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ABSTRACT
Commonly, software systems have public (and stable) inter-
faces, and internal (and possibly unstable) interfaces. De-
spite being discouraged, client developers often use inter-
nal interfaces, which may cause their systems to fail when
they evolve. To overcome this problem, API producers may
promote internal interfaces to public. In practice, however,
API producers have no assistance to identify public inter-
face candidates. In this paper, we study the transition from
internal to public interfaces. We aim to help API producers
to deliver a better product and API clients to benefit sooner
from public interfaces. Our empirical investigation on five
widely adopted Java systems present the following observa-
tions. First, we identified 195 promotions from 2,722 in-
ternal interfaces. Second, we found that promoted internal
interfaces have more clients. Third, we predicted internal
interface promotion with precision between 50%–80%, re-
call 26%–82%, and AUC 74%–85%. Finally, by applying
our predictor on the last version of the analyzed systems,
we automatically detected 382 public interface candidates.

CCS Concepts
•Software and its engineering → Software evolution;
Maintaining software;
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Software Evolution; API Usage; Internal Interface Analysis

1. INTRODUCTION
Nowadays, developers implement their systems on top of

frameworks and libraries [45], which are commonly used in
software development to reuse functionalities [25] and in-
crease productivity [5, 36]. Often, these systems have both
public and internal interfaces [5, 10]. Public interfaces are

stable, supported and documented (i.e., backward compati-
ble), thus they can be safely used by client systems. In con-
trast, internal interfaces are unstable and unsupported (i.e.,
backward incompatible), intended to handle local function-
alities, thus they should not be used by clients [3–5, 10, 12].
In the Java language, visibility modifiers may be used to
prevent illegal references to internal elements. However,
when this is not possible, developers may adopt naming con-
ventions (guidelines) to clearly state that internal interfaces
should not be used by clients [2]. In Eclipse, for example,
internal interfaces include the word “internal”, and in the
Java Development Kit (JDK), they start with “sun”.

Despite being discouraged, clients commonly use internal
interfaces to access functionalities not supported by pub-
lic ones [2–5, 10, 30], which may cause their systems to fail
when these interfaces evolve [3–5]. In JDK, internal in-
terfaces have been used by various applications for differ-
ent reasons over the course of Java’s history [30], posing
challenges when they change and decreasing client portabil-
ity.1 In Eclipse, internal interfaces are often used by plugins:
44% of 512 analyzed plugins depended on internal interfaces
and these clients usually had incompatibilities problems when
Eclipse evolved [5]. To better motivate the study presented
in this paper, we replicated this analysis at an ultra-large-
scale level: with the support of the Boa2 infrastructure [13],
we detected that 2,277 (23,5%) out of 9,702 Eclipse client
projects, stored in GitHub, depended on internal interfaces.
In fact, any change in these internal elements such as re-
moval/renaming of attributes or methods, modification of
method parameters, etc. may break client systems. For in-
stance, the removal of the internal interface StatusDialog in
Eclipse caused an important client (JBoss) to fail.3

As a solution to mitigate these risks and help client devel-
opers, API producers may promote some internal interfaces
to public ones. For example, as documented in the com-
mit in Figure 1, the internal interface BaseJavaElementCon-
tentProvider was promoted to the public StandardJavaElement-
ContentProvider in Eclipse.4 In fact, Eclipse has more than 4K
internal interfaces, but why exactly was BaseJavaElementCon-
tentProvider promoted? Unfortunately, in practice, API pro-
ducers have no assistance to identify public interface candi-
dates (i.e., internal interfaces that should be public). Thus,

1JDK/Oracle note: https://goo.gl/o7TN0P.
2http://boa.cs.iastate.edu
3Issue: https://goo.gl/mu4ir9.
4Commit: http://goo.gl/DfZg7z.
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Figure 1: Internal interface promoted to public in
Eclipse.

the promotions occur at a slow pace, causing delay to client
developers to benefit from stable and supported interfaces.

In this paper, we study the transition from internal to
public interfaces. We aim to help both API producers and
clients. API producers can deliver a better product by de-
tecting public interface candidates while API clients can
benefit sooner from stable and supported interfaces.

We initially investigate whether there is a relationship
between internal interface usage and promotion to public.
However, measuring external interface usage is costly and
may not provide reliable observations if all clients are not
identified. To avoid this problem, we decide to measure
interface usage only from within the systems under analy-
sis, namely domestic internal interface usage. Moreover, we
investigate whether internal interface promotion can be de-
tected and predicted. Therefore, we propose the following
research questions:

RQ1. Is there a relationship between domestic internal in-
terface usage and promotion?

RQ2. Can we predict that an internal interface will be pro-
moted to a public one?

RQ3. Can we detect that an internal interface is a candidate
to be promoted to a public one?

We analyze five real-world systems: Eclipse, JUnit, Hi-
bernate, jBPM, and ElasticSearch. Our empirical investiga-
tion presents the following observations. First, from 2,722
analyzed internal interfaces, we found that 195 were pro-
moted to public. Second, promoted internal interfaces are
more domestically used than non-promoted ones. Third, we
predict internal interface promotion with precision between
50%–80%, recall 26%–82%, and AUC5 74%–85%. Finally,
by applying our predictor on the analyzed systems, we auto-
matically detected 382 public interface candidates; by ana-
lyzing their external usage at a large-scale level, we confirm
they are relevant candidates. Thus, the contributions of this
paper are summarized as follows:

1. We study the frequency of internal interfaces and their
promotion to public in real-world systems.

2. We relate internal interface promotion with their usage
to better understand this phenomenon.

5AUC (area under the curve) is a measure for classifiers.
AUC ≥ 70% is considered reasonably good [26,43,44].

3. We propose a technique to detect/predict public inter-
face candidates to help both API producers and clients.

Structure of the paper: In Section 2, we discuss internal and
public interfaces in more details. We describe our experi-
ment design in Section 3. We present the experiment re-
sults/discussion in Section 4, and summary/findings in Sec-
tion 5. We state the threats to validity in Section 6, and we
present related work in Section 7. Finally, we conclude the
paper in Section 8.

2. INTERNAL AND PUBLIC INTERFACES
In this section we define the concept of internal and public

interfaces adopted in this study, present real-world examples
of internal interface promotions, and discuss the challenges
API producers face to identify public interface candidates.

2.1 Definition
Interface is an access point to a component that client

systems can reference to reuse functionalities [12]. In many
systems, it is common practice to adopt the notion of public
and internal interfaces [3–5,10,12,30]. Public interfaces are
expected to be stable, supported, and documented. As they
provide backward compatibility, their clients should not fail
when these interfaces evolve. In contrast, internal interfaces
refer to implementation functionalities that were not origi-
nally designed to be used by clients [3–5]. When clients use
internal interfaces, they are subjected to unstable, unsup-
ported, and undocumented services (i.e., backward incom-
patibility), consequently, they may fail when these internal
interfaces evolve. Notice that Java access modifiers restrict
access at the class, subclass, or package boundaries. How-
ever, when a large system spans several packages, there is
no easy way to selectively grant access of certain types to a
given set of packages. Thus, a common practice is to per-
mit worldwide access to types that need to be accessed by
other packages, but use naming conventions (such as internal
packages) to discourage API clients to use them. For exam-
ple, in Eclipse, internal interfaces are implemented in pack-
ages with the word “internal” (e.g., org.eclipse.jdt.internal.ui.-
JavaPlugin) while in the JDK, internal interfaces are the ones
in packages with the prefix “sun” (e.g., sun.misc.Unsafe) [30].

We present below three internal interface guidelines ex-
tracted from documentation of Eclipse, jBPM, and JDK:

Eclipse.6 Packages containing only implementation details
have “internal” in the package name. Legitimate client code
must never reference the names of internal elements. Client
code that oversteps the above rules might fail on different
versions and patch levels of the platform.

jBPM.7 Expert users can still access internal classes but
should be aware that they should know what they are doing
and that internal API might still change in the future.

JDK.8 The sun.* packages are not part of the supported,
public interface. A Java program that directly calls into sun.*
packages is not guaranteed to work on all Java-compatible
platforms. In fact, such a program is not guaranteed to work
even in future versions on the same platform.

6http://www.eclipse.org/articles/article.php?file=
Article-API-Use/index.html.
7http://docs.jboss.org/jbpm/v5.0/userguide/ch05.html.
8http://www.oracle.com/technetwork/java/
faq-sun-packages-142232.html.
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2.2 Internal Interface Usage
In practice, the literature shows that client developers

commonly use internal interfaces [2–5, 10, 30], despite being
discouraged. For example, internal interfaces of Eclipse [4]
and JDK [30] are often used by clients due to several reasons.
As a result, they suffer from incompatibilities problems when
these interfaces evolve [3–5,10].

We replicated this analysis at an ultra-large-scale level
with the support of the Boa infrastructure [13]. Boa is a soft-
ware repository with over 7,8 million GitHub projects writ-
ten in several programming languages.9 It includes 262K
Java projects, which have over 125 million import state-
ments. By mining these import statements, we detected
9,702 client projects depending on Eclipse. Finally, we found
2,277 (23,5%) of these client projects depending Eclipse in-
ternal interfaces. Thus, we show at an ultra-large-scale that
internal interfaces are often used, reinforcing the results of
previous studies.

2.3 Internal Interface Promotion
In order to handle the problems related with internal in-

terface usage, API producers occasionally promote internal
interfaces to public. We present next three real examples of
internal interface promotion:

MultipleFailureException in JUnit.10 An API pro-
ducer stated: “Create MultipleFailureException in org.junit.runners.-
model and deprecate org.junit.internal.runners.model. This allows
client developers to properly handle multiple exceptions with-
out depending on internal classes”.

CharOperation in Eclipse.11 An API client requested:
“CharOperation is technically internal API to JDT-Core, but
it seems generally useful enough to use elsewhere. I would
like to see it made public API”. An API producer readily
agreed with the suggestion: “We could indeed surface it into
an API package”.

NodeFinder in Eclipse.12 An API client requested: “The
NodeFinder class is part of the package org.eclipse.jdt.internal.-
corext.dom and provides very useful logic. Would be nice if
NodeFinder becomes part of the AST public API”. In this case,
the API producer did not accept the proposition at first, but
it was accepted some years later.

In the first example, the internal interface was promoted
by the API producer when he realized that API clients could
benefit from this interface. In contrast, in the second and
third examples, the suggestion came from API clients them-
selves: one was immediately accepted while the other was
later accepted. In all the examples, it took years to promote
the interfaces. For example, the JUnit interface MultipleFail-
ureException was created in 2007, but only promoted to public
three years later, in 2010. Similarly, the Eclipse issue asking
the promotion of NodeFinder was opened in 2004 but only
accepted four years later, in 2008. Thus, waiting for promo-
tions may be inefficient, because it is time-consuming and
client-dependent.

9http://boa.cs.iastate.edu/stats/index.php
10Commit: http://goo.gl/AWCCTu.
11Commit: http://goo.gl/KXC5SR. Request Issue: http://
goo.gl/P9IwQ6.

12Commit: http://goo.gl/MlrRzx. Request Issue: http://
goo.gl/DLRUKS.

2.4 Problem: How to Identify Public Inter-
face Candidates?

In practice, API producers have no assistance to iden-
tify public interface candidates (i.e., internal interfaces that
should be public). Therefore, the promotions occur at a
slow pace or only under specific requests. Based on that,
one important question appears: is it possible to automat-
ically identify public interface candidates? Answering this
question brings two practical results. First, API producers
can deliver a better product, which is less likely to break
client systems. Second, API clients can benefit sooner from
more stable and supported interfaces. In the next sections
we aim to answer this question.

3. EXPERIMENT DESIGN

3.1 Selecting the Case Studies
For this study, we select five real-world systems: Eclipse

JDT13 (Eclipse’s Java development tools), JUnit (testing
framework), Hibernate (library with Object/Relational map-
ping support), jBPM (business process management sui-
te), and ElasticSearch (distributed RESTful search engine).
They adopt the convention of internal interfaces by using
“internal” in their packages. Table 1 presents an overview
of these systems in number of stars, commits, and releases.

Table 1: Case study overview.
System Stars Commits Releases

Eclipse 77 57,665 7,764
JUnit 3,844 2,062 20
Hibernate 1,346 6,049 95
jBPM 391 2,685 55
ElasticSearch 12,472 14,281 127

3.2 Extracting Internal and Public Interfaces
We then extract internal and public interfaces from the

selected case studies. For each system, we extract the in-
terfaces from the import statements (e.g., Eclipse interfaces
start with org.eclipse, JUnit interfaces start with org.junit
or junit, etc.). If an interface includes the word “internal”
in its name, it is tagged as an internal one, otherwise it is
tagged as a public one. This process takes into account the
full source code history of the system under analysis. There-
fore, if an interface was referenced in the past, but it is not
referenced anymore, it is still considered. This decision was
made because we intend to search internal interface promo-
tions, and this is possible by taking into account code history
(cf., subsection 3.3). Moreover, we want to assess internal
interface usage over time, not only in the current version of
a system (cf., subsection 3.4).

Table 2 presents the number of public and internal inter-
faces. Eclipse presents the highest proportion of internal
interfaces: 51% (4,580 out of 8,921). In contrast, Elas-
ticSearch presents the lowest proportion: 2% (155 out of
7,214). Considering all systems, 21% of the interfaces are
internal (6,085 out of 28,503). The results presented in Ta-
ble 2 confirm that these systems adopt internal interfaces in
their design, thus they are relevant for our analysis.

13We analyze the subprojects Core, UI, and Debug.
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Table 2: Number of public and internal interfaces.

System Interfaces
Type

Public Internal

Eclipse 8,921 4,341 4,580 (51%)
JUnit 944 803 141 (15%)
Hibernate 6,821 5,875 946 (14%)
jBPM 4,603 4,340 263 (6%)
ElasticSearch 7,214 7,059 155 (2%)
Total 28,503 22,418 6,085 (21%)

3.3 Searching Internal Interface Promotions
We search internal interface promotions by analyzing the

source code history of the case studies. Our heuristic to
search internal interface promotions is detailed below. For
each system, we mine every file change on its code history.
A promotion from interface Internal to Public is detected
when two constraints are satisfied:

1. There is at least a file change that removes only one
reference to Internal and adds only one reference to
Public, and

2. The class names of the references remain the same or
have an suffix/prefix added/removed.

Thus, a promotion from interface Internal to Public needs
(1) to happen in a file change in which it is the only changing
reference, and (2) to have the same or similar class names.
The first constraint increases the confidence on the promo-
tion while the second helps to filter out noisy promotions.

Table 3 shows the internal interfaces that can be verified
as promoted to public or not.14 Eclipse has the highest
absolute value: 145 promotions. jBPM presents the high-
est proportion of promoted interfaces: 34% (17 out of 50).
Considering all systems, 7% of the internal interfaces are
promoted to public (195 out of 2,722). In 115 promotions
the class name remained the same, while in 5 cases the pub-
lic interface only removed the prefix or suffix “Internal” from
the class name. The percentages presented in Table 3 con-
firm that internal interface promotions happen in real-world
systems. Even though they are not extremely high, this
is a very sensitive design decision that may have high im-
pact on client systems (as presented in RQ3). For instance,
marketplace.eclipse.org has thousands of Eclipse plugins and
around 16.5 million downloads. A single internal interface
promotion in Eclipse may affect millions of clients.

To assess the correctness and completeness of the detected
promotions, we performed two manual analysis. First, we
inspected 50 randomly selected transitions classified as pro-
motions in order to find false positives (i.e., classified as
promotion but incorrect). We validate whether a detected
transition from internal to public is correct or not based
on the inspection of code examples and commit logs. For
example, the transition from org.eclipse.jdt.internal.compiler.util.-
CharOperation to org.eclipse.jdt.core.compiler.CharOperation is val-
idated as correct after checking log messages.15 Similarly,
the transition from org.elasticsearch.client.internal.InternalClient to

14Table 3 shows the 2,722 (out of 6,085) labeled internal in-
terfaces (see the train and test dataset in Table 6).

15 http://goo.gl/KXC5SR

Table 3: Number of promoted and non-promoted
internal interfaces in the train and test dataset.

System
Internal Promotion

Interfaces no yes

Eclipse 2,155 2,010 145 (7%)
JUnit 92 83 9 (10%)
Hibernate 328 315 13 (4%)
jBPM 50 33 17 (34%)
ElasticSearch 97 86 11 (11%)
Total 2,722 2,527 195 (7%)

org.elasticsearch.client.Client is also correct; notice that the class
name changed from InternalClient to Client, as allowed by clause
2 of the heuristic.

Second, we also inspected 50 randomly selected transitions
not classified as promotions by our heuristic to find false neg-
atives (i.e., not classified as promotion but correct). For
example, the transition from org.eclipse.jdt.internal.corext.util.-
Strings to org.eclipse.jdt.core.formatter.IndentManipulation is marked
as incorrect after looking at code examples16 because the ser-
vices provided by the internal class Strings are only partially
replaced by the ones in the public IndentManipulation.

With this manual analysis, we detected 92% of true posi-
tives (46 out of 50) and 12% of false negatives (6 out of 50).
Thus, the risk of incorrect or missing classification is low.17

3.4 Measuring Internal Interface Usage
As concluded in the previous section, internal interfaces

are frequently used by external clients [3–5,10]. In this work,
we study whether there is a relationship between interface
usage and promotion to public. However, one important
question appears: how can we assess whether internal inter-
faces are used by external clients? Answering this question
requires two steps. First, we should select a large set of
clients and, second, process each external client looking for
internal interface usage. In fact, this is a costly process and
may be inefficient if a representative sample of clients is not
correctly identified. Therefore, to overcome this challenge,
we decide to measure internal interface usage from within
the system under analysis, namely domestic internal inter-
face usage. This makes our study more feasible and easier
to be replicated since we only depend on the source code
history of the systems under analysis.

Domestic vs. External Usage: Next, we assess whether do-
mestic internal interface usage can be confidently considered
in our study. Our goal is to verify whether domestic usage
of internal interfaces has a relation with external usage. If
we find that the most domestically used internal interfaces
are likely to be externally used, we can confidently say that
domestic usage is a good proxy for external usage. For that
analysis, we extracted external clients from the Boa ultra-
large-scale software repository [13]. We consider that an
external client project uses an internal interface when it con-
tains at least one reference to it. The domestic clients are
extracted from the system under analysis itself, and they are
represented as the client classes. To perform the analysis,
(i) we sorted the internal interfaces by the number of domes-

16Ex: https://goo.gl/w6075d and https://goo.gl/M4upG8
17Results are available at: https://goo.gl/aqMsrs
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tic clients, and (ii) we computed the percentage of internal
interfaces being used by external clients in the top-10% and
top-n from this sorted list, where n is the number of inter-
nal interfaces in a system. Table 4 presents the results. In
JUnit, for example, 44% of the top-10% most domestically
used internal interfaces have external clients; this percent-
age is 22% for the top-n. As seen in Table 4, in all the cases,
the top-10% are much more likely to have external clients
than the interfaces in the top-n in general. Therefore, this
analysis confirms that domestic usage can be in fact used
as a proxy for external usage. Further, Dagenais and Robil-
lard successfully used internal usage of evolving interfaces
to recommend evolution rules to external clients [10], thus
showing that internal and external usage patterns of inter-
faces have a degree of similarity.

Table 4: External usage of most domestically used
internal interfaces.

System % of external usage in
top-10% top-n

Eclipse 10 6
JUnit 44 22
Hibernate 75 59
jBPM 100 44
ElasticSearch 80 43

Selected Domestic Usage Metrics: Table 5 presents five met-
rics related to domestic internal interface usage adopted in
this study, which are computed per system. The metrics
packages and classes measure the number of distinct con-
tainers referencing an internal interface. As we analyze the
source code history, we also measure the number of distinct
commits adding references to an internal interface (metric
commits) and the number of distinct developers authoring
these commits (metric developers). Finally, the metric time
measures the number of days between the first and the last
usage of an internal interface; this metric is intended to ver-
ify whether an internal interface is still attracting new (do-
mestic) clients over time.

Table 5: Domestic internal interface usage metrics.
Metric Description

#packages Number of distinct packages referenc-
ing an internal interface

#classes Number of distinct classes referencing
an internal interface

#commits Number of distinct commits that added
references to an internal interface

#developers Number of distinct developers that
added references to an internal inter-
face

#time Number of days between the first and
the last usage of an internal interface

3.5 Classifying Internal Interfaces
Based on the usage metrics proposed in the previous sub-

section, we investigate whether internal interface promotion
can be predicted (by analyzing past code) and detected (by

analyzing current code). In order to support this analysis,
we classify an internal interface as absent or present in the
current source code, and as promoted or non-promoted.

If internal interfaces are absent or promoted (cases A, B,
and C in Table 6), they had the opportunity to be promoted
in the past. In other words, these absent or promoted in-
ternal interfaces can be used to train and test the proposed
approach, i.e., they are a labeled dataset. In contrast, if
internal interfaces are present and non-promoted (case D),
they are still candidates to be promoted (because they are
present in current version). That is to say, these present and
non-promoted internal interfaces can only be used to test the
proposed approach, i.e., they are an unlabeled dataset.

We take into account the train and test dataset (cases
A, B, and C) to answer RQ2 about promotion prediction.
These cases involve 2,722 labeled internal interfaces, as pre-
sented in Table 3. Finally, we consider the test dataset (case
D) to answer RQ3 about detection of public interface candi-
dates, which involve 3,363 unlabeled internal interfaces (to-
talizing the 6,085 shown in Table 2).

Table 6: Internal interface classification.
Non-promoted Promoted

Absent Train & test (A) Train & test (B)

Present Test (D) Train & test (C)

4. RESULTS

RQ1. Is there a relationship between domestic in-
ternal interface usage and promotion?

In this research question, we aim to understand factors of
promoted internal interfaces. We hypothesized that pro-
moted internal interfaces are more likely to have clients.
Approach. We compare the values of the five domestic
usage metrics (i.e., packages, classes, commits and develop-
ers and time) between promoted and non-promoted inter-
nal interfaces. We first compare the distribution between
the two groups with box plots. Then, we analyze the sta-
tistical significance of the difference between the two groups
of internal interfaces by applying the Mann-Whitney U test
at p-value = 0.05. The null hypothesis is that promoted
and non-promoted internal interfaces present similar distri-
bution. To show the effect size of the difference between the
two groups, we compute Cliff’s Delta (d), which is an effect
size measure. We interpret the effect size values as small for
0.147 < d < 0.33, medium for 0.33 < d < 0.474, and large
for d > 0.474, as in other studies [14,44].
Results. First, we characterize (promoted and non-promot-
ed) internal interfaces with respect to their usage by domes-
tic clients. Clients are defined in terms of distinct packages,
classes, commits, and developers using the internal interface.
Figure 2 presents the distribution of clients for the systems
under analysis. Each box plot shows on the left the distri-
bution of promoted internal interfaces and on the right of
non-promoted internal interfaces. Overall, we clearly see the
higher distribution of promoted internal interfaces in all the
analyzed usage metrics. In Eclipse, for example, the median
for packages is 4 against 1, for classes 8/2, for commits 4/1,
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Figure 2: Usage of promoted (box plot on the left)
and non-promoted (box plot on the right) internal
interfaces.

and for developers 2/1. Thus, internal interfaces that are
promoted are used by more packages, classes, commits and
developers than internal interfaces that are non-promoted.

We also verify the period that (promoted and non-promot-
ed) internal interfaces continue to attract new domestic cli-
ents over time. The period is calculated in number of days
between the first and the last usage of the internal interface.
Figure 2 presents, in the last column, the distribution of the
metric time, in number of days. Similarly to the previous
analysis, we see a higher distribution of promoted internal
interfaces; the only exception is the system jBPM. There-
fore, internal interfaces that are promoted tend to attract
newer clients than interfaces that are not promoted.

Finally, by applying the Mann-Whitney test, the only
cases in which we can accept the null hypothesis is for the
metric time in JUnit and jBPM (p-value ≥ 0.05). For
all the other metrics and systems, we cannot accept the
null hypothesis (p-value < 0.05), i.e., promoted and non-
promoted internal interfaces present distinct distribution re-
garding their domestic usage. Table 7 shows the d-values

and p-values for usage metrics with p-value < 0.05. Effect-
size is large (i.e., d-value > 0.474) for all the systems, and
p-value < 0.001 is most of the cases.

Table 7: Comparison of promoted and non-
promoted internal interface usage. Effect-size is
large for all the metrics (d-value > 0.474).***: p-
value < 0.001, **: p-value < 0.01, and *: p-value < 0.05.

System
d-values

Pkg Cls Com Dev Time

Eclipse 1.4*** 1.2*** 1.4*** 1.3*** 1.1***
JUnit 2.3*** 2.2** 2.4** 1.2* -
Hibernate 1.0*** 0.9** 0.9** 1.4*** 0.6**
jBPM 1.5*** 1.2*** 1.1** 0.88* -
ElasticS. 2.3*** 3.7*** 1.6** 1.9** 2.1**

In summary, promoted internal interfaces are statistically
significantly different from internal interfaces that are not
promoted in most of the usage metrics. Overall, internal
interfaces that are promoted are used by more domestic
packages, classes, commits, and developers, and they attract
newer clients over time.

RQ2. Can we predict that an internal interface will
be promoted to a public one?

Based on the domestic usage of internal interfaces, we inves-
tigate whether internal interface promotion can be predicted
by analyzing past source code.
Approach. We compare the importance of multiple met-
rics on internal interface promotion. We build a random-
forest classifier to predict whether an internal interface will
be promoted, given the values of the metrics. We choose the
random-forest classifier because it is known to have several
advantages, such as being robust to noise and outliers [44].
In addition, the classification power of random-forest classi-
fiers has been demonstrated by its application to automate
many software engineering tasks [1, 11, 26, 32, 38, 44], many
of those with unbalanced data. We use 10-fold cross valida-
tion to evaluate the effectiveness of our model. We train and
test the classifier with internal interfaces that are absent or
promoted (cases A, B, and C in Table 6).
Evaluation. We assess the effectiveness of the classifier in
correctly predicting promoted internal interfaces. We use
precision, recall, F-measure and AUC (area under curve)
to measure its effectiveness, which are commonly adopted
in classification tasks [11, 24, 44]. Precision and recall mea-
sure the correctness and completeness, respectively, of the
classifier in predicting whether an internal interface is pro-
moted. F-measure is the harmonic mean of precision and re-
call. AUC is a commonly used measure to judge predictions
in binary classification problems, and it refers to the area
under the Receiver Operating Characteristic (ROC) curve.
AUC is robust toward unbalanced data [39]. AUC ≥ 70% is
considered reasonably good [26,43,44].
Results. Table 8 shows the prediction results when consid-
ering the domestic metrics. We predict internal interface
promotion with precision between 50%–80%, recall 26%–
82%, F-measure 35%–69%, and AUC 74%–85%. Hiber-
nate presents the best precision (80%) and jBPM the worst
(50%). jBPM presents the best recall (82%) and Eclipse
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the worst (26%). The best F-measure is found in Elas-
ticSearch (69%) and the worst in Eclipse (35%). Finally,
considering AUC, ElasticSearch presents the best results
(85%) and jBPM the worst (74%). Notice that AUC be-
yond 70% is considered reasonably good. Additionally, in
the Software Engineering domain, many proposed recom-
menders have AUC values between 70%–80% [26, 43, 44].
These results confirm the impact of the analyzed metrics on
predicting internal interface promotion.

Table 8: Prediction results (percentages).
System Prec Rec F-m AUC

Eclipse 54 26 35 75
JUnit 75 33 46 76
Hibernate 80 31 44 84
jBPM 50 82 62 74
ElasticSearch 66 72 69 85

Promotion Examples. When an internal interface is pro-
moted to public, it means that it is generic enough to be
reused by clients. API producers may detect internal in-
terfaces that should be promoted, such as the promotion of
MultipleFailureException in JUnit, or API clients may demand
the promotion, such as the promotions of CharOperation and
NodeFinder in Eclipse (c.f. subsection 2.3).

Internal interfaces may be deliberately promoted to avoid
bugs in clients. As presented in Table 9, the Eclipse in-
ternal interface org.eclipse.jdt.internal.ui.dialogs.StatusDialog was
removed, causing an important client to fail (JBoss). The
API client requested the internal interface to be added back.
However, the API producer noted that the removed interface
was internal, thus it was unstable, and could be removed.
After all, the internal interface was promoted to public to
better support client systems, helping them to be bug-free.

Interfaces are also promoted in cases they are mistakenly
projected as internal, as presented in the JUnit example
in Table 9. In this case, extensions could not be imple-
mented by clients without necessarily depending on the in-
ternal interface org.junit.internal.AssumptionViolatedException. Af-
ter a client request, the promotion was confirmed in the re-
lease notes of JUnit.

RQ3. Can we detect that an internal interface is a
candidate to be promoted to a public one?

In this final research question we aim to detect public in-
terface candidates in the current source code of the ana-
lyzed case studies. The idea is to help API producers and
clients by pointing possible internal interfaces (still present
in source code) that are candidates to public.
Approach. In order to detect candidates, we train and
test a random-forest classifier with the five usage metrics
adopted in the previous research question. We train the
classifier with internal interfaces that are in the train and
test dataset (Table 6). Finally, to detect candidates, we
test the classifier with internal interfaces that are in the test
dataset (Table 6). In the testing step, we label an internal

18Issue: https://goo.gl/mu4ir9. Commit: https://goo.gl/
vI0yUn.

19Issue: https://goo.gl/lszIMA. Commit: https://goo.gl/
u1qbjL. Release note: https://goo.gl/X59uHz.

Table 9: Examples of internal interface promotions.
I: internal. P: public.

System Promotion & Explanation

Eclipse

I: org.eclipse.jdt.internal.ui.dialogs.StatusDialog
P: org.eclipse.jface.dialogs.StatusDialog
An API client stated:18 “It seems the
class org.eclipse.jdt.internal.ui.dialogs.StatusDialog
has been removed instead of just marked as
deprecated. This causes the deployment di-
alog of the JBoss IDE plugin to fail”. An
API producer answered: “As the package
name of this class indicates, StatusDialog is
an internal class. We do not guarantee sta-
bility for internal implementations. Report
the bug against the JBoss IDE. Side note:
the StatusDialog class is now official API in
org.eclipse.jface.dialogs”.

JUnit

I: org.junit.internal.AssumptionViolatedException
P: org.junit.AssumptionViolatedException
An API client requested:19 “Since Assumption-
ViolatedException is internal API, you cannot
write a rule or runner without crossing the
boundary into internal API”. JUnit release
notes show that the request was accepted:
“In JUnit 4.11 and earlier, if you wanted to
write a custom runner that handled Assump-
tionViolatedException, you needed to import an
internal class. Now you can import the public
org.junit.AssumptionViolatedException”.

interface as a candidate to public when the classifier reports
a promotion probability ≥ 50%.
Results. Table 10 reports the number of public interface
candidates in each system (i.e., interfaces that satisfy the
50% threshold). Eclipse presents the highest number of pub-
lic interface candidates: 298. Next, jBPM has 53 candidates,
ElasticSearch has 17, and Hibernate has 10. JUnit presents
only 4 candidates. In summary, we automatically detect
382 public interface candidates in the current version of the
analyzed systems. These internal interfaces have domestic
usage metrics similar to past internal interfaces that were
already promoted.

Table 10: Number of candidates in the test dataset.

System
Internal Interfaces
All Candidates

Eclipse 2,425 298 (12%)
JUnit 49 4 (8%)
Hibernate 618 10 (2%)
jBPM 213 53 (25%)
ElasticSearch 58 17 (29%)
Total 3,363 382 (11%)

External Usage of Candidates. To assess the quality of
public interface candidates, we verify whether they are used
by external clients. If they are used by many clients, this
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may be an indication that these interfaces are in fact relevant
public candidates. Otherwise, this may indicate that they
are not relevant public candidates. To do so, we compare
external usage of three internal interface groups: (i) public
interface candidates (i.e., internal interfaces with more prob-
ability to be promoted), (ii) non-candidates (i.e., internal in-
terfaces with less probability to be promoted), and (iii) ran-
domly selected internal interfaces (which may include both
candidates and non-candidates). Finally, to collect external
clients, we rely on the ultra-large-scale Boa software reposi-
tory [13]. We then verify whether these clients are depending
on the three groups of internal interfaces.

In a first analysis, we consider all case studies, thus, each
group is formed by 382 internal interfaces (see Table 10).
Figure 3 presents each external usage distribution. For the
candidates, the first, second, and third quartiles are 4, 11
and 23: 50% of the public interface candidates have 11 client
projects. In contrast, in the other two groups external usage
is much smaller. For the random group, the first, second,
and third quartiles are 1, 2 and 6. For the non-candidates,
the first, second, and third quartiles are 0, 1, and 5. By ap-
plying the Mann-Whitey test, we verify that the difference
between candidates and the other two groups are statisti-
cally significant (p-value < 0.001).

candidates random non-candidates
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Figure 3: External usage of candidates and non-
candidates considering all case studies.

In addition, we performed the same analysis in the con-
text of Eclipse (in this case, each group has 298 internal
interfaces, as presented in Table 10). For the candidates,
the first, second, and third quartiles are 7, 15 and 25. For
the random group, the first, second, and third quartiles are
1, 2 and 7. Finally, for the non-candidates, the first, sec-
ond, and third quartiles are 1, 1, and 5. Candidates are
much more used externally than non-candidates. Again, the
difference between candidates and the other two groups are
statistically significant (p-value < 0.001).

Interestingly, through an Eclipse issue, an API client re-
quested the promotion of several internal interfaces.20 By

20https://goo.gl/Um3f0d

analyzing the requests, we detect that 24 are in the scope
of our case study Eclipse JDT. We find that 16 (66%) are
part of our Eclipse public interface candidates;21 5 of these
requests (JavaPlugin, JavaPluginImages, Messages, IJavaHelpCon-
textIds, and ExceptionHandler) are in the top-10 public inter-
face candidates, reinforcing the correctness and relevance of
our results. In contrast, only 4 requests (OpenBrowserUtil,
OptionalMessageDialog, JavadocConfigurationBlock, and Checkbox-
TreeAndListGroup) are not part of our public interface can-
didates because they have threshold inferior to 50% (44%,
41%, 15%, and 0%, respectively). Moreover, 3 requests were
already promoted to public (CompilationUnitChange, Refactor-
ingSaveHelper, and PixelConverter).

Finally, it is important to recall that (i) public interface
candidates are detected by relying solely on domestic usage
metrics and (ii) public interface candidates are likely to have
external clients. Thus, domestic usage of interfaces can be
seen as a good estimator of external usage.

5. SUMMARY AND FINDINGS
Clients often use internal interfaces. We show that
internal interfaces are often used by clients: 2,277 (23,5%)
out of 9,702 Eclipse client projects depended on internal in-
terfaces. This result complements the findings of previous
studies on internal interfaces usage [2–5, 10, 30]. Based on
these results, we conclude:

By replicating previous studies on internal interface usage,
we show at an ultra-large-scale level that internal inter-
faces are often used (we detected 2,277 out of 9,702).

Internal interface promotions happen in real-word
systems. Our study shows that the notion of internal in-
terfaces is frequently adopted in real systems: 21% of all
interfaces are internal (6,085 out of 28,503) in the systems
under analysis. We also detect that internal interfaces are
promoted to public. In our dataset, 7% of the internal in-
terfaces are promoted to public (195 out of 2,722); although
this percentage is low, this is a very sensitive design deci-
sion that have high impact on client systems. Therefore, we
conclude the following:

Internal interfaces are not frozen. They may be promoted
to public when API producers or clients discover that they
can be reused (for example, we found 195 promotion in our
study).

Promoted and non-promoted internal interfaces pres-
ent distinct usage patterns. RQ1 shows that internal
interfaces that are promoted are statistically different from
internal interfaces that are not promoted. We found that
promoted internal interfaces are domestically used by more
packages, classes, commits and developers, and that they
tend to attract newer clients over time. Therefore, we con-
clude the following:

Distinct domestic usage pattern is found in promoted and
non-promoted internal interfaces. Based on such differ-
ence, recommenders can be built to detect public interface
candidates. To support the detection, recommenders can
confidently rely on domestic usage of internal interfaces.

21Eclipse public interface candidates: https://goo.gl/dOhFJl
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Internal interface promotions can be predicted with
high confidence. Based on the domestic usage metrics
of the systems under analysis, we predict internal interface
promotion with precision between 50%–80%, recall 26%–
82%, and AUC 74%–85%, as presented in RQ2. Based on
that, we conclude:

By using usage metrics computed at domestic level, clas-
sifiers with good performance (i.e., AUC ≥ 70%) can be
produced to predict internal interface promotion.

Public interface candidates can be detected in cur-
rent source version. By running a random-forest classi-
fier in the current source code of the systems under analysis
(RQ3), we detect 382 public interface candidates, i.e., in-
ternal interfaces that should be public. Eclipse presents the
highest number of public interface candidates (298), followed
by jBPM (53) and Elasticsearch (17). Thus, we conclude:

In order to help both API producers and clients, we are
able to automatically detect public interface candidates
(we found 382 in our case studies).

Public interface candidates are externally used. By
relying on domestic usage of internal interfaces, we discov-
ered public interface candidates. Those candidates are more
likely to have external clients (11, on the median) than non-
candidates (1 client, on the median). Thus, we conclude:

Domestic usage of internal interfaces can be used as good
estimator of their external usage. This suggests that de-
tected internal interface candidates are in fact relevant.

6. THREATS TO VALIDITY
Construct Validity. The construct validity is related to
whether our study reflects real-world situations.

Internal Interface Guideline Adoption. One threat may be
the possibility that the usage of internal interfaces does not
happen in other systems than the ones analyzed in our study.
However, by mining popular Java systems in GitHub, we
detected several adopting guidelines of internal interfaces:
34 out of 350 (10%). Thus, this reinforces that the use
of internal interfaces is common practice in relevant Java
systems, making our approach also suited for them. Further,
since the issue stems from a lack of granular access modifiers
between Java packages, the problem is widespread, and thus
other systems may use different guidelines to the same effect.
The approach could be adapted to these specific cases.
Internal Interface Promotion. Another possible threat is re-
lated to the correctness and completeness of the detected in-
ternal interface promotions. As presented in subsection 3.3,
we paid special attention when searching for internal inter-
face promotions. This process involved (i) the definition of
a heuristic to detect promotions, and (ii) the manual anal-
ysis of 100 promotions with the support of code examples
and commit logs in order to assess false positives and neg-
atives. We found that incorrect or missing classification is
low, reducing the risk of this threat.

Internal Validity. The internal validity is related to un-
controlled aspects that may affect the experimental results.

Findings Validation. We paid special attention to the appro-
priate use of statistical machinery (i.e., Mann-Whitney test,
Cliff’s Delta effect size and Random-forest classifier) when

reporting our results in RQs 1-3. In RQ3, the 50% threshold
was set to ensure reasonable precision and recall on the de-
tected candidates; further study may vary this threshold to
evaluate its effect on candidate detection. Moreover, even
though our classifier reported good performance, we vali-
dated the public interface candidates in the context of ex-
ternal usage. An alternative validation for RQ3 is with the
help of core/expert developers on the systems under analy-
sis, which remains future work.

Association and Causation. The purpose of our study is to
examine whether there are factors (i.e., the usage metrics)
that are associated to internal interface promotion. Notice,
however, that association does not imply causation [8, 9].
Therefore, more advanced statistical analysis, for example,
causal analysis [40], can be adopted to further extend our
study.

External Validity. The external validity is related to the
possibility to generalize our results.

We focused on the analysis of widely adopted, large-scale
and real-world Java systems, therefore they are credible and
representative case studies. These systems are stored in
GitHub, the most popular code repository nowadays, thus
they their source code is easily accessible. Despite these ob-
servations, our findings — as usual in empirical software en-
gineering — cannot be directly generalized to other systems,
specifically to systems implemented in other programming
languages. Therefore, our study should be carried out on
other systems, possibly written in other languages.

7. RELATED WORK

7.1 Internal Interface Usage
Businge et al. [3] study the survival of Eclipse plugins, and

classify them in two categories: the ones depending on inter-
nal interfaces (also known as bad or non-APIs) and the ones
depending only on public interfaces (good or APIs). They
verify that despite being discouraged, client developers often
use internal interfaces. In an extension study [5], the authors
show that 44% of 512 analyzed Eclipse plugins depend on
internal interfaces, which are a source of incompatibilities
problems when Eclipse evolves. In a related study [4], the
same authors investigate the reasons why developers use in-
ternal interfaces. They detect cases where developers do
not read documentation/guidelines, and where they deliber-
ately use internal interfaces to benefit from advanced func-
tionalities. Mastrangelo et al. [30] show that client projects
frequently use internal interfaces provided by JDK. Even
though it is unsafe, the authors found several usage patterns
of the internal interface sun.misc.Unsafe, such as to allocate
objects without invoking constructors and to load classes
without security checks. In this context, Boulanger and Ro-
billard [2] propose a tool that restricts (or permits) access
to the implementation of a service. Vidal et al. [46] study
information hiding at a large-scale level in order to better
understand what should constitute a public interface.

In summary, the literature shows that the usage of in-
ternal interface occurs in practice, causing real problems to
clients. We complement these studies by showing that inter-
nal interfaces may be promoted to public, and we propose
a machine learning technique that alleviates these problems
by identifying public interface candidates.
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7.2 API Migration/Evolution
Many approaches have been developed to support API

evolution and reduce the efforts of client developers when
facing API migration. Chow and Notkin [6] present an ap-
proach where API developers annotate changed methods
with replacement rules that will be used to update client
systems. Henkel and Diwan [15] propose CatchUp, a tool
that uses an IDE to capture and replay refactorings related
to API evolution. Other studies are intended to mine API
evolution rules from source code history. Kim et al. [23]
automatically infer rules from structural changes in source
code. Hora et al. [19, 21] propose tools to keep track of
API evolution by mining fine-grained code changes. Kim et
al. [22] introduce LSDiff to support computing differences
between two system versions. Nguyen et al. [37] present Lib-
Sync, which uses graph-based techniques to help developers
migrate from one framework version to another. Using the
learned adaptation patterns, the tool recommends locations
and update operations for adapting systems to API evolu-
tion. Mileva et al. [35] also mine two version of a system
to detect evolution of object usage, and help developers to
ensure changes are systematically applied in source code.

Schafer et al. [42] mine framework usage change rules
from client systems. Dagenais and Robillard [10] introduce
SemDiff, which suggests replacements for framework ele-
ments based on how they adapt to their own changes. Meng et
al. [33] propose a history-based matching approach (HiMa)
to support framework evolution. Wu et al. [47] present an
approach that combines call dependency and text similarity
analyses to produce evolution rules. In this case, rules are
extracted from the revisions in code history together with
comments recorded in the evolution history of the frame-
work. Hora et al. [16–18] focus on the extraction of domain-
specific API evolution rules.

API evolution is also studied in the context of software
ecosystems. McDonnell et al. [31] investigate API stabil-
ity and adoption on a small-scale Android ecosystem. They
have found that Android APIs are evolving fast while client
adoption is not catching up with the pace of API evolution.
In a large-scale study, Robbes et al. [41] investigate the im-
pact of API deprecation in a software ecosystem. Hora et
al. [20] complement the previous study by analyzing the im-
pact of API evolution (not related to deprecation) at large-
scale level. Both studies agree that software ecosystems do
not react to API evolution due to reasons such as lack of
deprecation messages and unaware developers.

Livshits and Zimmermann [27] propose to discover usage
patterns over code history, such as method pairs (e.g., lock()
must happen with unlock()). Some studies mine execution
traces [28, 29]. They extract rules via dynamic analysis to
produce temporal rules (e.g., every call to m1() must be pre-
ceded by a call to m2()). Other studies focus on how the
usage of APIs by client systems (i.e., API popularity) can
contribute to better support software development [21,34].

Dig and Johnson [12] help developers to understand the
requirements for migration tools, finding that 80% of the
changes that break clients are refactorings. Cossette et al. [7]
find that API incompatibility is hard to handle, concluding
that API migration remains a challenging proposition.

In summary, related studies are intended to better under-
stand API evolution and to propose solutions to API migra-
tion. None of them, however, study API evolution/migration
in the context of internal interfaces.

8. CONCLUSION
To the best of our knowledge, this work is the first (i)

to study internal interface promotion to better understand
this phenomenon and (ii) to provide a technique to detect
public interface candidates to help both API producers and
clients. The study was done in the context of five real-world
Java systems (Eclipse, JUnit, Hibernate, jBPM, and Elastic-
Search). Three research questions were investigated to char-
acterize, detect and predict internal interfaces that should
be promoted to public. We reiterate the most interesting
conclusions from our experiment results:

1. Clients often use internal interfaces. At an ultra-large-
scale level, we show that 2,277 (23,5%) out of 9,702
Eclipse client projects depended on internal interfaces.

2. Internal interface promotions happen in real-word sys-
tems. 7% (195 out of 2,722) of the internals are pro-
moted to public, which may have high impact on clients.

3. Promoted and non-promoted internal interfaces pres-
ent distinct domestic usage. Recommenders can be
built to detect public interface candidates and confi-
dently rely on domestic usage of internal interfaces.

4. Internal interface promotions can be predicted with high
confidence. By adopting the domestic usage metrics,
classifiers with good performance (AUC ≥ 70%) can
be produced to predict internal interface promotion.

5. Public interface candidates can be detected in current
source code. To help both API producers and clients,
we are able to automatically detect public interface
candidates (we found 382 in our case studies).

6. Public interface candidates are externally used and un-
stable. Domestic usage of internal interfaces is a good
estimator of their external usage, reinforcing that the
detected candidates are relevant.

Besides the results presented here, our findings point out
that the access limitations enforced by the access modi-
fiers implemented in the Java language may not be granu-
lar enough for large-scale systems in which several packages
may need additional visibility, without granting unrestricted
access to the rest of the world.

As future work, we plan to extend this research to other
systems and programming languages. We also plan to fur-
ther validate our detection approach with more client sys-
tems and with the help of core/expert developers. Another
extension of our study is to decrease the number of false
negatives of the proposed heuristic by employing techniques
of interface name and body similarity in order to detect the
missing promotions. Finally, based on our approach, we plan
to implement a tool that can be easily used by API produc-
ers and clients when looking for public interface candidates.
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