Class and Extract Interface. In this evaluation, RefDi�
also outperformed the results of similar tools, including Refactor-
ing Miner [57, 64], Refactoring Crawler [16], and RefFinder [32].
These mentioned tools achieved a precision of 96%, 42%, and 26%,
respectively; regarding recall, the results were 73%, 36%, and 64%,
respectively. RefDi� thus constitutes, at the time of writing, the state
of the art in refactoring detection. RefDi�’s authors provide a second
evaluation, using 102 real refactoring instances from ten GitHub
projects. As presented in Table 2 (column Eval #2), with these refac-
torings, RefDi� achieved an overall precision of 85.4% and an overall
recall of 93.6%.

Table 2: Precision and recall of RefDi�.

Refactoring Eval #1 [58] Eval #2 [58] Eval #3

Prec Recall Prec Recall Prec Recall

Rename Class 100 100 100 100 95.0 87.5
Move Class 100 96.8 100 100 98.3 89.5
Extract Superclass 100 87.5 100 100 - 66.7
Move and Rename Class - - - - 71.4 100
Extract Interface - - - - 100 -
Rename Method 100 94.3 88.0 91.7 89.7 92.3
Move Method 100 100 95.5 87.5 92.4 100
Extract Method 100 89.7 73.5 100 79.2 66.7
Inline Method 100 98.1 71.4 83.3 93.8 83.3
Pull Up Method 100 60.0 100 100 100 66.7
Push Down Method 100 97.1 100 100 100 -

All Refactorings 100 93.9 85.4 93.6 89.1 89.8

To increase our con�dence on RefDi�’s accuracy, we manually
validated a set of refactorings detected by the tool in the version his-
tory of the projects investigated in this paper (which are presented
in Section 5). First, we executed RefDi� in the commit history of
these systems. We then randomly selected 383 of such refactorings
for manual validation by the second author of this paper (with this
sample size, we ensure a con�dence level of 95% and con�dence
interval of 5% [63]).11 For each refactoring, he inspected the textual
di�erence produced by GitHub for the respective commit; he then
classi�ed the detected refactorings as true or false positives. As
presented in Table 2 (column Eval #3), the overall precision in this
third evaluation was 89.1%, ranging from 71.4% (Move and Rename
Class) to 100% (Extract Interface and Pull Up/Push Down Method).

Finally, we evaluated RefDi�’s recall using well-know refactor-
ings performed in the version history of the projects investigated
in this paper. To create this gold set, we �rst searched in the textual
description of the commits performed in these systems for regular
expressions denoting the refactorings considered in the study (e.g.,
“extract method”). Then, the second author of this paper checked
11This selection includes instances of all refactorings detected by RefDi�, with the
exception of Extract Superclass; since it is a rare refactoring, no instance of this
refactoring was included in the random sample of refactorings.

Assessing the Threat of Untracked Changes in So�ware Evolution ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

whether these commits indeed include the refactorings declared
in their descriptions. In this way, we created a gold set with 127
validated refactoring instances, which was used to compute recall.
As shown in Table 2 (column Eval #3), the overall recall in this
third evaluation was 89.8%, ranging from 66.7% (Extract Superclass,
Extract Method, and Pull Up Method) to 100% (Move and Rename
Class and Move Method).
Change Graph. To facilitate the evolutionary analysis of classes,
methods, and their related changes, we model a graph—the change
graph—which is built by running RefDi� on a set of system versions
(i.e., commits). In this graph, each class or method is represented as
a node while each tracked or untracked change is represented as an
edge between two nodes. Figure 6 presents the change graph for the
example described in Figure 1. We notice the entities represented
as nodes and the changes represented as edges.

Foo
v1

Foo
v2

Foo
v3

Foo
v4

mA
v1

mA
v2

mA
v3

mA
v4

Bar
v1

Bar
v2

Bar
v3

Baz
v4

mB
v1

mX
v2

mX
v3

mY
v4

mC
v1

mC
v2

Qux
v3

Qux
v4

mC
v3

mC
v4

mE
v4

SC SC SC

SM SM SM

SC SC RC

RM SM RM

SM SC

MM

SM

EM

Tracked Change

Untracked Change

Legend

SC: Same Class

SM: Same Method

RC: Rename Class

RM: Rename Method

MM: Move Method

EM: Extract Method

Figure 6: Change graph for the example in Figure 1.

4.2 Measuring Untracked Changes
After generating the change graph, we can assess the frequency and
extension of tracked and untracked changes. These assessments
are later used to answer research questions 1 and 2.
Frequency. The frequency of changes is assessed by counting the
number of edges in the change graph. Each change can be then
classi�ed as tracked or untracked. In Figure 6, the change graph
has 17 changes, from which 12 are tracked and 5 are untracked.
Speci�cally, it contains the following change types: 6 Same Class
(SC), 6 Same Method (SM), 1 Rename Class (RC), 2 Rename Method
(RM), 1 Move Method (MM), and 1 Extract Method (EM).
Extension. The extension of changes is computed by assessing
the paths in the change graph. We consider a path to represent the
history of an entity. Each path may be formed by tracked and/or
untracked changes. Paths with untracked changes are not desirable,
because their histories may be split (if the untracked changes are not
resolved), decreasing traceability of the entity history. In Figure 6,
for example, the change graph has 7 paths. Three paths include only
tracked changes: Foo�1...Foo�4 (length 3),mA�1...mA�4 (length 3),
and Qux�3...Qux�4 (length 1). Four paths include at least one un-
tracked changes: Bar�1...Baz�4 (length 3),mB�1...mY�4 (length 3),
mC�1...mC�4 (length 3), andmC�1...mE�4 (length 3). Thus, trace-
ability is more precise when untracked changes are resolved.

5 EXPERIMENTAL DESIGN
5.1 Selecting Case Studies
In this studywe analyze tracked and untracked changes that happen
in real-world and popular software systems. We collect the 10 most
popular Java systems hosted on GitHub, as sorted by the star metric.
We restrict our analysis to systems with more than 1K commits to
�lter out newer and less active ones. We also �lter out projects not
related to software systems.12 In addition to these top 10 popular
systems, we added 5 relevant systems from large organizations such
as Google, Facebook, and Apache, totalling 15 case studies.

Table 3 presents an overview of the case studies in terms of
commits, contributors, stars, forks as well as a short description.13
The most popular project is RxJava (24,751 stars) while the most
forked is Spring Framework (10,518 forks). The commits range from
1,025 (Android Image Loader) to 39,389 (Kotlin) while contributors
range from 35 (Android Image Loader) to 837 (Elasticsearch). The
selected systems cover distinct domains, such as search engines,
programming languages, and software tools.

Table 3: Overview of case studies.

Project Com. Cont. Stars Forks Short Description

RxJava 5,109 162 24,751 4,348 Event-based lib.
Elasticsearch 27,738 837 23,057 8,110 Search engine
Retro�t 1,482 110 21,606 4,426 HTTP client
OkHttp 2,963 137 20,189 4,999 HTTP client
Google Guava 4,173 105 16,777 3,933 Core lib. for Java
MPAndroidChart 1,900 57 15,944 4,767 Android view lib.
Glide 1,639 49 15,703 3,238 Android image lib.
Android Image 1,025 35 15,284 6,430 Android image lib.
Kotlin 39,389 159 14,525 1,358 Programming lang.
Spring 14,792 219 14,303 10,518 Support framework
Facebook Fresco 1,342 85 12,775 3,343 Android image lib.
Clojure 3,065 125 6,339 1,064 Programming lang.
Google Guice 1,611 36 5,148 821 Dependency injection
Apache Storm 8,394 259 4,195 3,108 Distributed system
Eclipse Che 3,462 74 4,166 691 Eclipse IDE

5.2 Selecting Commits
After collecting the case studies, we need to select the commits (i.e.,
versions) to be analyzed. Projects using distributed version control
systems such as Git may have several branches under development.
To facilitate code evolution analysis, in this study, we focus on the
evolution of themain branch. For this purpose, we use the command
git log --first-parent14 to select the analyzed commits, since
the Git documentation clearly states: “This option can give a better
overview when viewing the evolution of a particular branch”.

5.3 Computing Untracked Changes
In this �nal step, we perform the approaches described in Section 4.
We run RefDi� for each case study and its respective set of commits.
We then compute the change graph to investigate the frequency and
extension of untracked changes. Our source code implementation
and results are publicly available.15

12For example: https://github.com/iluwatar/java-design-patterns
13The data was collected on 05, June, 2017.
14https://git-scm.com/docs/git-log#git-log---�rst-parent
15Available at: https://github.com/andrehora/rastreability

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

6 RQ1: WHAT IS THE FREQUENCY OF
UNTRACKED CHANGES?

Table 4 presents the frequency of untracked changes at the class and
method levels. At the class level, the systems with proportionally
more untracked changes are Apache Storm (15%), Eclipse Che (14%),
and RxJava (13%). In contrast, the ones with less untracked changes
are Google Guava (2%), MPAndroidChart (2%), and Facebook Fresco
(3%).When considering all projects, 6% of the changes are untracked
at class level. At the method level, the systems with more untracked
changes are Glide (21%), Android Image (21%), and Spring (20%),
while RxJava (10%), Kotlin (13%), and MPAndroidChart (13%) have
less. When considering all projects, 16% of the method changes are
untracked. Thus, the threat of untracked changes happens at both
levels, but is more frequent for methods.

Table 4: Frequency of untracked changes per project.

Project

Frequency of Changes

Total Tracked Untracked
Class Method Class (%) Method (%)

RxJava 50,989 16,195 29,095 2,339 (13%) 3,360 (10%)
Elasticsearch 245,991 97,791 11,9691 4,961 (5%) 23,548 (16%)
Retro�t 8,786 4,468 3,285 302 (6%) 731 (18%)
OkHttp 20,200 5,778 11,247 669 (10%) 2,506 (18%)
Google Guava 42,893 17,987 19,995 391 (2%) 4,520 (18%)
MPAndroidChart 11,775 4,891 5,871 111 (2%) 902 (13%)
Glide 10,640 4,069 4,985 228 (5%) 1,358 (21%)
Android Image 2,338 984 1,006 82 (8%) 266 (21%)
Kotlin 236,144 97,396 116,981 4,523 (4%) 17,244 (13%)
Spring 108,811 42,214 51,519 2,443 (5%) 12,635 (20%)
Facebook Fresco 7,222 2,786 3,674 95 (3%) 667 (15%)
Clojure 10,333 4,616 4,650 165 (3%) 902 (16%)
Google Guice 15,300 5,869 7,822 360 (6%) 1,249 (14%)
Apache Storm 14,260 5,502 6,716 961 (15%) 1,081 (14%)
Eclipse Che 24,602 8,284 12,281 1,301 (14%) 2,736 (18%)

All Projects 810,284 318,830 398,818 18,931 (6%) 73,705 (16%)

Table 5 shows the frequency of untracked changes per type. The
most frequent untracked changes happen at the method level and
are due to Rename Method (23K), Extract Method (21K), and Move
Method (20K). In contrast, the least frequent ones are due to Extract
Superclass (0.3K), Extract Interface (0.8K), and Push Down Method
(0.8K). Therefore, keeping track of classical untracked changes such
as class or method renaming is important—but not enough. Other
changes such as method extraction and moving should also be
addressed to ensure a more complete tracking.

Table 5: Frequency of untracked changes per type.

Level Change Type # %

Class

Move Class 11,319 12%
Rename Class 4,893 5%
Move and Rename Class 1,585 2%
Extract Interface 822 1%
Extract Superclass 312 <1%

Method

Rename Method 23,921 26%
Extract Method 21,483 23%
Move Method 20,198 22%
Inline Method 5,511 6%
Pull Up Method 1,718 2%
Push Down Method 874 1%

Untracked changes constitute up to 21% of the changes at the
method level and up to 15% at the class level, therefore they should
not be neglected. This may directly a�ect MSR studies that compare
two versions of one class or method (such as the ones presented
in Scenarios 1 and 2). Moreover, if one in �ve changes can result in
losing track of the entity, this is a sign that this threat is also relevant
for MSR studies that rely on entity traceability over several versions
(as presented in Scenario 3). In this context, further investigation is
performed in the next research question.

Summary. The ratio of untracked changes ranges from 10% to
21% for methods, and from 2% to 15% for classes. In practice,
thus, the threat is more frequent at the method level.

7 RQ2: WHAT IS THE EXTENSION OF
UNTRACKED CHANGES?

In this research question we assess the extension of untracked
changes. We �rst measure the amount of entities (i.e., classes and
methods) that includes untracked changes in their histories. We
further detail the analysis by assessing the paths of these entities.
Amount of entity histories with untracked changes. Entities
with untracked changes in their histories are not desirable, because
their histories may be split. To better understand this threat, Table 6
presents the number of entity histories (i) with only tracked changes
and (ii) with tracked and untracked changes. The systems with
proportionally more entity histories with untracked changes are
Android Image (41%), MPAndroidChart (34%), and OkHttp (32%).
The systems with less are Kotlin (18%), RxJava (19%), and Facebook
Fresco (21%). When considering all systems, 25% of the entities have
at least one untracked change in their histories. Thus, a relevant
amount (a quarter) of entities potentially have their history split.

Table 6: Amount of entity histories with untracked changes.

Project Entity Histories

Total Tracked only Tracked & Untracked %

RxJava 21,419 17,265 4,154 19%
Elasticsearch 61,045 42,721 18,324 30%
Retro�t 2,306 1,697 609 26%
OkHttp 6,407 4,388 2,019 32%
Google Guava 12,739 9,493 3,246 25%
MPAndroidChart 1,796 1,194 602 34%
Glide 3,663 2,579 1,084 30%
Android Image 517 306 211 41%
Kotlin 77,441 63,342 14,099 18%
Spring 38,565 27,513 11,052 29%
Facebook Fresco 2,520 1,992 528 21%
Clojure 2,641 1,939 702 27%
Google Guice 5,265 4,140 1,125 21%
Apache Storm 6,920 5,087 1,833 26%
Eclipse Che 11,521 8,388 3,133 27%

All Projects 254,765 192,044 62,721 25%

In practice, this threat is more critical when an entity has more
changes in its history, meaning that a long track can be lost. To
better understand the most changed entity histories, Table 7 focuses
on the top 25% most changed entities. In this case, the systems with
more entities with untracked changes are Android Image (58%),
Google Guice (56%), and OkHttp (48%). In contrast, the systems with
less are Facebook Fresco (22%), Google Guava (24%), and Eclipse Che

Assessing the Threat of Untracked Changes in So�ware Evolution ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

(31%). Considering all systems, 37% of the top-25% most changed
entities have at least one untracked change in their histories. We no-
tice that the proportion of entity histories with untracked changes
increase when compared to the previous analysis (overall, from
25% to 37%). This shows that the most changed entities (i.e., entities
that are constantly evolving, and, consequently, that are the most
important and critical) are also likely to have their histories split.

Table 7: Amount of entity histories with untracked changes
in the top 25% most changed entities.

Project Entity Histories

Total Tracked only Tracked & Untracked %

RxJava 5,355 3,457 1,898 35%
Elasticsearch 15,261 9,456 5,805 38%
Retro�t 577 383 194 34%
OkHttp 1,602 831 771 48%
Google Guava 3,185 2,427 758 24%
MPAndroidChart 449 298 151 34%
Glide 916 587 329 36%
Android Image 129 54 75 58%
Kotlin 19,360 12,158 7,202 37%
Spring 9,641 6,267 3,374 35%
Facebook Fresco 630 490 140 22%
Clojure 660 442 218 33%
Google Guice 2,023 895 1,128 56%
Apache Storm 1,730 1,128 602 35%
Eclipse Che 2,880 1,987 893 31%

All Projects 64,398 40,860 23,538 37%

Length of entity histories with untracked changes. To further
assess the data previously presented, Figure 7 shows the path length
distributions of the top-25% most changed entities. Each box plot
presents the path lengths of the entity histories with only tracked
changes (left) and with tracked and untracked changes (right).16
Overall, entity histories with untracked changes have higher length.
For example, the median path length for RxJava is 3 for entity
histories with only tracked changes and 5 for entity histories with
tracked and untracked changes, the third quartile is 5 against 9, and
the upper whisker is 8 against 18. Thus, entities with untracked
changes in their histories also tend to have a longer lifespan. If
untracked changes are properly resolved, this long lifespan can help
MSR studies focused on traceability analysis to be more precise.

Summary. The ratio of entities with untracked changes in
their histories varies from 18% to 41%. For the most changed
entities, this proportion is higher, between 22% and 58%. Over-
all, these entities also tend to have a long lifespan.

8 RQ3: WHAT IS THE IMPACT OF
UNTRACKED CHANGES?

To further assess the practical impact of untracked changes in
MSR studies, we evaluate how untracked changes a�ect two MSR
approaches based on association rule mining.

The �rst approach focuses on API evolution rule mining [27, 45,
66], and infers rules in the format Removed! Added, indicating that
references to class Removed are likely to be replaced by references
to class Added. To compute the rules, this approach takes as input

16Outliers are not presented to improve visualization of quartiles.

tracked
tracked &
untracked

5
10

15

RxJava

tracked
tracked &
untracked

5
10

15
20

25

Elasticsearch

tracked
tracked &
untracked

5
10

15
20

Retrofit

tracked
tracked &
untracked

5
10

15

OkHttp

tracked
tracked &
untracked

4
6

8
10

12
14

Google Guava

tracked
tracked &
untracked

10
20

30
40

MPAndroidChart

tracked
tracked &
untracked

4
6

8
10

Glide

tracked
tracked &
untracked

5
10

15
20

25
30

Android Image Loader

tracked
tracked &
untracked

5
10

15
20

Kotlin

tracked
tracked &
untracked

4
6

8
10

12
14

Spring Framework

tracked
tracked &
untracked

4
6

8
10

12
14

Facebook Fresco

tracked
tracked &
untracked

5
10

15

Clojure

tracked
tracked &
untracked

5
10

15

Google Guice

tracked
tracked &
untracked

2
4

6
8

10

Apache Storm

tracked
tracked &
untracked

2
3

4
5

6
7

8

Eclipse Che

Figure 7: Length of entity histories in the top 25% most
changed entities.

a set of transactions; each transaction represents a change between
two versions of one method. The transaction elements are class
references that were added or removed in the change. For example,
by mining the two versions of method Blog() (Figure 2, Scenario
1), we detect that a reference to class Vector is removed and a ref-
erence to class List is added. Thus, a transaction with the elements
Removed-Vector and Added-List is generated. Consequently, we
may infer the rule Removed-Vector! Added-List.

The second approach targets API co-usage rule mining [43]
to infer rules in the format UseA ! UseB, indicating that class
UseA is likely to be used with class UseB. This approach also takes
as input a set of transactions representing method level changes.
However, in this case, the transaction elements are only the added
class references in the change. For example, by mining the two
versions of method getState() in Apache Storm,17 the co-usage
rule Map ! HashMap may be inferred, suggesting that Map is likely
to be used with HashMap. To reduce the threat of noise generated by
large changes [43, 46], in both MSR approaches, we only consider
transactions with less than 5 elements.

For each approach, we assess (i) the amount of mined rules and
(ii) the quality of mined rules in terms of recall and precision. These
assessments are performed in four setups to cover distinct rule
support count (1 and 3) and con�dence (10% and 90%) [69]. We then
compare these setups in two scenarios: when mining only tracked
changes and when mining both (tracked and untracked) changes.
Assessing the amount ofmined rules. In this analysis, we verify
whether there is an improvement on the amount of mined rules
when including untracked changes. To assess the amount of rules,
we run the association rule mining approaches for all setups and
case studies, and collect the inferred rules. For example, Table 8
shows the results for API co-usage approach in setup 1 (support=1,
con�dence=10%). In this case, the improvement on the amount of
rules when including untracked changes ranges from 0.6% to 10.8%.
17Apache Storm change available at: https://goo.gl/tzhYiK

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

Table 8: Amount of co-usage rules for tracked and both
(tracked and untracked) changes in setup 1 (support=1, con-
�dence=10%). “Imp”: improvement percentage.

Project Tracked only Tracked & Untracked

#Rules #Rules (Imp)

RxJava 993 999 (+0.6%)
Elasticsearch 1,375 1,490 (+8.4%)
Retro�t 404 435 (+7.7%)
OkHttp 524 548 (+4.6%)
Google Guava 1,179 1,233 (+4.6%)
MPAndroidChart 321 324 (+0.9%)
Glide 576 633 (+9.9%)
Android Image 172 185 (+7.6%)
Kotlin 333 337 (+1.2%)
Spring 1,054 1,104 (+4.7%)
Facebook Fresco 362 394 (+8.8%)
Clojure 396 399 (+0.8%)
Google Guice 1,204 1,274 (+5.8%)
Apache Storm 678 714 (+5.3%)
Eclipse Che 1,976 2,189 (+10.8%)

Figure 8 presents the improvement on the amount of rules for
each setup and approach.18 For the API co-usage approach, the me-
dian improvements are 5.3%, 1.7%, 4.3%, and 0%. The gain are clearly
focused on setups 1, 2, and 3; in these cases, the third quartiles are
8%, 4.7%, and 6.6%. That is, 25% of the case studies in setup 1 can
produce at least 8% more rules when resolving untracked changes.
For the API evolution approach, the results are slightly better: the
medians are 6.9%, 6.2%, 3.3%, and 0% while the third quartiles are
10.2%, 8.5%, 9.6%, and 1.9%. Interestingly, in some systems, setups 2
and 4 produce a reduction in the amount of mined rules (e.g., �rst
quartile is -4.7% for API evolution in setup 4). In these systems,
the new data produced by mining untracked changes contribute
to reduce the con�dence of some rules that are mined considering
only tracked changes. As a result, these rules no longer attend the
higher con�dence threshold (90%) of setups 2 and 4.19

Summary. The amount of mined rules usually improves when
taking into account untracked changes. The median improve-
ments range from 0% to 6.9% for API evolution, and from 0%
to 5.3% for API co-usage.

1 2 3 4

-5
0

5
10

15

API co-usage
(amount improvement)

setup

im
pr

ov
em

en
t (

%
)

1 2 3 4

-1
0
-5

0
5

10
15

20

API evolution
(amount improvement)

setup

im
pr

ov
em

en
t (

%
)

Figure 8: Improvement in amount of mined rules

18Outliers are not presented to improve visualization of quartiles.
19For example, suppose that in 9 out 10 cases the rule A ! B applies (reaching a
con�dence threshold of 90%). After considering untracked changes, we detect 8 new
cases were A! B applies and 2 cases where the rule does not apply. Overall, we will
have a con�dence of (9+8)/20 = 0.85, less than the 90% threshold.

Assessing the quality of mined rules. In this assessment, we
verify whether there is an improvement on the quality of mined
rules when taking into account untracked changes. To assess quality
we perform a rule recommendation analysis to simulate a real
usage scenario of the studied rule mining approaches. Following
the same experimental design used to evaluate an approach to
detect non-essential code changes [30], we iterate over all commits
in ascending date order, and verify at commit n whether helpful
rule recommendations are produced based on the data mined from
commits 1 to n-1. Speci�cally, our analysis helps developers who
have removed (or used) some class reference ci at commit n, and
who would like to �nd additional class references c j that need to
replace (or be co-used with) ci . This recommendation analysis infers
rules in the format ci ! c j , from which we return a ranked list of
class references c j that were found to have been frequently replaced
(or co-usedwith) ci in previous commits.We rank recommendations
c j based on the con�dence of the inferred rule ci ! c j . Following
the guidelines of Kawrykow and Robillard [30], we cap the number
of recommendations at ten. Finally, to measure quality we assess
recall and precision of the recommendations.

Table 9 shows the quality analysis for API co-usage approach
in setup 1. For this setup, for example, the precision improvement
ranges from -8.1% (Facebook Fresco) to 26.3% (Retro�t).

Table 9: Quality of co-usage rules for tracked only and both
(tracked and untracked) changes in setup 1 (support=1, con-
�dence=10%). “TRec”: total recommendation, “Cor”: correct,
“Prec”: precision, “Imp”: improvement percentage.

Project Tracked only Tracked & Untracked

T Rec Cor Prec T Rec Cor (Imp) Prec (Imp)

RxJava 23,584 2,168 9.2 23,188 2,179 (+0.5) 9.4 (+2.2)
Elasticsearch 5,580 501 9 5,636 502 (+0.2) 8.9 (-0.8)
Retro�t 2,053 73 3.6 2,382 107 (+46.6) 4.5 (+26.3)
OkHttp 3,863 680 17.6 3,921 692 (+1.8) 17.6 (0.3)
Google Guava 11,052 1,541 13.9 10,994 1,624 (+5.4) 14.8 (+5.9)
MPAndroidChart 1,795 377 21 1,744 375 (-0.5) 21.5 (+2.4)
Glide 2,949 510 17.3 3,050 520 (+2.0) 17 (-1.4)
Android Image 430 38 8.8 407 36 (-5.3) 8.9 (+0.1)
Kotlin 342 20 5.8 343 20 (0) 5.7 (-0.3)
Spring 5,348 358 6.7 5,346 360 (+0.6) 6.8 (+0.6)
Facebook Fresco 1,161 111 9.6 1,263 111 (0) 8.8 (-8.1)
Clojure 2,448 267 10.9 2,435 267 (0) 11 (0.5)
Google Guice 7,344 829 11.3 7,239 813 (-1.9) 11.2 (-0.5)
Apache Storm 4,481 923 20.6 4,175 913 (-1.1) 21.9 (+6.2)
Eclipse Che 9,584 1,522 15.9 9,713 1,544 (+1.4) 16 (+0.1)

Figure 9 shows the quality improvement for each setup and ap-
proach. For the API co-usage approach, the median recall improve-
ment is 0.2%, 0%, 1.6%, and 0%. The median precision improvement
is 0.3%, 1.5%, 0.4%, and 0%. Finally, regarding the API evolution
approach, the median recall improvement is 0% for all setups. For
precision, the median improvement is -1.8%, 0%, -0.7%, and 0%.

While the median improvements are minor, notice that the
spread of the boxplots is large: some systems saw a signi�cant
decrease in performance, while other saw a large increase instead.
This indicates that the impact of untracked changes is di�cult to
predict, and needs to be evaluated in a case-by-case basis.

Assessing the Threat of Untracked Changes in So�ware Evolution ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Summary. Overall, the quality of mined rules slightly im-
proves when including untracked changes. However, some
systems saw much larger improvements and the impact is
di�cult to predict.

1 2 3 4

-1
0
-5

0
5

10
15

API co-usage
(recall improvement)

setup

im
pr

ov
em

en
t (

%
)

1 2 3 4

-5
0

5
10

API co-usage
(precision improvement)

setup

im
pr

ov
em

en
t (

%
)

1 2 3 4

-1
0

1
2

3
4

5

API evolution
(recall improvement)

setup

im
pr

ov
em

en
t (

%
)

1 2 3 4

-1
0

-5
0

5

API evolution
(precision improvement)

setup

im
pr

ov
em

en
t (

%
)

Figure 9: Improvement in quality of mined rules.

9 FINDINGS AND IMPLICATIONS
Untracked changes are more frequent for methods than classes. The
ratio of untracked changes is not irrelevant; it ranges from 10% to
21% at themethod level and from 2% to 15% at the class level. Despite
happening at both levels, untracked changes are more frequent
for methods. Thus, we suggest MSR studies to resolve untracked
changes, especially when performing method level comparisons,
to access neglected but potentially relevant new mining data.
Keeping track of untracked changes such as renaming is important,
but not enough. The most frequent untracked changes are due to
method renaming (26%), extraction (23%), and moving (22%). At
class level, the most frequent are due to class moving (12%) and
renaming (5%). Overall, renamings are responsible of around 1/3 of
the untracked changes while other changes represent 2/3. Therefore,
in addition to renaming, we recommend to address extraction and
moving for a more complete resolution of untracked changes.
Untracked changes commonly cause splits in entity histories.We de-
tect that a quarter of the studied entities potentially have their
history split because they include untracked changes. For the most
changed entities (i.e., entities that are constantly evolving), this pro-
portion is even higher (37%). As these entities tend to have a long
lifespan, in practice, the issue is magni�ed. Therefore, we recom-
mend untracked change resolution when performing traceability
analysis, for more precise entity lifespans.

Resolving untracked changes can positively or negatively a�ect MSR
approaches.We assessed two speci�c MSR approaches (API evolu-
tion and co-usage rule mining), and detected that their results can
be improved when untracked changes are resolved. In our empir-
ical study, more rules were produced with slightly better overall,
but very variable quality. Thus, we suggest MSR researchers to
adopt refactoring detection techniques to potentially improve their
mining results on a case-by-case basis.

10 THREATS TO VALIDITY
Generalization of results. We focused our analysis on 15 popular,
real-world, and publicly available (as they are hosted on GitHub)
Java systems. This is twice than similar studies [25, 30]. Despite
these observations, our �ndings—as usual in empirical software
engineering—may not be directly generalized to other systems,
especially to commercial and to systems implemented in other pro-
gramming languages. Further, the variability observed in Figure 9
indicates that the e�ect of untracked changes is hard to predict, a
further incentive for replication.
Detection of untracked changes. We may underestimate or over-
estimate the threat of untracked changes. We use RefDi� [58] to
detect untracked changes: any false positive reported by RefDi�
will make us overestimate the threat, while any false negative will
make us underestimate it. We note however that RefDi� is a state
of the art approach; its performance was found to exceed other
refactoring detection approaches [58], with precision varying from
85.4% to 100% (meaning RefDi� reports few false positives), and
recall ranging from 93.6% to 93.9% (meaning RefDi� reports few
false negatives). Despite these observations, we took additional
precautions, by evaluating the precision and recall of RefDi� in our
dataset with two manual assessments (as reported in Section 4);
in this case, we found an overall precision and recall of 89.1% and
89.8%, respectively. Therefore, to our knowledge, the risk of this
threat is reduced.
Impact of the threat. The threat of untracked changes may not
translate in actual issues to MSR-based studies. To address this,
we investigated the threat impact in two speci�c approaches (API
evolution and co-usage rule mining), as reported in research ques-
tion 3. We found that the performance of these MSR approaches
can be improved when untracked changes are resolved, but the
improvements are very variable.

11 RELATEDWORK
11.1 Assessing threats in empirical studies
Several studies have been performed to assess the quality of the
data in software repositories, and whether issues found in the data
may be problematic. A systematic review of empirical software
engineering studies by Liebchen and Shepperd [41] found that (as
of 2008) a very small portion of them explicitly mentioned data
quality, indicating a low awareness of data quality issues.

The closest research to our study is the work by Kawrykow and
Robillard [30]; they investigated the e�ect of non-essential changes
in version histories. A non-essential change is a change that a�ects
the source code of an entity without changing its behaviour. Ex-
ample of non-essential changes are renaming a local variable in a

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

method body, adding or removing the this keyword, or even white-
space changes. Approaches that do change recommendations based
on past co-change patterns (e.g., class A and B change together 90%
of the time) such as Zimmermann et al. [69], may make spurious
recommendations if non-essential changes are taken into account.
They de�ne several categories of non-essential changes, and �nd
that, in 7 software systems, up to 15.5% of changes to methods of a
software system are non-essential, and that removing these changes
increased the precision of a change recommendation approach by
10%, while it decreased its recall by 4%. Of note, the non-essential
changes do not include the untracked changes. Quoting Kawrykow
and Robillard: “We consider the actual renaming of the code element
to be an essential change, but argue that the textual reference up-
dates induced by that renaming are non-essential”. Thus, one kind
of change investigated by both papers is related (i.e., renamings),
but the set of changes is distinct.

Herzig and Zeller [25] investigated the impact of tangled code
changes, that is, changes unrelated to each other that belong to
the same commit. They found that up to 15% of bug �xes in 5 Java
projects contained changes unrelated to the bug �x, based on a man-
ual analysis. A subsequent automated analysis found that at least
16.6% of �les that are associated with a bug report are actually not
related to the report. A follow-up study by Herzig et al. [24] found
that the impact of tangled changes on defect prediction regression
models was signi�cant. Dias et al. [15] proposed a technique to
untangle �ne-grained code changes.

Beyond source code changes, defect prediction approaches and
datasets have been investigated for threats as well. Bird et al. [8]
investigated whether the subset of bug reports correctly linked from
commits to bug tracking systems is an accurate representation of
the overall population of bugs, and found evidence of strong and
systematic biases. In particular, for several systems, less severe
bugs were more likely to be linked than more severe ones, raising
concerns about the accuracy of bug prediction approaches. A follow-
up study by Rahman et al. [52] found that the threat was somewhat
alleviated when the amount of data available was large enough.

Posnett et al. [49] raised the issue of the ecological fallacy, which
states that �ndings that are found at one level of analysis (e.g., �les
of a software system), may not be valid at an aggregated level (e.g.,
packages of that same system). They presented evidence of risks
of ecological fallacy for defect prediction models. General threats
to the performance of machine learning algorithms include class
imbalance and a high number of features; Khoshgoftaar et al. [31]
investigated their impact on software defect prediction. Lanza et
al. [40] presented a series of re�ections on how defect prediction
techniques are evaluated. For example, they claim that current
evaluations do not consider the e�ects in further bugs of developers
accepting the recommendations produced by a defect predictor.

11.2 Detecting untracked changes
Several approaches attempt, directly or indirectly, to deal with un-
tracked changes. Godfrey and Zou [20] introduced Origin Analysis,
a technique that detects scenarios in which an entity (e.g., a class,
a function) is split in two, or two entities are merged in a single
one. The goal is to allow for a more precise tracking of the lifetime
of entities from version to version, that is, to detect a subset of

untracked changes. However, the authors validated the approach
on a single example (PostgreSQL), and do not attempt to quantify
the extent of the threat in the same depth as we do. They found
that their technique is able to reduce the number of “apparently
deleted” entities by 30% and of "apparently added" entities by 19%.

Many approaches focus on detecting refactorings, which con-
stitute the core of the untracked changes. As examples, we have
RefDi� [58], Refactoring Miner [57, 64], Refactoring Crawler [16],
and RefFinder [32]. In this work, we relied on RefDi� because it
exceeded the precision and recall of the mentioned related tools in
an evaluation reported by Silva et. al [58].

A related problem is the detection and the representation of
�ne-grained changes. Soetens et al. [60] performed a survey on
the topic, which we refer to for space reasons. Examples include:
detecting �ne-grained changes by di�erencing program ASTs, such
as ChangeDistiller [17], which has been used as a building block to
detect non-essential changes; detecting systematic changes [33]; an
alternative to recovering changes is recording them [55].

12 CONCLUSION
To the best of our knowledge, this study is the �rst to assess the
threat of untracked changes, a threat often faced by MSR-based
approaches. The empirical study was performed in the context of
15 real-world systems, and relied on RefDi�, the state of the art in
refactoring detection, to �nd untracked changes in history versions.
Three research questions were proposed to assess the frequency,
extension, and impact of untracked changes. We reiterate the most
interesting conclusions from our experimental results:

• Untracked changes are more frequent for methods than classes.
The amount of untracked changes is not negligible, varying
from 10% to 21% for methods, and from 2% to 15% for classes.

• Keeping track of untracked changes such as renaming is not
enough.Themost frequent untracked change types aremethod
renaming (26%), extraction (23%), and moving (22%). Overall,
renamings are responsible by 1/3 of the untracked changes
while other changes represent 2/3.

• Untracked changes commonly cause splits in entity histories. A
quarter of the studied entities potentially have their history
split. In the top 25% most changed entities, the proportion
raises to 37%.

• Resolving untracked changes can positively or negatively af-
fect MSR approaches. By assessing two MSR approaches, we
detect that their results can be improved when untracked
changes are resolved; however, results are very variable.

As future work, we plan to extend this work to assess the im-
pact of untracked changes in other MSR studies such as the ones
described in Scenario 2 (warning prioritization) and in Scenario
3 (authorship detection). Moreover, we plan to further assess the
branches and merges in the change graph (caused by method ex-
traction and inlining) as a proxy of traceability complexity; in this
case, we can measure nodes outdegree and indegree. Finally, we
plan to increase the amount of case studies in our empirical analysis
to better assess and characterize variability issues.

ACKNOWLEDGMENT
This research is supported by Fundect, CNPq, and FAPEMIG.

Assessing the Threat of Untracked Changes in So�ware Evolution ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] John Anvik, Lyndon Hiew, and Gail C Murphy. 2006. Who should �x this bug?.

In International Conference on Software Engineering.
[2] Muhammad Asaduzzaman, Michael C Bullock, Chanchal K Roy, and Kevin A

Schneider. 2012. Bug introducing changes: A case study with Android. InWorking
Conference on Mining Software Repositories.

[3] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente. 2016.
A novel approach for estimating truck factors. In International Conference on
Program Comprehension.

[4] Nathaniel Ayewah, David Hovemeyer, J David Morgenthaler, John Penix, and
William Pugh. 2008. Using static analysis to �nd bugs. IEEE Software 25, 5 (2008).

[5] Nathaniel Ayewah and William Pugh. 2010. The Google FindBugs �xit. In
International Symposium on Software Testing and Analysis.

[6] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2015. How the Apache community upgrades dependencies:
an evolutionary study. Empirical Software Engineering 20, 5 (2015).

[7] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas, Mas-
similiano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2015. The impact
of API change-and fault-proneness on the user ratings of Android apps. IEEE
Transactions on Software Engineering 41, 4 (2015).

[8] Christian Bird, Adrian Bachmann, Eirik Aune, John Du�y, Abraham Bernstein,
Vladimir Filkov, and Premkumar Devanbu. 2009. Fair and balanced?: bias in
bug-�x datasets. In International Symposium on the Foundations of Software Engi-
neering.

[9] Cathal Boogerd and Leon Moonen. 2009. Evaluating the relation between coding
standard violations and faults within and across software versions. InWorking
Conference on Mining Software Repositories.

[10] Oliver Burn. 2007. Checkstyle. (2007).
[11] Leon Moonen Cathal Boogerd. 2008. Assessing the value of coding standards: an

empirical study. In International Conference on Software Maintenance.
[12] Tse-Hsun Chen, Meiyappan Nagappan, Emad Shihab, and Ahmed E Hassan. 2014.

An empirical study of dormant bugs. InWorking Conference on Mining Software
Repositories.

[13] Tom Copeland. 2005. PMD applied. (2005).
[14] Cesar Couto, Joao Eduardo Montandon, Christofer Silva, andMarco Tulio Valente.

2013. Static correspondence and correlation between �eld defects and warnings
reported by a bug �nding tool. Software Quality Journal 21, 2 (2013).

[15] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane
Ducasse. 2015. Untangling �ne-grained code changes. In International Conference
on Software Analysis, Evolution and Reengineering.

[16] Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. Automated
detection of refactorings in evolving components. In European Conference on
Object-Oriented Programming.

[17] Beat Fluri, Michael Wuersch, Martin Pixnzger, and Harald Gall. 2007. Change
distilling: tree di�erencing for �ne-grained source code change extraction. IEEE
Transactions on Software Engineering 33, 11 (2007).

[18] Thomas Fritz, Gail C Murphy, Emerson Murphy-Hill, Jingwen Ou, and Emily
Hill. 2014. Degree-of-knowledge: modeling a developer’s knowledge of code.
ACM Transactions on Software Engineering and Methodology 23, 2 (2014).

[19] Thomas Fritz, Jingwen Ou, Gail C Murphy, and Emerson Murphy-Hill. 2010. A
degree-of-knowledge model to capture source code familiarity. In International
Conference on Software Engineering.

[20] Michael W Godfrey and Lijie Zou. 2005. Using origin analysis to detect merging
and splitting of source code entities. IEEE Transactions on Software Engineering
31, 2 (2005).

[21] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt. 2010. Visually
supporting source code changes integration: the Torch dashboard. InWorking
Conference on Reverse Engineering.

[22] Verónica Uquillas Gómez, Stéphane Ducasse, and Theo D’Hondt. 2015. Visually
characterizing source code changes. Science of Computer Programming 98 (2015).

[23] Lile Hattori and Michele Lanza. 2009. Mining the history of synchronous changes
to re�ne code ownership. In International Working Conference on Mining Software
Repositories.

[24] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code
changes on defect prediction models. Empirical Software Engineering 21, 2 (2016).

[25] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In
Working Conference on Mining Software Repositories.

[26] Andre Hora, Nicolas Anquetil, Stephane Ducasse, and Simon Allier. 2012. Domain
speci�c warnings: are they any better?. In International Conference on Software
Maintenance.

[27] Andre Hora, Romain Robbes, Nicolas Anquetil, Anne Etien, Stephane Ducasse,
and Marco Tulio Valente. 2015. How do developers react to API evolution? The
Pharo ecosystem case. In International Conference on Software Maintenance and
Evolution.

[28] Andre Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stephane Ducasse. 2017. How do Developers React to API Evolution? A
Large-Scale Empirical Study. Software Quality Journal (2017), 1–33.

[29] Andre Hora and Marco Tulio Valente. 2015. apiwave: Keeping Track of API
Popularity and Migration. In International Conference on Software Maintenance
and Evolution.

[30] David Kawrykow and Martin P Robillard. 2011. Non-essential changes in version
histories. In International Conference on Software Engineering.

[31] Taghi M Khoshgoftaar, Kehan Gao, and Naeem Seliya. 2010. Attribute selection
and imbalanced data: problems in software defect prediction. In International
Conference on Tools with Arti�cial Intelligence.

[32] Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. 2010. Ref-
Finder: a refactoring reconstruction tool based on logic query templates. In
International Symposium on the Foundations of Software Engineering.

[33] Miryung Kim and David Notkin. 2009. Discovering and representing systematic
code changes. In International Conference on Software Engineering.

[34] Sunghun Kim and Michael D Ernst. 2007. Prioritizing warning categories by
analyzing software history. In International Workshop on Mining Software Reposi-
tories.

[35] Sunghun Kim and Michael D. Ernst. 2007. Which warnings should I �x �rst?. In
International Symposium on the Foundations of Software Engineering.

[36] Sunghun Kim, Kai Pan, and E. E. James Whitehead, Jr. 2006. Memories of bug
�xes. In International Symposium on the Foundations of Software Engineering.

[37] Sunghun Kim and E James Whitehead Jr. 2006. How long did it take to �x bugs?.
In International Workshop on Mining Software Repositories.

[38] Sunghun Kim, E James Whitehead Jr, and Yi Zhang. 2008. Classifying software
changes: Clean or buggy? IEEE Transactions on Software Engineering 34, 2 (2008).

[39] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. 2006.
Automatic identi�cation of bug-introducing changes. In International Conference
on Automated Software Engineering.

[40] Michele Lanza, Andrea Mocci, and Luca Ponzanelli. 2016. The tragedy of defect
prediction, prince of empirical software engineering research. IEEE Software 33,
6 (2016).

[41] Gernot A Liebchen and Martin Shepperd. 2008. Data sets and data quality in
software engineering. In International Workshop on Predictor Models in Software
Engineering.

[42] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In International Symposium
on the Foundations of Software Engineering.

[43] Benjamin Livshits and Thomas Zimmermann. 2005. DynaMine: �nding common
error patterns by mining software revision histories. In International Symposium
on the Foundations of Software Engineering.

[44] Andrew Meneely and Oluyinka Williams. 2012. Interactive churn metrics: socio-
technical variants of code churn. Software Engineering Notes 37, 6 (2012).

[45] Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. 2012. A history-based
matching approach to identi�cation of framework evolution. In International
Conference on Software Engineering.

[46] Yana Momchilova Mileva, Andrzej Wasylkowski, and Andreas Zeller. 2011. Min-
ing evolution of object usage. In European Conference on Object-Oriented Pro-
gramming.

[47] Shawn Minto and Gail C Murphy. 2007. Recommending emergent teams. In
International Workshop on Mining Software Repositories.

[48] Ralph Peters and Andy Zaidman. 2012. Evaluating the lifespan of code smells us-
ing software repository mining. In European Conference on Software Maintenance
and Reengineering.

[49] Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2011. Ecological
inference in empirical software engineering. In Automated Software Engineering.

[50] Steven Raemaekers, Arie van Deursen, and Joost Visser. 2012. Measuring software
library stability through historical version analysis. In International Conference
on Software Maintenance.

[51] Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and
defects: a �ne-grained study of authorship. In International Conference on Software
Engineering.

[52] Foyzur Rahman, Daryl Posnett, Israel Herraiz, and Premkumar Devanbu. 2013.
Sample size vs. bias in defect prediction. In International Symposium on the
Foundations of Software Engineering.

[53] Foyzur Rahman, Daryl Posnett, Abram Hindle, Earl Barr, and Premkumar De-
vanbu. 2011. BugCache for inspections: hit or miss?. In International Symposium
on the Foundations of Software Engineering.

[54] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto
Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In
International Conference on Software Engineering.

[55] Romain Robbes. 2008. Of change and software. Ph.D. Dissertation. Università
della Svizzera italiana.

[56] David Schuler and Thomas Zimmermann. 2008. Mining usage expertise from
version archives. In International Working Conference on Mining Software Reposi-
tories.

[57] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?
confessions of GitHub contributors. In International Symposium on the Founda-
tions of Software Engineering.

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Andre Hora, Danilo Silva, Marco Tulio Valente, and Romain Robbes

[58] Danilo Silva and Marco Tulio Valente. 2017. RefDi�: detecting refactorings in
version histories. In International Conference on Mining Software Repositories.

[59] Gustavo Soares, Rohit Gheyi, Dalton Serey, and Tiago Massoni. 2010. Making
program refactoring safer. IEEE Software 27, 4 (2010).

[60] Quinten David Soetens, Romain Robbes, and Serge Demeyer. 2017. Changes as
�rst-class citizens: a research perspective on modern software tooling. ACM
Computing Surveys 50, 2 (2017).

[61] Diomidis Spinellis. 2015. A repository with 44 years of Unix evolution. InWorking
Conference on Mining Software Repositories.

[62] Diomidis Spinellis. 2017. A repository of Unix history and evolution. Empirical
Software Engineering (2017).

[63] Mario F Triola. 2006. Elementary statistics. Pearson/Addison-Wesley.
[64] Nikolaos Tsantalis, Victor Guana, Eleni Stroulia, and Abram Hindle. 2013. A

multidimensional empirical study on refactoring activity. In Conference of the
Centre for Advanced Studies on Collaborative Research. 132–146.

[65] Santiago A Vidal, Claudia Marcos, and J Andrés Díaz-Pace. 2016. An approach
to prioritize code smells for refactoring. Automated Software Engineering 23, 3
(2016).

[66] Wei Wu, Y.-G. Gueheneuc, G. Antoniol, and Miryung Kim. 2010. AURA: a hybrid
approach to identify framework evolution. In International Conference on Software
Engineering.

[67] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. 2011. How do �xes become bugs?. In International Symposium
on the Foundations of Software Engineering.

[68] Thomas Zimmermann, Sunghun Kim, Andreas Zeller, and E. James Whitehead,
Jr. 2006. Mining version archives for co-changed lines. In International Workshop
on Mining Software Repositories.

[69] Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan Diehl.
2005. Mining version histories to guide software changes. IEEE Transactions on
Software Engineering 31, 6 (2005).

