
Live Programming and Software Evolution:
Questions during a Programming Change Task

Juraj Kubelka
DCC, University of Chile, Chile

Romain Robbes
Free University of Bozen-Bolzano, Italy

Alexandre Bergel
DCC, University of Chile, Chile

Abstract—Several studies provide the questions developers
ask during software evolution tasks, providing foundations for
subsequent work. Nevertheless, none of them focus on Live
Programming environments that gain in popularity as they
are perceived to have a positive effect on programming tasks.
Studying the impact of a Live Programming environment on
software development activities is thus the goal of this study.

In a partial replication of the study by Sillito et al., we
conducted 17 software evolution sessions in a Live Programming
environment and report 1,161 developer questions asked during
these sessions. We contrast our results with the results by Sillito
et al., focusing on the question occurrences, question complexity
and what information participants used to gain a required
knowledge. We report eight new questions and observe that
the Live Programming facilities do have an impact on the way
developers ask questions about source code and use tools to gain
corresponding knowledge.

I. INTRODUCTION

Several foundational papers research the questions that
developers ask during software evolution tasks. Sillito et al.
identified 44 questions that developers asked during soft-
ware change tasks, classified them in four categories, and
documented how well-supported they are by state of the
art tools [1]. Further studies identified additional aspects:
LaToza et al. investigate reachability questions [2]; Ko et al.
unveil developer day-to-day information needs [3]; and Duala-
Ekoko et al. exhibit questions about unfamiliar codebase [4],
to name a few. By documenting developer needs and how
current approaches meet these needs, these studies provide
valuable information to improve existing software evolution
approaches, and to propose new ones.

Sillito’s Ph.D. thesis [5] offers an extended account of the
initial study and points to several possible follow-up studies,
varying some dimensions of the study. One of these factors
is the impact that available tools may have on the kind and
frequency of the questions asked. To this aim, we performed
a partial replication [6] of the study by Sillito et al. [1].

The principal variation is that our participants worked
on tasks in a Live Programming environment. We chose it
particularly because Live Programming environments have two
important characteristics, together called liveness [7], that may
greatly affect how developers work: (1) they always offer
accessible evaluation of a source code, instead of the common
edit-compile-run cycle, and as a consequence (2) they allow
nearly instantaneous feedback to developers, instead of them
having to wait for the program to recompile and run again
before seeing any changes [8].

These characteristics may affect the type and frequency of
developer questions, as well as the approaches they use to
answer questions. It is especially important as these liveness
features are nowadays experiencing a resurgence (details Sec-
tion II-B)—while the Live Programming concepts date back
to the LISP [9] and Smalltalk [10] environments of the 70’s.

We present a critical opportunity to understand how liveness
is used today in the growing Live Programming environments.
Section II provides an essential background of the study by
Sillito et al. that we partially replicate, followed by a context
and a state of art in Live Programming and Pharo, and related
work. Section III describes our prior studies, emphasizing the
contribution of this extended work. Section IV then presents
our research method. We observed 17 programming sessions
carried out by 11 programmers. From a total of 13 hours
of programming activity, both on unfamiliar and familiar
codebases, we infer 1,161 developer question occurrences
about source code asked by participants.

Section V answers our research question “What developer
questions Pharo developers ask compared with the observa-
tions by Sillito et al.?” In the affirmative, we find that Pharo
developers asked same questions as presented by Sillito et al.,
varying in the frequency of individual questions. In addition,
we document eight new questions.

Section VI answers our research question “What is the
complexity of answering developer questions in Pharo con-
sidering involved sub-questions?” We find that questions
about expanding focus points are simplest, while the other
questions are complex, involving many sub-questions.

Sections VII and VIII answer our research question “How
do Pharo developers use the development tools compared
with the observations by Sillito et al.?” We find that Pharo
developers tend to use runtime information, accessing objects
easily and frequently.

Finally, we close the paper with threats to validity (Sec-
tion IX), summary (Section X), and conclusion (Section XI).

II. BACKGROUND AND RELATED WORK

A. The Study by Sillito et al.

This section describes the research by Sillito et al. [1]
who conducted two studies. The first study was conducted
in laboratory settings with nine computer science graduate
students, working in pairs on tasks for 45 minutes. Participants
worked on bug-fixing tasks, selected from an ArgoUML’s issue
tracking system. They used Java and the Eclipse IDE.

Alexandre Bergel
27th IEEE/ACM International Conference on Program Comprehension 2019 
Preprint version�



The second study was conducted in the industry. Sixteen de-
velopers worked alone for 30 minutes on a task of their own. In
one case, there were two developers working together. Sillito
et al. asked developers to choose realistic tasks. Participants
used a variety of languages and tools: C, C++, C#, and Java
languages and Emacs, VIM, Visual Studio, and Netbeans.

Sillito et al. then reported a list of 44 developer questions
and classified them in four categories. They documented anec-
dotes observed while answering questions, and the develop-
ment tool limitations. They propose several possible follow-up
studies, suggesting that available tools might impact the kind
and frequency of the developer questions [5]. To find out to
what extent their results are valid, we partially replicate [6] the
study with a different programming language and development
environment: Pharo, a Live Programming environment.

The following two sections describe and motivate our choice
to focus on Live Programming and the Pharo language and
tools. We already describe this motivation in our previous
work [11] that we reuse in the following two sections to cover
fundamental background of this study.

B. Live Programming Environments

The reader wishing to experience Live Programming may
visit the http://livecoder.net web site for a JavaScript example.

Liveness. Live Programming gives developers nearly instan-
taneous feedback from their programs through always accessi-
ble evaluation [8]. Tanimoto defines four liveness levels [7]. At
level one, an application has to be manually restarted to obtain
a feedback on a code change. At level two, semantic feedback
is provided on-demand by interactive interpreters (Read-Eval-
Print loops). At level three, incremental feedback is provided
after each edit operation. Finally, at level four, changes are
applied to a running system without explicitly initiating the
application under the change. Those levels provide different
experiences covering auto-testing solutions, Read-Eval-Print
loops (REPLs), and systems where development tools and
running applications share the same running environment [12].
While Live Programming dates back decades, with support in
LISP [9], Smalltalk [10], Self [13], or Squeak [14] a renewed
interest has been seen in recent years.

Academia. Two research events, the LIVE programming
workshop [15] and the International Conference on Live
Coding [16], held their third edition in 2017. Live Program-
ming languages and tools were presented, most of them as
experimental. As we focus on Live Programming in practice
and due to space constraints, we provide only compact cov-
erage of a handful of research. Tanimoto presented VIVA,
a visual language for image processing [17], Burnett et al.
implemented level four liveness in a visual language [18].
Recent solutions include languages such as McDirmid’s Su-
perGlue [19], Jonathan Edward’s Subtext [20], and Glitch
[21]. Microsoft TouchDevelop obtained Live Programming
support [22]. DeLine et al. introduced Tempe, a Live Pro-
gramming environment for data analysis [23].

Industry. Live Programming is integrated in many frame-
works and tools, particularly on the web. The Google Chrome

web development tools [24] can change web pages and
JavaScript code without a webpage reload. Similarly, popular
JavaScript frameworks including Facebook’s Reacts.js support
Live Programming [25]. Our previous study shows that those
Live Programming features are partially used by develop-
ers [11]. Java applications can replace parts at runtime through
the Java Platform Debugger Architecture [26]. Apple Xcode
supports interactive Swift playgrounds [27]. Microsoft Visual
Studio 2015 allows REPLs interactive programming for C#
and F# [28], [29]. Finally, Microsoft acquired CodeConnect,
a startup company which developed a Live Programming
extension for Visual Studio [30].

C. Live Programming in Pharo

Why Pharo? Pharo [31] is a programming language and
IDE derived from Squeak [14], a dialect of Smalltalk-80 [10].
Pharo itself can update any part of an application at runtime. It
therefore supports level four of liveness defined by Tanimoto
(which is not the case with other modern IDEs).

As a descendant of Smalltalk-80, liveness has been present
in Pharo for over thirty years and there are two reasons that
we chose Pharo for this study. First, liveness was designed
in the language and tools since its inception and its support
is mature. Second, liveness is also part of the development
community culture, both in industry and academia. Pharo
users are introduced to liveness since the very beginning and
practitioners use it naturally as part of their daily tasks. It is
the main driver of our choice, as we wanted to know how
developers, familiar with liveness, use it in practice. Next, we
contrast the main liveness features of Pharo with Eclipse, a
traditional IDE with very limited liveness support.

Code evaluation. Pharo includes a compiler as a user-
accessible object which can evaluate any piece of text. Evalu-
ated code can be printed out, inspected, debugged, or profiled.
This has many consequences in the community culture, e.g.,
users can encounter executable examples embedded in class
and method comments, select and execute the examples, and
observe results. Pharo also allows compiling and updating any
method even while an application is running. Eclipse only
allows executing applications in normal and debug mode, and
executing test cases.

Accessing objects. The object inspector tool displays object
states [32]. Developers can navigate the object graph, modify
instance variables, evaluate code snippets, browse its source
code, and invoke inspectors from almost anywhere. Users can
open multiple inspectors at the same time, and keep them for
arbitrarily long time periods. Eclipse offers a limited object
inspector in its debugging perspective, with limited possibility
to navigate object graphs and to change values, and it is
dismissed as soon as developers leaves the debugger.

Playground. Arbitrary code snippets may be written and ex-
ecuted in a playground. Results may be explored in embedded
inspectors. Several playgrounds can be opened simultaneously
and indefinitely, which are absent in Eclipse.

Debugger. The Pharo debugger consists of a stack trace at
the top, a source code editor in the middle, and an embedded

2

http://livecoder.net


object inspector at the bottom. Users can manipulate variable
values, edit source code, and observe effects of these changes.
Several debuggers can be opened at the same time. It allows for
easy comparison of two execution scenarios. Eclipse debugger
allows code evaluation, with a limited possibilities to explore
its results. Eclipse does not support multiple opened debuggers
and changing source code at run-time is also limited.

D. Studies on Developer Information Needs

Several studies focus on developer information needs and
provide a structured list of developer questions.

Ko et al. identify 21 questions about interaction with a
codebase and co-workers [3]. They categorize questions into
seven categories: writing code, submitting a change, triaging
bugs, reproducing a failure, understanding execution behavior,
reasoning about design, and maintaining awareness.

LaToza et al. focus on answering reachability questions and
provide 12 questions rated by difficulty and frequency [2].
They identify seven developer activities during which develop-
ers spent the most of the time debugging or proposing changes
and investigating their consequences. They conclude that the
longest debugging and implication activities were associated
with reachability questions.

LaToza et al., in another study, surveyed professional soft-
ware developers and provide 94 hard-to-answer developer
questions in 21 categories [33]. The list covers questions about
(past or future) changes, types (classes, methods, functions,
etc.), and type relationships.

Fritz et al. present 78 developer questions with lack of tool
support that involve information integration from codebases,
work items, change sets, teams, comments, and Internet [34].

De Alwis et al. extract 36 developer questions from liter-
ature, blogs, and their own experience [35]. They state that
answering most of the questions involves using a variety of
tools, forcing a programmer to piece together tool results to
answer the initial questions.

LaToza et al. present developer activities and the tool
support level for them [36]. Developers spend half of their time
fixing bugs, 36% writing new features, and the rest of their
time making code more maintainable. They present developer
difficulties for each activity and highlight solutions.

To our knowledge there is no similar study performed on
Pharo or any another Live Programming environment. The
research works presented above are conducted in Java, C, C++,
C#, or Visual Basic and their corresponding IDEs, e.g., Emacs,
VIM, Eclipse, Microsoft Visual Studio.

III. PRIOR STUDIES

This section describes our previous workshop paper [37]
(Study A) and a follow-up of our study [11] (Study B).

In the Study A, we analyze six programming sessions.
We report that question occurrences are similar on unfamiliar
codebase and differ on familiar codebase comparing it with
results by Sillito et al. Study A does not provide in-depth
understanding about its result: question dependencies, question
complexity, and tool usage are not studied, although it is

TABLE I
PARTICIPANT INFORMATION.

Participant Programming experience in Current Conducted
Id Any language Smalltalk Position Sessions

[years] [years]
P1 5.5 3 Professional, Ph.D. Student S1
P2 15 11 Professor S2
P3 5 1.5 Professional S3
P4 20 13 Professional, Professor S8, S11
P5 7 0.5 Professional, Master Student S9, S12
P6 22 16 Professor S10, S13
P7 10 6 Professional, Ph.D. Student S4
P8 4 2 Bachelor Student S5, S14
P9 7 3 Ph.D. Student S6, S15
P10 3 0.5 Professional S16
P11 5 3 Ph.D. Student S7, S17

crucial to understand the development workflow. Study A
comes up with eight additional developer questions.

In the Study B, we analyze if and how developers use
Live Programming features. We report that Live Programming
features and tools are used extensively by Pharo users. We
describe several usages of Live Programming and contrast
them against traditional programming approaches. Our overall
finding is that simple approaches were favored and combined
(confirmed by 190 survey responses, 68% from industry).

This paper presents results of 17 programming sessions of
the Study B (including 6 sessions of the Study A). We provide
more understanding why developer question occurrences vary
contrasting it with Sillito et al. We look closer at how questions
are linked and what their complexity is. Finally, we contrast
tool usage to answer developer questions in our study and the
study by Sillito et al.

IV. RESEARCH METHOD

This section describes the settings of our exploratory study,
previously described in our prior studies (see Section III).

Participants. We employed eleven male participants, includ-
ing students, academic staff, and professional developers from
distinct small local companies. Participants’ programming
experience range from 5 to 22 years, with a median of 6 years.
Experience in Pharo and Smalltalk ranges from 0.5 to 16 years,
with a median of 3 years. There was 1 bachelor student, 2
Ph.D. students, 2 professors, 6 professional developers (four
with mixed positions). All but P2 and P5 participants also
contribute to free–software projects. See details in Table I.

Tasks. We conducted 17 programming sessions, consisting
of 10 sessions (S1–S10) on unfamiliar codebase, and 7 ses-
sions (S11–S17) on familiar codebase. Some participants did
not get involved in familiar codebase sessions as they reported
not being a software project author that time.

We classified a session as familiar if a participant was one of
the authors of the codebase. Participants chose a programming
task of his project on which he can work during 40 minutes,
understanding that it was not important to finish the task during
the session. In the case of unfamiliar sessions, participants had
little or no knowledge of a codebase beforehand. We provided
them a task description (available at [38]) and a prepared Pharo
programming environment related to a particular bug-fixing or
enhancement task of Pharo and Roassal [?].

3



Study Setting. Participants conducted the study using Pharo
version 3. They could use all IDE features and documentation
resources. We advised them to proceed with the tasks as usual.
We configured devices and explained the session procedure
before each session. We asked participants to verbalize their
thoughts during each session. Participants did not get any prior
training for our study. After about 40 minutes, we informed
participants that they could finish whenever they wanted.

Data Collection and Transcription. We used two data col-
lection techniques: screen captured audio and videos (13 hours
in total) and user interactions [?]. We described participant
thoughts and actions they were performing on their screens.
We developed tools to attach timestamps to the transcripts and
to navigate back to the videos as needed during the analysis.
We used those tools to sanitize transcripts and to minimize
possible analysis errors. These data, recordings, and tools are
available at [?], [?], [38].

Questions Extraction. To extract the questions in our study,
we first identified the concrete questions. In this phase, we
went through the audio and video records and produced
a semi-structured transcript. We verbalized actions in the
transcript as concrete questions annotated by the Q symbol,
e.g., Q“How is the background created for the parent menu?”
Some questions were explicit, e.g., while P3 was observing
a particular method, he asked “Why does it not do the same
things at the same time?”. Other questions were inferred
from the user actions, e.g., P1 jumped from the code where
the TRMouseClick class was used and observed its class
definition and its methods. This yielded the question “What
are the parts of TRMouseClick?”

After identifying concrete questions we then synthesized
generic questions that extract the specifics of a given task. We
include generic questions in the transcript annotated by the GQ
symbol, e.g., GQ“(23) How is this feature or concern (object
ownership, UI control, etc.) implemented?”, as shown in the
following transcript excerpt:

• 06:35-08:08 P2 asks Q“How is the background created
for the parent menu?” GQ“(23) How is this feature
or concern (object ownership, UI control, etc.) imple-
mented?”

– 06:39-06:44 P2 goes to method createParent
Menu:background: observing the implementa-
tion where P2 sees another method Q“What does
the method look like?” GQ“(17) What does the
declaration or definition of this look like?” which
creates background

– 06:44-07:05 then P2 asks Q“Why does it not do the
same things [parent menu label and background
color] at the same time?” GQ“(25) What is the
behavior that these types provide together and how
is it distributed over the types?”

Some of the concrete questions we identified are not conve-
niently mappable to the list of questions presented by Sillito
et al., e.g., Q“Why does the test case fail?” If none of the

Table 2

Unfamiliar 
codebase

Familiar codebase

FFP 67 11

EFP 335 155

US 211 110

QGS 133 139

C
at

eg
or

ie
s

FFP

EFP

US

QGS

Number of participant question occurrences
0 85 170 255 340

139

110

155

133

211

335

67 Unfamiliar codebase
Familiar codebase

�1

Fig. 1. Question occurrences, including all questions mentioned in Table II.

questions proposed by Sillito et al. match a question in our
study, we abstract the question; for example we map the ques-
tion “Is the R3CubeShapeclass tested?” to the generic
question “(e6) Is this entity or feature tested?” New questions
are added to one of the categories identified by Sillito et al.

The transcript was performed by the first author. When
the author was unsure of the transcription, all authors held
discussions. To minimize biases in the interpretation, we built
tools that allowed us to move between reports, transcripts, and
audio and video recordings.

V. RESULTS: DEVELOPER QUESTIONS

We collect 1,161 question occurrences from 17 program-
ming sessions, in 13 hours of videos. On average, we report
one question every 36 seconds on unfamiliar and every 47 sec-
onds on familiar codebase.

Table II presents a list of all the questions, grouped by the
categories identified by Sillito et al. The list includes new
questions (discussed later), not identified by Sillito et al., in
corresponding categories. The second column group compares
tool usage (explained later) in our study and the study by
Sillito et al. The third column group gives an aggregate count
of question occurrences in our two type sessions, compared to
Sillito et al. Since the numbers are not directly comparable,
we use the cell background to show the relative frequency
of the questions: darker backgrounds indicate more frequent
questions in corresponding sessions (columns). Finally, the
last two column groups show detailed information about our
sessions, again using background color to encode frequency.

Figure 1 shows the distribution of the question occurrences
among categories for unfamiliar and familiar codebases. We
observe the least questions in the FFP category (in particular
in familiar codebase sessions) and most questions in the EFP
category. EFP and US questions occurred about twice more in
unfamiliar codebase sessions than in familiar. We detail each
category in the following sections.

A. Finding Focus Points (FFP)

Most of our participants asked questions about finding initial
points in their codebase that were relevant to the task. These
questions were about finding types that correspond to domain
concepts. Participants searched for classes that correspond to
graphical widgets, e.g., “I want to know where the window
is opened and put a breakpoint there” (P11 in S7), “Who is
responsible for executing this dialog?” (P5 in S9), “I want
to know where ’History Navigator’ string is used, in order to

4



Tool usage Question occurrences in Question occurrences in Question occurrences in
By Our sessions Sillito ses. Our sessions on unfamiliar code Our sessions on familiar code

Question Types per Category Us Sillito Unf. Fam. Unf. Fam. S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17
Finding Focus Points (FFP)
(1) Which type represents this domain concept or this UI element or action? s/d s 11 3 8 1 4 1 2 2 1 2 1
(2) Where in the code is the text in this error message or UI element? S s 1 4 1
(3) Where is there any code involved in the implementation of this behavior? s s/d 23 10 2 3 6 3 1 2 3 4 1
(4) Is there a precedent or exemplar for this? s s 14 4 4 4 1 1 4 1 3 3 1 2 1 1
(5) Is there an entity named something like this in that unit (project, package,
or class, say)?

S s 18 4 11 1 4 1 4 2 7 1 1 1 1

Total in the category 67 11 37 7 8 6 5 4 5 5 12 5 14 3 5 3 2 1
Expanding Focus Points (EFP)
Types and Static Structure
(6) What are the parts of this type? S s 60 31 11 1 11 5 1 2 3 13 6 6 7 6 3 4 1 5 12 2 4
(7) Which types is this type a part of? s s 3 2 2 1 1 1 1 1
(8) Where does this type fit in the type hierarchy? S s 10 1 10 3 1 1 3 1 1 1
(9) Does this type have any siblings in the type hierarchy? S s 1 2 1
(10) Where is this field declared in the type hierarchy? S s 2 2 2
(11) Who implements this interface or these abstract methods? S s 8 5 2 1 4 1
Extra Questions on Types and Static Structure
(e1) Where is the method defined in the type hierarchy? S - 3 1 - - 1 2 1
(e2) What are the correct arguments names to this method? S - 8 - - 4 3 1
(e3) Which abstract methods should be implemented to this type? S - 2 - - 2
Incoming Connections
(12) Where is this method called or type referenced? S s 41 23 33 2 7 2 1 9 3 7 2 4 2 4 2 1 7 1 2 10
(13) When during the execution is this method called? S d 1 4 1 1
(14) Where are instances of this class created? D s 4 8 1 1 1 1
(15) Where is this variable or data structure being accessed? S s 13 2 8 3 3 2 3 3 2 2
(16) What data can we access from this object? S s 1 1 1 1
Outgoing Connections
(17) What does the declaration or definition of this look like? S s 140 72 13 5 8 13 16 10 15 21 14 22 10 11 18 1 15 3 6 5 24
(18) What are the arguments to this function? s s 4 1 10 3 1 1
(19) What are the values of these arguments at runtime? D d 22 4 4 1 6 6 5 5 4
(20) What data is being modified in this code? s s 3 1 2 3 1
Extra Questions on Outgoing Connections
(e4) What method implementation corresponds to my question? s - 4 - - 1 2 1
(e5) What is the variable type or what is the method’s return type at runtime? s/d - 18 4 - - 2 3 3 2 2 3 1 2 1 1 1 1
Total in the category 335 155 115 14 42 31 38 33 29 48 29 39 23 23 30 8 29 20 20 8 40
Understanding a Subgraph (US)
Behavior
(21) How are instances of these types created and assembled? s/d s 8 1 9 3 2 3 1
(22) How are these types or objects related? (whole-part) S s 3 1 3 1 1 1 1
(23) How is this feature or concern (object ownership, UI control, etc.)
implemented?

s s 30 12 12 3 6 3 7 4 1 4 1 1 3 2 1 6 3

(24) What in this structure distinguishes these cases? - s 2 1
(25) What is the behavior that these types provide together and how is it
distributed over the types?

s/d s 26 3 7 1 6 5 7 1 1 1 1 2 2 1 2

(26) What is the ‘correct’ way to use or access this data structure? s/d s 8 11 3 3 1 5 2 4 1 5 1
(27) How does this data structure look at runtime? D d 72 34 3 3 2 3 3 8 2 1 6 3 15 29 4 11 2 11 6
Data and Control Flow
(28) How can data be passed to (or accessed at) this point in the code? s/d d 10 5 4 1 3 1 2 3 1 5
(29) How is control getting (from here to) here? D d 5 2 1 1 2 1
(30) Why is not control reaching this point in the code? s/d d 3 1 6 2 1 1 1 1
(31) Which execution path is being taken in this case? D d 13 3 7 2 1 1 1 1 7 2 2 1
(32) Under what circumstances is this method called or exception thrown? D d 3 1 8 2 1 1
(33) What parts of this data structure are accessed in this code? - s 3
Extra Questions on Data and Control Flow
(e8) What does the failure look like? d - 30 38 - - 1 5 7 3 1 2 7 2 2 11 3 2 8 5 2 7
Total in the category 211 110 69 16 18 17 28 21 13 19 11 15 28 41 16 21 8 9 28 14 14
Questions over Groups of Subgraphs (QGS)
Comparing or Contrasting Groups
(34) How does the system behavior vary over these types or cases? d s/d 23 21 2 1 2 2 2 6 2 1 4 4 5 2 1 13
(35) What are the differences between these files or types? S s 1 9 1 8 1 5 1 1 2
(36) What is the difference between these similar parts of the code (e.g.,
between sets of methods)?

s s 2 2 3 4 1 1 1 1

(37) What is the mapping between these UI types and these model types? - s 4
Change Impact
(38) Where should this branch be inserted or how should this case be handled? s s 36 24 5 2 1 2 8 1 3 2 5 11 1 2 4 4 6 5 4 1
(39) Where in the UI should this functionality be added? s s 1 4 2 1
(40) To move this feature into this code, what else needs to be moved? S s 2 2 2
(41) How can we know that this object has been created and initialized
correctly?

s/d s 1 5 2 1 4 1

(42) What will be (or has been) the direct impact of this change? d s/d 28 16 7 15 1 4 2 2 6 3 9 1 1 2 11 1 1
(43) What will the total impact of this change be? d s/d 4 1 9 1 2 1 1
(44) Will this completely solve the problem or provide the enhancement? D d 22 6 3 2 3 7 1 5 1 3 2 3 2 1
Extra Questions on Change Impact
(e6) Is this entity or feature tested? S - 2 3 - - 2 2 1
(e7) Do the test cases pass? D - 11 52 - - 11 21 1 15 15
Total in the category 133 139 31 45 3 8 24 24 12 11 14 28 1 8 42 14 18 21 24 5 15
Total - 746 415 252 82 71 62 95 82 59 83 66 87 66 75 88 48 58 52 72 27 70
Tool Usage Legend: S = strong static, s = static, s/d = static and dynamic, d = dynamic, D = strong dynamic tool usage.

TABLE II
TOOL USAGE AND QUESTION OCCURRENCES OBSERVED IN THIS STUDY AND THE STUDY BY SILLITO et al.

find out a class that implements it.” (P8 in S5), and “Does the
number 46 represent a dot character?” (P6 in S10).

Participants in sessions on unfamiliar codebase usually
asked the questions in this category at the beginning of each
session. Forty-eight percent of questions in this category were
asked in the first quarter of each session, and 22% in the
second quarter, see Figure 2. In sessions on familiar codebase,
we observe 11 questions that were asked mostly in the second
part of each session, with the distribution of 27%, 0%, 36%,
and 36% for each quarter. Sillito et al. also observed that FFP
questions were asked at the beginning of sessions and also
when participants began to examine new codebase parts.

Table 2

First Quarter Second Quarter Third Quarter Fourth Quarter

FFP (67 questions) 48% 22% 25% 4%

EFP (335 
questions)

30% 24% 24% 21%

US (211 questions) 19% 22% 29% 30%

QGS (133 
questions)

20% 30% 22% 29%

FFP (11 questions) 27% 0% 36% 36%

EFP (155 
questions)

23% 26% 30% 21%

US (110 questions) 21% 37% 22% 20%

QGS (139 
questions)

12% 31% 35% 23%

FFP (67 questions)
EFP (335 questions)
US (211 questions)

QGS (133 questions)
FFP (11 questions)

EFP (155 questions)
US (110 questions)

QGS (139 questions)

Percentage of participant question occurrences in each session quarter
0% 25% 50% 75% 100%

23%
20%
21%
36%
29%
30%
21%

4%

35%
22%

30%
36%

22%
29%

24%
25%

31%
37%

26%

30%
22%

24%
22%

12%
21%
23%

27%
20%
19%

30%
48%

First Quarter Second Quarter Third Quarter Fourth Quarter

Fa
m

ilia
r

U
nf

am
ilia

r

�1

Fig. 2. Question occurrences asked during four session quarters.

5



B. Expanding Focus Points (EFP)

Questions in this category are about building from an entity,
e.g., class or method, and exploring other relevant entities.
Participants often answered these questions by exploring rela-
tionships, e.g., “What instance variables does the ’BPVariable’
class have?” (P5 in S5), “Who are senders of ’rawmenu’
method?” (P2 in S2), “Is the ’R3CubeShape’ class referenced
in a test?” (P4 in S11), and “What do the error handling
methods look like?” (P6 in S13).

Questions in this category are more frequent for unfamiliar
sessions. Sillito et al. found even more prominent differences.
Comparing question occurrences, questions “(6) What are the
parts of this type?”, “(12) Where is this method called or
type referenced?”, and “(17) What does the declaration or
definition of this look like?” are the most frequent questions
in this category. Those questions involve basic source code
observations, e.g., class and method definitions and references
to the rest of a codebase. Question 17 is the most frequent
in our study. Questions 12, 17, and 6 are also most frequent
questions in this category in the study by Sillito et al. Question
12 is the most frequent in their study.

C. Understanding a Subgraph (US)

Questions in this category are about understanding of con-
cepts that involve several entities and relationships. Partici-
pants were often interested how a code works and how its
behavior is implemented, e.g., “How does it [a click in a text
editor] work now in Nautilus [application]?” (P11 in S7),
“Which part of code is responsible for this behavior [box
placement]?” (P2 in S2), and “What [...] filename [is] related
to this variable [...]?” (P5 in S12).

Question “(27) How does this data structure look at run-
time?” is the most prevalent questions in this category. Par-
ticipants asked it predominantly in unfamiliar sessions as they
knew less about the corresponding codebases. Another fre-
quent question “(e8) What does the failure look like?” in this
category is our additional question discussed in Section V-E.
Sillito et al. observe question “(23) How is this feature or
concern (object ownership, UI control, etc.) implemented?”
as most frequent.

D. Questions over Groups of Subgraphs (QGS)

While questions in the previous section involve under-
standing of a subgraph, questions in this category involve
understanding the interaction between multiple subgraphs or
the subgraph and the rest of the system. Participants asked
the questions when they investigated how programs behave
in different scenarios, e.g., “How fast is this widget?” (P11
in S17), “Why is the ’anEvent’ not keystroke?” (P6 in S10),
“How is the ’position’ method implemented [in two different
clases]?” (P7 in S4), and “Where can I set the color?” (P3 in
S3).

Questions “(34) How does the system behavior vary over
these types or cases?”, “(38) Where should this branch be
inserted or how should this case be handled?”, “(42) What
will be (or has been) the direct impact of this change?”, and

“(e7) Do the test cases pass?” (a new question discusses later)
are the most prevalent questions in this category. Sillito et al.
report questions 42, 43 as most frequent in this category and
among all questions on familiar codebase.

E. Additional Questions

This section discusses aggregated questions that are not
present in the study by Sillito et al.

1) On Dynamically Typed Aspects of Pharo: In this section
we discuss the following questions:

• “(e1) Where is the method defined in the type hierarchy?”
• “(e2) What are the correct argument names to this

method?”
• “(e3) Which abstract methods should be implemented to

this type?”
• “(e4) What method implementation corresponds to my

question?”
• “(e5) What is the variable type or what is the method’s

return type at runtime?”
Polymorphism. In certain cases, answering question “(17)

What does the declaration or definition of this look like?”
needed to be divided into sub-questions. Participant P2 first
had to determine to whom the message is sent by asking
question “(e5) What is the variable type or what is the
method’s return type at runtime?” It was answered by putting
a breakpoint into a specific method and subsequently observed
in a debugger.

A static observation of a particular codebase was also
a common practice. Participant P1 estimated the original
question 17 by asking “(e4) What method implementation
corresponds to my question?” supposing that it should be
a class corresponding to the same package that he manipulated.
Since he did not find the expected class, he browsed the class
definition asking “(e1) Where is the method defined in the
type hierarchy?” and he searched the method in the following
superclasses where he found the answer.

In the statically typed languages, e.g., Java, question 17
is answered by a direct navigation from a calling method to
a particular definition. In Pharo, it is necessary to perform extra
steps (questions e1, e4, and e5) to achieve the information.
Sillito et al. also observe navigation difficulties (in Java tasks)
when polymorphism, inheritance events, and reflection are
involved, making results noisy and hard to interpret.

Implementation. The Pharo language has no special symbol
distinguishing abstract class or method declaration. Instead,
a dedicated method call is used in the definition of a particular
“abstract” method. If a developer forgets to override the
method, an exception is raised. Therefore, at the time of
defining a new class, participant P6 has checked the methods in
the superclass, asking question “(e3) Which abstract methods
should be implemented to this type?”

Participant P4 was in the opposite situation. He formed
a method that is a part of an abstract programming interface
(API). Since argument names are an important API guideline
in a dynamically typed language, he was interested in what the
argument names are in other methods: question “(e2) What

6



are the correct argument names to this method?” The name
was aValueOrASymbolOrAOneArgBlock indicating that
values can be basic ones (e.g., numbers and strings), a symbol
(a specialized string), or a one-argument lambda function.

2) On Test Cases: Here we discuss the following questions:
• “(e6) Is this entity or feature tested?”
• “(e7) Do the test cases pass?”
• “(e8) What does the failure look like?”
Participant P4 began his work writing test cases. First, he

wondered whether a particular scenario is tested, i.e., question
“(e6) Is this entity or feature tested?” He asked sub-question
“(12) Where is this method called or type referenced?” In that
particular case he found it difficult to answer the question e6
and noted that “this is not worth wasting time over ... writing
a test should be easy” and he wrote a new one. Later, when
he was fixing the test cases affected by his changes, he found
tests similar to those he wrote at the beginning.

Questions “(e7) Do the test cases pass?” and “(e8) What
does the failure look like?” are recognized by Sillito et al.
Question e7 could be mapped to “(42) What will be (or has
been) the direct impact of this change?” or “(44) Will this
completely solve the problem or provide the enhancement?”
Question e8 could be mapped to “(29) How is control getting
(from here to) here?”, “(30) Why is control not reaching this
point in the code?”, or “(32) Under what circumstances is this
method called or exception thrown?” Since it was difficult to
identify specific questions, we used a more general form.

Conclusion. In this section, we report question occurrences
contrasting them with the study by Sillito et al. Questions
17 (EFP), 27 (US), and e7 (QGS) are prevalent in our study,
while questions 12 (EFP), 42 (QGS), and 43 (QGS) are asked
frequently in the study by Sillito et al. New questions arise to
explicitly document: (i) the source code navigation difficulties;
and (ii) impediments to infer Sillito et al. questions.

Observation 1. Question “(17) What does the declaration
or definition of this look like?” is the most asked question
about source code. Question “(27) How does this data
structure look at runtime?” is the most asked question
about runtime.

VI. RESULTS: DEVELOPER QUESTION COMPLEXITY

Sub-questions. Session transcripts are structured to root
questions, initial participant questions, and sub-questions that
participants used to answer the root questions. Questions are
therefore structured as a tree-graphs. In the following analysis,
we classify questions to four groups: (1) root questions without
sub-questions, (2) root questions with sub-questions, (3) inner-
graph questions that have parent- and sub- questions, and (4)
leave questions that have parent questions. Figure 3 shows this
classification around four question categories defined by Sillito
et al. For easy reading, we put questions with sub-questions
to the left, and questions without sub-questions to the right.

We observe that 75% (876 out of 1,161) of questions do
not include sub-questions (the right side in Figure 3). Those
questions are organized around categories as: 4% FFP (Finding

Table 2

Inner-graph q. 
with parent- and 
sub- q.

Root-questions 
(q.) with sub-
questions

Root-questions 
without sub-
questions

Leave-q. with 
parent-, without 
sub- q.

FFP -29 -11 9 29

EFP -47 -4 79 360

US -72 -40 39 170

QGS -40 -42 88 102

C
at

eg
or

ie
s

FFP

EFP

US

QGS

Number of participant question occurrences
-120 20 160 300 440

102
170

360
29

88
39

79

-42
-40

-40
-72
-47
-29

Inner-graph q. with parent- and sub- q.
Root-questions (q.) with sub-questions
Root-questions without sub-questions
Leave-q. with parent-, without sub- q.

↦ Without sub-questionsWith sub-questions ↤

�1

Fig. 3. Question and sub-question occurrences classified to root questions
with and without sub-questions, inner-graph questions, and leave questions.

Focus Points), 50% EFP (Expanding Focus Point), 24% US
(Understanding a Subgraph), and 22% QGS (Questions over
Groups of Subgraphs). As a first approximation, we conclude
that EFP questions are simple questions, understanding that
they do not require sub-questions to answer them. QGS and US
questions require more steps to answer. FFP questions were
the most complex to answer (in terms of sub-questions).

Looking at each question category separately, we observe
similar results. Figure 3 shows that 49% FFP, 90% EFP, 65%
US, and 70% QGS questions do not include sub-questions.
Participants were therefore able to answer EFP questions
predominantly directly (without involving sub-questions). EFP
questions are then followed by US and GQS categories.
FFP questions are most complex considering this ranking.
We do not analyze if questions were answered (correctly or
incorrectly) or abandoned as this requires further effort and is
out of the scope of this study.

Root questions. Figure 4 closely shows how root ques-
tions with sub-questions (97 out of 312 root questions) were
answered. Each question category is divided into four sub-
question categories. To ease the reading, we put US and QGS
categories to the left (less satisfactory tool support) and FFP
and EFP categories to the right (satisfactory tool support),
following the observations by Sillito et al. We observe that
most categories are interconnected and participant picked sub-
questions from all categories to answer root questions.

Table 2

US sub-questions QGS sub-
questions

FFP sub-questions EFP sub-
questions

FFP -37 -6 21 73

EFP -1 -2 0 6

US -140 -69 16 217

QGS -64 -65 21 111

Ro
ot

 c
at

eg
or

ie
s FFP

EFP

US

QGS

Number of participant sub-question occurrences
-210 -120 -30 60 150 240

111
217

73

21
16

21

-65
-69

-64
-140

-37
US sub-questions
QGS sub-questions
FFP sub-questions
EFP sub-questions

↦ with better tool support according to Sillito et al.Categories: with less tool support ↤

�1

Fig. 4. Root question occurrences classified to sub-question categories.

Participants used 15% FFP, 53% EFP, 27% US, and 4%
QGS sub-questions to answer FFP root questions. EFP root
questions rarely required sub-questions (9 sub-questions in
total). US root questions required 4% FFP, 49% EFP, 32%
US, and 16% QGS sub-questions. Finally, QGS root questions
involved 8% FFP, 43% EFP, 25% US, and 25% QGS sub-
questions.

We observe that participants used EFP sub-questions often
to answer root questions, followed by US and QGS sub-

7



questions. It supports our previous conclusion that EFP ques-
tions are basic instruments to understand a codebase. FFP sub-
questions were least used as FFP questions are mainly asked
when developers do not know anything about a codebase. Par-
ticipants used FFP questions predominantly at the beginning
of each session as we report in Section V-A.

Except for frequent use of EFP sub-questions, participants
tend to have US and QGS sub-questions too. The proportion
of QGS sub-questions is highest for QGS root questions,
followed by US and by FFP root questions. Similarly, the pro-
portion of US sub-questions is higher for US root questions,
followed by FFP and QGS root questions.

Unfamiliar vs. familiar codebase. Figure 5 considers root
questions (312 in total). It shows the number of sub-questions
for root questions in each category, contrasting unfamiliar
and familiar codebase sessions. It indicates that US and QGS
root questions are more complex to answer (considering the
number of required sub-questions) on unfamiliar codebase.
There are about three times more sub-questions (mean values)
on unfamiliar codebase. We cannot really contrast FFP root
questions as we observe only two FFP root questions on fa-
miliar codebase. EFP root questions have similar complexity in
terms of number of sub-questions (almost zero sub-questions).
We observe that US and QGS root questions are most difficult
to answer (in terms of involved sub-questions).

Table 2

Unfamiliar 
Codebase

Familiar Codebase

FFP -7.6 0.0

EFP -0.3 0.0

US -8.8 3.0

QGS -4.1 1.0

Ro
ot

 c
at

eg
or

ie
s FFP

EFP

US

QGS

Number of participant sub-question occurrences for one root question (mean values)
-9.0 -6.0 -3.0 0.0 3.0

1.0
3.0

0.0

-4.1
-8.8

-7.6
↦ Familiar codebaseUnfamiliar codebase ↤

�1

Fig. 5. Sub-questions occurrences for one root question (mean values).

Conclusion. In this section, we present question complexity
based on the number of sub-questions involved answering root
questions. We conclude that QGS, US, and FFP questions
are the most complex to answer. EFP questions are the
most simple to answer and were involved most in answering
questions of other categories. QGS and US questions are more
complex in unfamiliar codebase sessions.

Observation 2. QGS, US, and FFP questions are complex.
EFP questions are simple and are used to answer other
questions.

VII. RESULTS: TOOL USAGE ANSWERING QUESTIONS

Tool Usage. In our previous study [11] we introduced two
tool categories: static tools whose main purpose is to present
source code (e.g., a source code browser); and dynamic tools
whose main purpose is to present an application state (e.g.,
a debugger). We annotated each session with time slots to
know how much time participants spend using those tools
(considering active windows, manual analysis).

We match those data with time slots participants spent
answering questions. Considering a question occurrence, we

compute a ratio number from an interval [0, 1]. It indicates the
proportion of time spent answering the question using dynamic
tools, e.g., a number 0.3 denotes that a participant spent
30% of the time using dynamic tools and 70% of the time
using static tools. The goal of this classification is to get us
a first-order approximation of whether participants answered
questions using static (navigating source code) or dynamic
tools (runtime information, e.g., instance variable values).

Categories. Figure 6 illustrates the tool usage by categories.
For easy reading, we put static tool usage to the left, and
dynamic tool usage to the right. Participants used 95% of
the time static tools answering EFP (Expanding Focus Points)
questions. Participants used dynamic tools more often answer-
ing FFP (Finding Focus Points, 48%), US (Understanding
a Subgraph, 46%), and QGS (Questions over Groups of
Subgraphs, 45%) questions.

Table 2

Static Tools Dynamic Tools

FFP -52% 48%

EFP -95% 5%

US -54% 46%

QGS -55% 45%

Ro
ot

 c
at

eg
or

ie
s FFP

EFP

US

QGS

Percentage of static and dynamic tool usage answering root questions
-100% -75% -50% -25% 0% 25% 50%

45%
46%

5%
48%

-55%
-54%
-95%
-52%

↦ Dynamic tools usageStatic tools usage ↤

�1

Fig. 6. Time spent answering root questions using static and dynamic tools.

Figure 7 offers a detailed look at the tool usage per unfamil-
iar and familiar codebase. Participants spent 27% more time
using dynamic tools answering FFP questions on unfamiliar
codebase sessions. Tool usage on EFP, US, and QGS questions
was similar (varying by 6%, –8%, and 5% respectively)
contrasting unfamiliar and familiar codebase sessions.

Table 2

Static Tools Dynamic Tools

FFP -52% 48%

EFP -91% 9%

US -57% 43%

QGS -53% 47%

FFP -79% 21%

EFP -97% 3%

US -49% 51%

QGS -58% 42%

FFP
EFP
US

QGS
FFP
EFP
US

QGS

Percentage of static and dynamic tool usage answering questions
-100% -75% -50% -25% 0% 25% 50% 75%

42%
51%

3%
21%

47%
43%

9%
48%

-58%
-49%
-97%
-79%
-53%
-57%
-91%
-52%

↦ Dynamic tools usageStatic tools usage ↤

Fa
m

ilia
r

U
nf

am
ilia

r

%

�1

Fig. 7. Time spent answering root questions using static and dynamic tools.

Individual Questions. Table II includes tool usage informa-
tion for each question. See second column Tool usage by
us. We introduce five labels: S as strong static tool usage
if 100% to 80% question occurrences were answered using
static tools; s as static tool usage if 80% to 60% question
occurrences were answered using static tools; s/d as both static
and dynamic tool usage if 60% to 40% question occurrences
were answered using static tools; d as dynamic tool usage
if 40% to 20% question occurrences were answered using
static tools; and D as strong dynamic tool usage if 20% to
0% question occurrences were answered using static tools.

Table II, column Tool usage by Sillito, includes program-
ming tools and technique usage provided by Sillito et al. We

8



mark as s if Sillito et al. report a static tool usage to answer
a question; d if they report dynamic tool usage; and s/d if
they report both static and dynamic tool usage. Sillito et al.
analyzed literature to provide the tool support and state-of-the-
art techniques in answering catalogued questions. They did
not analyze static and dynamic tool usage in their conducted
sessions. We contrast both results in the rest of this section.

We observe that our participants used dynamic information
in six questions, where Sillito et al. report only static tools
support: “(1) Which type represents this domain concept or
this UI element or action?” (FFP), “(14) Where are instances
of this class created?” (EFP), “(21) How are instances of
these types created and assembled?” (US), “(25) What is
the behavior that these types provide together and how is it
distributed over the types?” (US), “(26) What is the ‘correct’
way to use or access this data structure?” (US), and “(41)
How can we know that this object has been created and
initialized correctly?” (QGS). The dynamic tool usage not
reported by Sillito et al. is particularly noticeable in the US
category. Participants used dynamic tools in 82% (9 out of
11) US questions while Sillito et al. report 55% (6 out of
11) US questions, considering questions where we have tool
usage information from our study and study by Sillito et al.
We notice tendency using dynamic tool usage in our study and
we discuss particular scenarios in the following Section VIII.

Observation 3. Participants often used dynamic tools an-
swering FFP, US and QGS questions. EFP questions were
answered predominantly using static tools.

VIII. RESULTS: TOOL SUPPORT ANSWERING QUESTIONS

Our study provides insights about question complexity and
static vs. dynamic tool usage answering those questions. To
build an overall understanding of the pros and cons of liveness,
we discuss each question category, contrasting our results with
findings by Sillito et al.

Finding Focus Points (FFP). Sillito et al. report that four
out of five questions are supported and answered using static
analysis, text and lexical searches based on posible iden-
tifiers (names). We observe that participants used dynamic
information too. To find out which classes correspond to UI
widgets, question “(1) Which type represents this domain
concept or this UI element or action?”, they inspected the
widgets and then navigated to their classes. Participants also
searched examples in dedicated example browsers, question
“(4) Is there a precedent or exemplar for this?”. In particular,
participant P4 (S8) went through the example list and explored
their running instances (UI widgets).

Despite the fact that Sillito et al. report question “(2) Where
in the code is the text in this error message or UI element?”
with full support, human errors can significantly affect a task
progress. P5 (S9) looked for a string that appeared on a dialog
(question 2). He did not find it because of a spelling error
and spent about forty minutes trying other techniques to find
code relevant to his task. P5 could inspect the dialog and
copy&paste the text, but he did not.

Expanding Focus Points (EFP). Sillito et al. found that
participants used a debugger to check the accuracy of answers
in this category. Participants set breakpoints to candidate
locations and by running an application they revealed relevant
classes and methods. Our participants moreover evaluated code
snippets in debuggers and object inspectors to confirm the
accuracy.

The Java language has a special syntax construct for
constructors. For that reason Sillito et al. concludes that
answering the question “(14) Where are instances of this
class created?” is well supported by static analysis in Eclipse.
The Pharo language does not have a special syntax construct
for constructors, which are regular methods. Pharo developers
have therefore two options to answer question number 14:
(i) search for all class references, or (ii) put a breakpoint
in an instance creation method and run the application. Our
participants predominantly chose (ii), since they were usually
interested in a specific case, not all cases.

Understanding a Subgraph (US). Sillito et al. report that 7
out of 13 questions in this category are supported by static
analysis. Our participants also used dynamic tools to answer
those 7 questions. They combined several activities: writing
code snippets in playgrounds, inspectors, and debuggers; in-
specting objects and graphical widgets; and reusing examples.
In addition, the fact that Pharo opens a debugger whenever an
unhandled exception appears, question “(e8) What does the
failure look like?”, it encourages the runtime code exploration.

Participants in the study by Sillito et al. accessed values (ob-
jects) by putting breakpoints and executing applications. This
is a limited way of obtaining runtime information, comparing
it to our study. Due to the simple object inspection facilities,
the increased number of occurrences of question “(27) How
does this data structure look at runtime?” reflects the fact that
participants tended to use dynamic information to answer the
questions in this category. As a consequence, we notice that
the increased opportunities to get dynamic information led to
comprehend application by exploring it at runtime.

Questions over Groups of Subgraphs (QGS). Sillito et al.
conclude that tool support answering questions in this category
is not satisfactory and mainly supported by static analysis.
We observe some situations where developers handled the
difficulties by exploring applications at runtime. The question
“(34) How does the system behavior vary over these types
or cases?”, which is (according to Sillito et al.) difficult
to answer especially when comparing behavior, participants
P7 (S4) and P11 (S17) handled by writing different code
snippets, executing the code and observing different behavior.
Participants also altered the code of running applications to
see an immediate feedback.

Questions “(41) How can we know that this object has
been created and initialized correctly?”, “(42) What will be
(or has been) the direct impact of this change?”, “(43) What
will be the total impact of this change?”, and “(44) Will this
completely solve the problem or provide the enhancement?”
were also answered by observing applications at runtime in
several situations. In the case of familiar sessions, participants

9



used and wrote test cases, question “(e7) Do the test cases
pass?”, to keep a proper control of different application cases.

Summary. We observe that participants tend to use dynamic
information (liveness) when possible, making some program-
ming episodes easy to progress. US and QGS questions were
predominantly answered using dynamic tools. However, the
complexity of answering questions remains high, considering
involved sub-questions.

US and QGS also involved many sub-questions about source
code (EFP questions), causing transitions from one application
(e.g., inspector) to another (e.g., source code browser). While
Pharo dynamic tools are integrated, keeping navigation in one
tool, we observe a disconnection when participants moved
from dynamic information to static information (tool).

Observation 4. Participants accessed dynamic information
frequently, making answering some questions easy.

IX. THREATS TO VALIDITY

Empirical studies have to deal with tradeoffs between in-
ternal and external validity [39]. To deal with it properly, we
decided on the following:

Internal validity. The transcript of each task activity was
performed by the first author. When the author was unsure,
all authors held discussions. To minimize biases in the in-
terpretation, we built tools that allowed us to move between
reports, transcripts, and audio and video recordings.

The identification of specific questions based on a user
behavior may be inaccurate, as participants did not always
verbalize their thoughts explicitly. The subsequent synthesis of
general questions also suffer from uncertainty. For example,
the questions “(13) When during the execution is this method
called?” and “(31) Which execution path is being taken in
this case?” can be difficult to distinguish. To minimize the
inaccuracy, we contrasted different scenarios and tool usage
answering the same questions.

External validity. The session tasks may not be representa-
tive for the Pharo IDE, and thus: (i) may not reveal significant
benefits of the Pharo tools, (ii) may produce different results
on the number of question occurrences, question complexity,
and tool usage. We only define tasks on unfamiliar codebase
and we left the task on familiar codebase to the participants.

We had a limited choice of participants who may share
similar development techniques. Our participants were all
males and studies like the two of Beckwith et al. have shown
differences between males and females while tinkering [40],
however, the relationships is not obvious at all [41].

Generalizing results is restricted, due to the difficulty to
conduct such studies on a large scale: transcribing one session
is time-consuming (about 2 days per session). Although the
number of sessions is similar to related work (Fritz et al. [34],
11 interviews; LaToza et al. [33], 13 sessions; Sillito et al.
[1], 27 sessions), due to: the limited amount of sessions and
participants; the lack of diversity in participants, tools and
tasks; and session durations, it is not certain the results will
generalize.

X. SUMMARY

Additional questions. We document eight additional devel-
oper questions. Five questions are related to the fact that
the Pharo language is dynamically typed and navigating in
source code is not always straightforward. Similarly, method
return types, method argument types, and variable types are
not explicit and thus require extra investigation.

Two new questions are related to using and writing test
cases. The most frequent new question is “(e7) Do the test
cases pass?” and was asked predominantly in sessions on
familiar codebases. Similarly to the observation by Sillito et
al. using test cases was uncommon. Test cases appeared in
four out of seventeen sessions.

Question “(e8) What does the failure look like?”, is related
to the fact that Pharo opens a debugger whenever an unhandled
exception appears. Participants were thus naturally encouraged
to observe issues and the corresponding runtime information.

Question occurrences and tool usage. Our participants asked
more frequently questions that involve runtime information to
answer them. In particular, question “(27) How does this data
structure look at runtime?” This is due to the ease of acquiring
this information in Pharo. We also observe scenarios where
participants gained knowledge or confidence about source code
exploring applications at runtime, even in situations where
Sillito et al. report static analysis as sufficient. To access the
runtime information they used existing examples, wrote code
snippets, inspected graphical widgets, and manipulated objects
in inspector and debugger windows.

Question complexity. Despide having observed benefits us-
ing dynamic information, complex questions still remained,
involving many sub-questions. Having dynamic information
available is thus not a panacea for programming tasks and
further research is necessary to find out how liveness feedback
can significantly improve developer performance.

XI. CONCLUSION

Documenting developer information needs is an important
research task that is regularly investigated in different contexts.
We partially replicated the study by Sillito et al. and found
1,161 developer questions in 17 programming sessions cover-
ing about 13 hours of video. The sessions were performed in
Pharo, a Live Programming environment.

Participants in the study by Sillito et al. favored static obser-
vations, while our participants favored dynamic information,
as it was easily accessible in many different ways (not only
with a debugger, see Section II-C for details). However, many
program explorations involved many sub-questions, dealing
with static and dynamic informations at once. Thus, more
research needs to be done to improve this situation and make
the static and dynamic information seamlessly inter-connected.
Studying such new development environments might change
what questions developers ask and how they answer them.

ACKNOWLEDGMENTS We thank Renato Cerro for editing.
Kubelka is supported by a Ph.D. scholarship from CONICYT,
Chile. CONICYT-PCHA/Doctorado Nacional/2013-63130188.
Bergel thanks Lam Research for sponsoring part of this effort.

10



REFERENCES

[1] J. Sillito, G. Murphy, and K. De Volder, “Asking and Answering
Questions during a Programming Change Task,” Software Engineering,
IEEE Transactions on, vol. 34, no. 4, pp. 434–451, July 2008. [Online].
Available: http://dx.doi.org/10.1109/TSE.2008.26

[2] T. D. LaToza and B. A. Myers, “Developers Ask Reachability
Questions,” in Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10.
New York, NY, USA: ACM, 2010, pp. 185–194. [Online]. Available:
http://doi.acm.org/10.1145/1806799.1806829

[3] A. Ko, R. DeLine, and G. Venolia, “Information Needs in Collocated
Software Development Teams,” in Software Engineering, 2007. ICSE
2007. 29th International Conference on, May 2007, pp. 344–353.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.45

[4] E. Duala-Ekoko and M. Robillard, “Asking and answering questions
about unfamiliar APIs: An exploratory study,” in Software Engineering
(ICSE), 2012 34th International Conference on, June 2012, pp. 266–276.
[Online]. Available: http://dx.doi.org/10.1109/ICSE.2012.6227187

[5] J. Sillito, “Asking and answering questions during a programming
change task,” Ph.D. dissertation, University of British Columbia, Feb
2006. [Online]. Available: https://open.library.ubc.ca/cIRcle/collections/
831/items/1.0052042

[6] N. Juristo and S. Vegas, “The role of non-exact replications in
software engineering experiments,” Empirical Software Engineering,
vol. 16, no. 3, pp. 295–324, 2011. [Online]. Available: http:
//dx.doi.org/10.1007/s10664-010-9141-9

[7] S. L. Tanimoto, “A Perspective on the Evolution of Live Programming,”
in Proceedings of the 1st International Workshop on Live Programming,
ser. LIVE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 31–34.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2662726.2662735

[8] C. Parnin, “A History of Live Programming,” 01 2013.
[Online]. Available: http://liveprogramming.github.io/liveblog/2013/01/
a-history-of-live-programming/

[9] E. Sandewall, “Programming in an Interactive Environment: The “Lisp”
Experience,” ACM Comput. Surv., vol. 10, no. 1, pp. 35–71, Mar. 1978.
[Online]. Available: http://doi.acm.org/10.1145/356715.356719

[10] A. Goldberg and D. Robson, Smalltalk 80: the Language
and its Implementation. Reading, Mass.: Addison Wesley, May
1983. [Online]. Available: http://stephane.ducasse.free.fr/FreeBooks/
BlueBook/Bluebook.pdf

[11] A. Author(s), “Anonymous Title for the Double Blind Review,” in
Anonymous Proceedings, ser. Anonymous ’18. Anonymous Address:
ACM, 2018, pp. 1–12.

[12] P. Rein, S. Lehmann, T. Mattis, and R. Hirschfeld, “How Live are Live
Programming Systems?” Proceedings of the Programming Experience
2016 (PX/16) Workshop on - PX/16, 2016. [Online]. Available:
http://dx.doi.org/10.1145/2984380.2984381

[13] D. Ungar and R. Smith, “SELF: the power of simplicity (object-oriented
language),” Digest of Papers. COMPCON Spring 88 Thirty-Third IEEE
Computer Society International Conference, 1988. [Online]. Available:
http://dx.doi.org/10.1109/CMPCON.1988.4851

[14] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
future,” Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications - OOPSLA
’97, 1997. [Online]. Available: http://dx.doi.org/10.1145/263698.263754

[15] J. Noble and S. McDirmid, Eds., Proceedings of the 2nd International
Workshop on Live Programming, LIVE 2016, Rome, Italy, July 17, 2016,
2016.

[16] D. Ogborn, G. Wakefield, C. Baade, K. Sicchio, and T. Goncalves, Eds.,
Proceedings of the Second International Conference on Live Coding,
2016.

[17] S. L. Tanimoto, “VIVA: A visual language for image processing,”
Journal of Visual Languages & Computing, vol. 1, no. 2, pp. 127–139,
1990.

[18] M. M. Burnett, J. W. Atwood, and Z. T. Welch, “Implementing level
4 liveness in declarative visual programming languages,” in Visual
Languages, 1998. Proceedings. 1998 IEEE Symposium on. IEEE, 1998,
pp. 126–133.

[19] S. McDirmid, “Living it up with a live programming language,” in ACM
SIGPLAN Notices, vol. 42. ACM, 2007, pp. 623–638.

[20] J. Edwards, “Subtext: uncovering the simplicity of programming,” ACM
SIGPLAN Notices, vol. 40, no. 10, pp. 505–518, 2005.

[21] S. McDirmid and J. Edwards, “Programming with managed time,” in
Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming & Software. ACM,
2014, pp. 1–10.

[22] S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal,
N. Tillmann, and J. Kato, “It’s alive! continuous feedback in UI
programming,” in ACM SIGPLAN Notices, vol. 48. ACM, 2013, pp.
95–104.

[23] R. DeLine, D. Fisher, B. Chandramouli, J. Goldstein, M. Barnett, J. F.
Terwilliger, and J. Wernsing, “Tempe: Live scripting for live data.” in
VL/HCC, 2015, pp. 137–141.

[24] G. C. D. Team, “Google Chrome Development Tools,” 2017. [Online].
Available: https://developers.google.com/web/tools/chrome-devtools/

[25] R. D. Team, “React: A Javascript Library For Building User Interfaces,”
2017. [Online]. Available: https://facebook.github.io/react/

[26] Oracle, “Java Platform Debugger Architecture,” 2014. [Online].
Available: http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/

[27] K. Eliott, “Swift Playgrounds—Interactive Awesomeness,” 2016.
[Online]. Available: http://bit.ly/Swift-Playgrounds

[28] S. Hanselman, “Interactive Coding with C# and F# REPLS,” 2016.
[Online]. Available: http://bit.ly/InteractiveCodingCF

[29] K. Uhlenhuth, “Introducing the Microsoft Visual Studio C# REPL,”
Nov 2015. [Online]. Available: https://channel9.msdn.com/Events/
Visual-Studio/Connect-event-2015/103

[30] C. Connect, “Code Connect is joining Microsoft,” 2016. [Online].
Available: http://comealive.io/Code-Connect-Joins-Microsoft/

[31] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker, Pharo by Example. Square Bracket Associates, 2009.
[Online]. Available: http://pharobyexample.org

[32] A. Chiş, O. Nierstrasz, A. Syrel, and T. Gı̂rba, “The Moldable
Inspector,” in 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!),
ser. Onward! 2015. New York, NY, USA: ACM, 2015, pp. 44–60.
[Online]. Available: http://doi.acm.org/10.1145/2814228.2814234

[33] T. D. LaToza and B. A. Myers, “Hard-to-answer Questions About
Code,” in Evaluation and Usability of Programming Languages and
Tools, ser. PLATEAU ’10. New York, NY, USA: ACM, 2010, pp. 8:1–
8:6. [Online]. Available: http://doi.acm.org/10.1145/1937117.1937125

[34] T. Fritz and G. C. Murphy, “Using Information Fragments to Answer
the Questions Developers Ask,” in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 175–184. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806828

[35] B. de Alwis and G. C. Murphy, “Answering Conceptual Queries with
Ferret,” in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 21–
30. [Online]. Available: http://doi.acm.org/10.1145/1368088.1368092

[36] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental
Models: A Study of Developer Work Habits,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 492–501. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134355

[37] A. Author(s), “Anonymous Title for the Double Blind Review,” in
Anonymous Proceedings, ser. Anonymous ’14. Anonymous Address:
ACM, 2014, pp. 1–11.

[38] ——. (2019, Jan) Anonymous Dataset for the Double Blind Review.
[Online]. Available: https://www.dropbox.com/sh/swgnwg75z51hr2w/
AACeT3QiixvrVZv0wc4TJ1HFa?dl=0

[39] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and external
validity in empirical software engineering,” in Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, vol. 1.
IEEE, 2015, pp. 9–19.

[40] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S. Sorte, and
M. Hastings, “Effectiveness of end-user debugging software features:
Are there gender issues?” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2005, pp. 869–878.

[41] L. Beckwith, C. Kissinger, M. Burnett, S. Wiedenbeck, J. Lawrance,
A. Blackwell, and C. Cook, “Tinkering and gender in end-user pro-
grammers’ debugging,” in Proceedings of the SIGCHI conference on
Human Factors in computing systems. ACM, 2006, pp. 231–240.

11

http://dx.doi.org/10.1109/TSE.2008.26
http://doi.acm.org/10.1145/1806799.1806829
http://dx.doi.org/10.1109/ICSE.2007.45
http://dx.doi.org/10.1109/ICSE.2012.6227187
https://open.library.ubc.ca/cIRcle/collections/831/items/1.0052042
https://open.library.ubc.ca/cIRcle/collections/831/items/1.0052042
http://dx.doi.org/10.1007/s10664-010-9141-9
http://dx.doi.org/10.1007/s10664-010-9141-9
http://dl.acm.org/citation.cfm?id=2662726.2662735
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://liveprogramming.github.io/liveblog/2013/01/a-history-of-live-programming/
http://doi.acm.org/10.1145/356715.356719
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://stephane.ducasse.free.fr/FreeBooks/BlueBook/Bluebook.pdf
http://dx.doi.org/10.1145/2984380.2984381
http://dx.doi.org/10.1109/CMPCON.1988.4851
http://dx.doi.org/10.1145/263698.263754
https://developers.google.com/web/tools/chrome-devtools/
https://facebook.github.io/react/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://bit.ly/Swift-Playgrounds
http://bit.ly/InteractiveCodingCF
https://channel9.msdn.com/Events/Visual-Studio/Connect-event-2015/103
https://channel9.msdn.com/Events/Visual-Studio/Connect-event-2015/103
http://comealive.io/Code-Connect-Joins-Microsoft/
http://pharobyexample.org
http://doi.acm.org/10.1145/2814228.2814234
http://doi.acm.org/10.1145/1937117.1937125
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/1368088.1368092
http://doi.acm.org/10.1145/1134285.1134355
https://www.dropbox.com/sh/swgnwg75z51hr2w/AACeT3QiixvrVZv0wc4TJ1HFa?dl=0
https://www.dropbox.com/sh/swgnwg75z51hr2w/AACeT3QiixvrVZv0wc4TJ1HFa?dl=0

	I Introduction
	II Background and Related Work
	II-A The Study by Sillito et al.
	II-B Live Programming Environments
	II-C Live Programming in Pharo
	II-D Studies on Developer Information Needs

	III Prior Studies
	IV Research Method
	V Results: Developer Questions
	V-A Finding Focus Points (FFP)
	V-B Expanding Focus Points (EFP)
	V-C Understanding a Subgraph (US)
	V-D Questions over Groups of Subgraphs (QGS)
	V-E Additional Questions
	V-E1 On Dynamically Typed Aspects of Pharo
	V-E2 On Test Cases


	VI Results: Developer Question Complexity
	VII Results: Tool Usage Answering Questions
	VIII Results: Tool Support Answering Questions
	IX Threats to Validity
	X Summary
	XI Conclusion
	References

