
A Change-based Approach to Software
Evolution

Romain Robbes and Michele Lanza1,2

Faculty of Informatics
University of Lugano - Switzerland

Abstract

Software evolution research is limited by the amount of information available to researchers: Current version
control tools do not store all the information generated by developers. They do not record every intermediate
version of the system issued, but only snapshots taken when a developer commits source code into the
repository. Additionally, most software evolution analysis tools are not a part of the day-to-day programming
activities, because analysis tools are resource intensive and not integrated in development environments.
We propose to model development information as change operations that we retrieve directly from the
programming environment the developers are using, while they are effecting changes to the system. This
accurate and incremental information opens new ways for both developers and researchers to explore and
evolve complex systems.

Keywords: Software Evolution, Versioning Systems, IDEs

1 Introduction

The goal of software evolution research is to use the history of a software system
to analyse its present state and to predict its future development [11], [5]. Such
an analysis requires information about a system to give accurate insights about its
history. Traditionally researchers extract their data from versioning systems, as
their repositories contain the artifacts the developers produce and modify.

We argue that the information stored in versioning systems is not complete
enough to perform higher quality evolution research. Since the past evolution of a
software system is not a primary concern for most developers, it is not an impor-
tant requirement when designing versioning systems. They favor features such as
language independence, distribution and advanced merging capacities.

1 Email: romain.robbes@lu.unisi.ch
2 Email: michele.lanza@unisi.ch

Electronic Notes in Theoretical Computer Science 166 (2007) 93–109

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.06.015
Open access under CC BY-NC-ND license.

mailto:romain.robbes@lu.unisi.ch
mailto:michele.lanza@unisi.ch
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

We need to prove to developers that results in software evolution research are
immediately useful to them by improving the integration of our tools in their day-
to-day processes. Most tools are tailored for an use “after the fact”, once the main
development is over and before a new feature is added. A common approach is
to download several versions from a repository and to process them all at once.
This shows that incremental processing is limited, and computations are long and
resource-intensive. We need to provide more incremental, lightweight approaches
that developers can use in their work.

This paper presents our approach to tackle both problems of accurate informa-
tion retrieval and developer use of evolution tools. We believe the most accurate
source of information is the Integrated Development Environment (IDE) the de-
velopers are using. By hooking our tools into an IDE, we can capture evolution
information as it happens, treat it in an incremental manner, and interact with
the environment to improve the usability of our tools. Our approach is based on
a model of the changes developers are applying to the system and hence treats
changes as first-class entities. In that sense, we do not make a distinction between
the system and the changes that are performed on it, i.e., software engineering is
part of software evolution.

Structure of the paper: Section 2 expands on the nature and consequences
of the problems we presented. Section 3 introduces our alternative approach. Sec-
tion 4 describes the implementation status of SpyWare, our prototype. Section 5
describes how such a model can be used in practice and how problems are stated
and solved differently in an incremental, change-based world. Section 6 outlines
some preliminary results, while section 7 concludes the paper.

2 Current Approaches to Software Evolution

To perform efficient evolution research, accurate data about the system under study
is required. Despite this need, the tools the community uses to gather the data do
not provide such accurate information. At the core of most data recovery strategies
is the versioning system used by the developers of the system.

The main criteria in choosing a versioning system from which to extract data
is how many systems it versions, especially open-source ones: developers allow free
access to their repositories. The largest open-source software systems (Mozilla,
Apache, KDE, etc) use either CVS or Subversion, researchers therefore write their
tools to gather data from these repositories.

2.1 Limitations in Information Gathering

In a previous study [14] we showed that most versioning systems in use today
(including CVS and Subversion) are indeed losing a lot of information about the
system they version. We identified two main, orthogonal, reasons: most versioning
systems are (1) file-based, and (2) snapshot-based.

File-based systems. Most of these systems still function at the file level, as
this guarantees language independence. On the other hand, it involves extra work

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–10994

to raise the level of abstraction to the programming language used by the system
[16], [9], because the collected information is obfuscated:

• The semantic information about a system is scattered in a large amount of text
files: there is no built-in central repository of the program structure, it has to be
created manually.

• Keeping track of a program-level (not text-level) entity among several versions of
the system is hard since it involves parsing several versions of the entire system
while taking into account events such as renames of files and entities due to
refactorings. Hence some analyses are performed on data which has been sampled
[7], [8]: only a subset of the versions are selected because of time and space
constraints. This increases the changes between each versions, and makes it
harder to link entities across versions since the probability they have changed
is higher. Other analyses do without the parsing of the files altogether, basing
themselves on coarser-grained information such as the number of lines or the size
of directories [4], [6].

Snapshot-based systems. Changes between successive versions of the soft-
ware are stored on explicit requests (called commits) by the developer. The time
between two developer commits varies widely, but is often on the order of several
hours or days. What happens between two commits is never stored in the versioning
system, and we have to deal with degraded information:

• Since commits are done at the developer’s will, several independent fixes or feature
additions can be introduced in one single commit, making it hard to differentiate
them.

• The time information of each change is reduced to the time when a commit
has been performed: beyond the task of extracting the differences between two
versions of the system, all information about the exact sequence of changes which
led to these differences is lost.

2.2 Practical Impacts of Information Loss

Example. The example in Figure 1 shows how this loss of information can
significantly degrade the knowledge inferred about a system. In this simple scenario
a developer starts a short refactoring session, in which he refactors the method
doFoo. He (1) extracts a block of statements in a new method bar, (2) replaces
direct accesses to instance variables x and y with accessors throughout the entire
system, and (3) renames doFoo to baz, replacing all references to doFoo in the code
base.

He then commits these changes. This is a very small commit, less than a
minute of work, since in current IDEs all these refactoring operations can be semi-
automated. Commits usually imply larger change sets than this simple example.
According to the information gathered from the versioning system, the following

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 95

class Foo {
 public int x;
 public int y;

 public doFoo() {
 blah.blah(blah);
 z = x + y;
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }
}

 f = new Foo();
 f.doFoo();
 print f.x + f.y;

class Foo {
private int x;
private int y;

public getX() { return x; }
 public setX(newX) { x = newX; }

 public getY() { return y; }
 public setY(newY) { y = newY; }

 public baz() {
 blah.blah(blah);
 z = getX() + getY();
 return bar();
 }

 public quux() {
 return getY() + 4;
 }

 public asdf() {
 return getX() * 8 + getY();
 }

 private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }

}

 f = new Foo();
 f.baz();
 print f.getX() + f.getY();

class Foo {
 public int x;
 public int y;

 public doFoo() {
 blah.blah(blah);
 z = x + y;

 return bar(z);
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }

private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }
}

 f = new Foo();
 f.doFoo();
 print f.x + f.y;

class Foo {
 public int x;
 public int y;

 public baz() {
 blah.blah(blah);
 z = x + y;
 return bar(z);
 }

 public quux() {
 return y + 4;
 }

 public asdf() {
 return x * 8 + y;
 }

 private bar(z) {
 blu = blu * 2;
 t = blurg(z);
 bli[t] = blu;
 return t;
 }
}

 f = new Foo();
 f.baz();
 print f.x + f.y;

Extract Method Rename Method Create Accessors

? lines changed between commitsdifferences between refactorings

Fig. 1. Simple refactoring scenario leading to evolution information loss.

physical changes happened 3 :

• The method doFoo changed name and is now significantly shorter. This makes it
hard to detect if the new method baz is really the same entity that doFoo was.
A simple analysis would conclude that method doFoo disappeared.

• There are several new methods: bar, baz, and accessor methods getX, getY, setX,
setY.

• Several methods had their implementation modified because of the rename of
doFoo and the introduction of accessors, possibly scattered among several files of

3 Note that the changes described below are program-level changes. If the versioning system used is file-
based, they need to be raised to that level first

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–10996

the entire codebase.

In this example, only refactorings – by definition behavior-preserving[3] – have
been performed. The logical changes to the system are trivial, yet this commit
caused many physical changes: Its importance measured in lines of codes is exag-
gerated. Without a sophisticated, time-consuming analysis [16], some entities such
as doFoo are lost, even if they still exist in the code base. On the other hand,
using such a time-consuming analysis makes it harder to integrate these tools in
day-to-day activities.

Moreover, the simple scenario depicted above assumes that a developer commits
after every couple of minutes of work. In reality, it is more on the order of hours.
The change amount would be greater, and changes would be much more diluted
and less recoverable.

2.3 The Lack of Integration

The way the software evolution analysis community collects information has shaped
its tools to function likewise. The typical procedure to fetch information out of a
version repository is to (1) download a set of versions from the repository, (2) build
a program representation for each of the versions, and (3) attempt to link successive
versions of entities.

This approach is clearly only suited for an off-line activity, because even if sam-
pling is used it is time-consuming (hours or days to complete on a large-scale sys-
tem). Currently, forward and reverse engineering are two very distinct, separate
activities. When applied in practice, reverse engineering is performed by special-
ized consultants acting on unknown systems under time constraints.

To better accomodate developers, software evolution tools need to be incremental
in nature and easily accessible from IDEs. Tools need to focus on smaller-scale
changes, when developers are working on smaller parts of the system, as well as
providing a “big picture” view of the system to external people such as project
managers.

All these necessities become even more important with the advent of agile
methodologies such as extreme programming, which advocate continuous refactor-
ings and changes in the code base – extreme programming’s motto is “embrace
change” [1].

2.4 Ideas Behind our Approach

Our approach, presented in the next sections, stems from the following observations:

• Versioning systems are not a good source to retrieve information, as they store
changes at the file level. They also store changes at commit time, yielding too
coarse-grained changes.

• More and more developers are nowadays using IDEs, featuring a wealth of infor-
mation and tools, making development more effective and increasing the change
rates of systems.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 97

• For evolution tools to gain acceptance, they must (1) adapt to this increase of the
rate of change, (2) be used by the developers themselves as part of their day-to-
day activities, (3) be able to focus on small-scale as well as large-scale entities, and
(4) support incremental updates of information, as day-long information retrieval
phases are a serious flaw for daily usage.

3 An Alternative Approach to Evolution

Our approach is based on two concepts: (1) an IDE integration to record as much
information as possible and to allow easy access to our tools, and (2) a model
based on first-class change operations to better match the incremental process of
developing software.

3.1 Using the IDE as an Information Source

Most programmers use IDEs for their day-to-day tasks, because they are powerful
tools featuring support for semi-automatic refactoring, incremental compilation,
unit testing, advanced debugging, source control integration, quick browsing of the
system, etc. Most of them are extensible by plug-in systems.

IDEs are able to do so much because they have an enormous amount of infor-
mation about the developer and his system. Being able to browse or refactor the
system already implies having a reified program model. Thus we advocate inte-
grating our tools in an IDE, and using the IDE itself as the source of evolution
information instead of the versioning system. Featuring tool integration increases
visibility and is a first step to feature them in the developer’s workflow. To use
the IDE as the source of information is the closest we can get to understand the
developer’s intentions.

Most IDEs feature an event notification system, so tools can react to what the
developer is doing. Hooks monitor when a class is compiled, or when a method
is recompiled. The approach we propose uses these IDE hooks to react when a
developer modifies the system by creating data defined as first-class change entities.

3.2 First-class Change Entities

First-class change entities are objects modeling the history of a system following
the incremental way it was built. They contain information to reproduce the pro-
gram of which they represent the history. When executed, they yield an abstract
representation of the program they represent at a certain point in time. They also
contain additional information interesting for evolution researchers, such as when
and who performed which change operations.

Traditional approaches model the history of a program as a sequence of versions.
This is memory-consuming, since most parts of the system do not change and are
simply duplicated among versions. This is why most approaches include a sampling
step, aimed at reducing the number of versions by selecting a fraction of them.
This sampling step hence increases the changes between successive versions, ren-

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–10998

dering fine-grained analysis even harder. In contrast, our approach only stores the
program-level differences between versions, and is able to reproduce the program at
any point in time.

Change operations also model with greater accuracy the way the developer
thinks about the system. If a developer wants to rename a variable, he does not
think about replacing all methods referencing it with new methods, even if that is
what the IDE ends up doing: Modeling incremental modifications to the system
eases its understanding.

The literature shows that a few versioning systems have attempted a change-
based, rather than version-based approach to versioning [12] [13]. However, these
approaches are solely focused on merging, whereas our model is more general and
allows the change operations to be used in various ways. We also think that by not
replacing the versioning system layer, but rather complementing it, our approach
will encounter less resistance.

Although we model program evolution with first-class change operations to ease
reverse engineering, we believe it is useful for forward engineering as well. Most
end-user applications feature an undo mechanism, but most program editors do not
provide a sensible one at the semantic level. First-class change operations could
enable this, hence facilitating exploratory programming by trial and error. First-
class change entities can also ease arbitrary program transformation to facilitate
program evolution, following the same scheme as semi-automated refactorings[15].

To sum up, our approach consists of the following steps:

(i) Use the hooks of the IDE to be notified of developer activity.

(ii) React to this activity by creating first-class change objects representing the
semantic actions the developer is performing.

(iii) Execute these change objects to move the program representation at any point
in time.

Advantages. The advantages of this alternative approach over gathering data from
a repository and performing off-line analysis are the following:

• Accuracy. Reacting to events as they happen gives us more accurate information
than the one stored in the versioning system. Timestamps are more precise, not
reduced to commit times. Events happen one by one, giving us more context to
process them than if we had to process a batch of them, originated from an entire
day’s work.

• Incrementality. It is significantly easier to maintain a semantic representation of
the model. Events originating in the IDE are high level. Their granularity is the
one of classes and methods, not files and lines. Code parsing is required only at
the method level.

• Fine-grained. Every program entity can be modelled and tracked along its ver-
sions, down to the statement level if necessary. There is no state duplication,
leading to space economies when an entity does not change during several ver-
sions.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 99

• Flexibility. Going back and forward in time using change objects is easy. It leads
to more experiments with the code base, easing “trial and error” in development.

Drawbacks. We have identified possible issues and implications with our ap-
proach:

• Acceptance. Evolution researchers use CVS despite its flaws, because it is the
versioning systems most developers use. Subversion is a newer versioning system
gathering momentum because it is close enough to CVS. Hence to be successful
we need to depart from people’s habits as less as possible.

• Validation. Our approach needs to be evaluated with case studies. We are mon-
itoring our prototype itself, but without a “real-world” case study we are unsure
about performance constraints. Our approach works best for new projects. This
limits possible case studies. Nevertheless, section 6 shows preliminary results on
several small-scale case studies.

• Paradigm shift. Such an incremental approach to various problems needs new
tools and new practices to be defined.

• Applicability. Our approach is language-specific, which involves more effort to
adapt it to a new language than conventional file-based approaches. However,
our current prototype implementation is split into a language-independent part
and a language-dependent one. Only the latter one must be adapted to other
languages/IDEs.

To address acceptance issues, we can integrate our tools in mainstream IDEs,
such as Eclipse, which features a plugin mechanism. The monitoring part of the
system is not intrusive and is not visible to users. Keeping track of the data across
sessions or programmer locations can be done by creating a “sync” file which would
be part of the current project. The versioning system itself would be used to broad-
cast and synchronize information.

4 Our Prototype: SpyWare

Our ideas are implemented in a prototype named SpyWare, written in Squeak [10].
It monitors developer activity by using event handlers located at IDE hooks, and
generates change operations from events happening in the Squeak IDE. Figure 2 is
composed of a sequence of screen captures of our prototype. It shows the evolution
of one project we monitored (in terms of high-level program metrics, such as number
of classes, methods, statements and average size of methods in statements). The
same graph is shown zoomed in on a peak of the previous graph 4 . Two code
browsers on two different views of the systems are also shown: one during the peak
(bottom), and one after it (top). The views are separated by around half an hour.
We clearly see that the top one has less classes than the bottom one, in accordance
with the blue peak. As the scrollbar in the top browser shows, the selected class

4 Due to the curve scaling algorithm we currently use, the zoomed view is not bit-identical to the previous
one

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109100

has more methods in the later version.
Low level changes supported so far are shown in Table 1. They can be composed

in higher-level changes; a few of them are listed in Table 4.

Change Type Package Class Method Variable Statement

Creation X X X X X

Addition X X X X X

Removal X X X X X

Rename - X - - -

Superclass Change no X no no no

Property Change X X X X X

Refactoring - - - - -

Table 1
Changes supported by SpyWare.

Fig. 2. SpyWare’s UI features interactive visualization, version browsing, and statistics (not shown). Project:
Project I. Metrics: Number of classes (blue); Number of methods (red); Number of statements (cyan);
Average non-accessor method size (magenta)

SpyWare associates these change operations to program entities up to the state-
ment level. It is possible to track changes to a single statement. Entities are uniquely

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 101

identified independently from their name: a rename is a trivial operation. SpyWare
can also generate the source code of the program it is monitoring at any point in
time, by applying or reverting change operations. It also features basic support for
interactive visualizations of the history.

Our future work includes the definition and detection of higher-order changes
such as refactorings, or distinct features of the monitored program, out of the basic
building blocks we already defined. SpyWare is currently single-user: we plan to
make it multi-user soon.

5 Change-Based Software Evolution

We believe our approach has the potential to address several problems in both
reverse and forward engineering, as an IDE integration makes the dialogue between
the two activities more natural.

Facilitating program comprehension. Processing finer-grained changes will
allow us to detect and characterize changes with greater accuracy. Storing all the
refactorings performed on the code will enable us to track specific entities for their
entire lifetime, even after renames and moves. We also believe that it is possible to
characterize changes as either bug fixes, refactorings or feature additions and that
this information will allow to focus analysis on specific changes by contextualizing
them.

Our model allows us to characterize or classify changes and entities in arbitrary
ways (using properties or annotations). This facility can be used to ease understand-
ing of the code as well. Contrary to classical versioning systems where branches are
fixed and are set up before modification, our model permits the modification of
properties of changes while reviewing them. Changes that need to be grouped can
be tagged for an easier handling.

Recording the complete history of a system allows for fine-grained understanding
of a dedicated piece of code by reviewing its introduction and modifications in
context of surrounding modifications, e.g., it is useful to know whether a line is
present from the beginning of a method or much later because of a bug fix.

Facilitating program evolution. First-class change objects can be broad-
casted through a network to increase awareness and responsiveness to changes, thus
providing developers insights of what other developers are doing. Such a system
would tell them if their changes are conflicting with other people’s changes interac-
tively. This will help avoiding long and painful merge phases.

Change-based operation coupled with entity-level tracking will ease refactoring,
e.g., in our current model, the name of an entity is just a property: A rename does
not affect identity.

Merging reverse and forward engineering. Higher-level languages and
tools promote a faster and easier implementation of functionality, which translates
into a higher change rate of the system. Hence some reverse engineering activities
need to be done on a smaller scale, but with a higher frequency and accuracy, to
keep track of what has been modified recently in the system before resuming work

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109102

on a part of it.
Change operations between two versions of the system can be used to generate

an automatic and interactive change log to bring other developers up to speed on
the changes a developer made.

6 Preliminary Results

To validate our claims we need to gather some data supporting our hypotheses.
Since no system has been recording information with that grain of detail before, we
can not rely on pre-existing software repositories as data sources. Hence we had to
devise a process to gather the information we needed and find some adequate test
subjects.

Our prototype is currently monitoring itself, so it could be used as a case study,
but we wished to have software developed externally to be as unbiased as possible
in our first case study.

6.1 Case Study Setup and Description

Since the curriculum at our faculty includes several projects, we chose to use data
generated by our students for this case study. During the course of their second
semester, students had to program in Smalltalk a pair-project for a period of a
week. Out of a class of 22 students, 11 pairs were formed. Each pair had to choose
a topic out of these three:

• A virtual store in the vein of Amazon, where users can buy books, CDs, DVDs
etc.

• A geometry program where one can perform various mathematical functions on
different elementary three-dimensional shapes, such as cubes, pyramids, etc.

• A simple text-based role-playing game. The user plays a hero who must wander
a dungeon in search of some treasures, while fighting monsters in a turn-based
fashion. Due to the open-ended nature of this project, people choosing this project
ended up having significantly more code and more complex designs.

The chosen topics were simple: the goal of the projects was to give students
insights in object-oriented design and how key concepts of object-oriented program-
ming such as composition, inheritance and polymorphism work and can be used in
practice.

To gather data, we had programming environments tailored for student use.
Their environment included the monitoring part of our prototype, which in its
current incarnation periodically uploads new changes as files to an FTP server. It
also included a notification that they were involved in such an experiment.

The results were as follows: out of the 11 projects, 9 contained suitable data
and are presented here. The other two either chose to implement their project
using another programming environment, or an older version of the environment we
provided, in which the information sent to us had a slightly different format.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 103

6.2 Quantitative Data Analysis

This section gives an overview of the kind of data we found in the projects, from
a high-level perspective. In each of the tables, each project is denoted by a letter,
from A to I.

Project Type Start End Duration Effort Changes Changes
per
Hour

A Geometry 2006/03/27 -
15:02

2006/04/03 -
20:06

7 d 5 h 43.5 h 1923 44.2

B Store 2006/03/27 -
11:27

2006/04/03 -
20:37

7 d 9 h 11 h 305 27.7

C Store 2006/03/27 -
13:06

2006/04/01 -
18:21

5 d 5 h 25.5 h 800 31.4

D Store 2006/03/27 -
11:28

2006/04/01 -
16:09

7 d 4.5 h 22 h 609 27.7

E Store 2006/03/27 -
11:30

2006/03/30 -
19:05

3 d 7.5 h 15 h 388 25.9

F RPG 2006/03/27 -
11:28

2006/04/04 -
12:04

8 d 0.5 h 21 h 741 35.3

G Geometry 2006/03/27 -
17:06

2006/04/03 -
23:17

7 d 6 h 27.5 h 836 30.4

H Store 2006/03/27 -
11:45

2006/04/03 -
22:45

7 d 11 h 14 h 490 35.0

I RPG 2006/03/27 -
11:29

2006/04/03 -
23:36

7 d 12 h 48 h 1247 26.0

Table 2
Duration of each project (from first to last change recorded)

In Table 2 we see the time that the students spent in total on these projects,
varying from slightly more than 10 hours to nearly 50 hours. Considering the
relevant number of changes that these students applied to their systems (from 400
to 2000 high-level changes, implying an even higher number of low-level changes),
we think this is a strong argument for a change-based approach: we measured the
average number of CVS commits on a number of large open-source projects and
noted that most of them had an average of only slightly more than 1 commit per
working day, i.e., 8 hours. In short, the degree of change information loss with a
versioning system like CVS is impressive. This is also reflected in the “change per
hour” metric: it varies from 26 to 45 changes per hour. If students had saved once
per hour – an optimistic figure according to the statistic above –, it would still be
difficult to tell each change apart.

Table 3 shows the number of entities who were created during the course of the
project. We also see in bold the number of entities remaining when the system was
shipped to us for grading.

Table 4 gives a summary of the kind of changes which were performed on each
system. From these two tables we see some trends in project stability: projects
A, C, G, and – to some extent – I show a lot more removals of entities. All the
other projects have more than 85% of added entities still present at the end of the
project, with projects B and E being the most stable (with 89 and 91% respectively).
According to Table 4, project B, E and F, the most stable ones, feature some
events invoking good maintenance practices: classes being renamed and commented.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109104

Entity Type A B C D E F G H I

Packages 7/7 2/2 1/1 2/2 2/2 2/2 4/4 2/2 7/7

Classes 19/23 13/14 11/14 8/9 13/13 15/17 16/21 10/12 28/43

Instance Vari-
ables

32/80 12/19 16/29 14/19 18/20 42/55 18/29 24/29 72/107

Class Variables 0/0 0/0 0/2 0/0 0/0 0/0 12/43 0/0 1/1

Methods 157/331 98/116 77/144 129/158 109/121 205/242 105/212 114/135 308/405

Arguments 65/65 21/21 35/35 86/86 16/16 81/81 17/17 32/32 60/60

Temporaries 209/239 71/72 54/85 100/118 73/81 124/134 31/45 71/82 142/157

Persistence
Ratio

69% 89% 62% 86% 91% 88% 54% 87% 79%

Table 3
High-level indicators of project size: final number of entities/total number of entities

Change Type -
Project

A B C D E F G H I

Class Added 22 14 14 9 12 15 21 12 48

Class Modified 65 17 34 13 6 24 57 15 27

Class Commented 0 12 0 0 1 0 0 0 0

Class Recatego-
rized

0 0 5 0 0 0 0 0 11

Class Renamed 0 0 0 0 1 1 0 0 1

Class Removed 10 1 5 5 0 3 6 2 18

Attributes Added 82 19 29 19 20 61 30 29 137

Attributes Re-
moved

50 7 13 5 2 19 15 5 54

Method Added 366 119 182 164 117 237 219 135 415

Method Modified 234 69 117 140 81 154 143 118 185

Method Recate-
gorized

82 0 1 2 34 3 36 4 21

Method Removed 190 20 81 32 13 38 117 21 106

Table 4
High-level indicators of change type

On the other side of the spectrum, Projects C and I feature several classes being
reorganized, e.g changing packages. This indicates a more important restructuring
of the project.

6.3 Qualitative Data

Figure 3 shows the evolution of the nine projects, from March 27, 2006, to April
4, 2006. On the left we can easily spot and characterize session by their shapes.
Contrast with the figure on the right, in which one point is plotted after each coding
sessions: it is impossible to characterize the sessions from it. We see several types
of sessions in this figure, each with a different visual pattern:

• Session S1 is stair-shaped : many methods are added in a short period of time,
and almost none are removed. This indicates a certain focus and efficiency by the
programmers during this session.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 105

S1

S2

S3

A

B
C

D

E
C

F

G

H

I

S4

Fig. 3. Left: visualization of the number of methods of all projects. Right: simulation of the same metric
after each coding session. Projects: A (red); B (cyan); C (blue); D (magenta); E (brown); F (orange); G
(yellow); H (black); I (green).

• Session such as session S2 are stagnant : The growth is slow, with some occasional
removals of methods. This indicates a much more cautious approach, where the
road to follow is not as clear as in stair-shaped sessions. If certain methods
are modified several times during this session, this could be a bug-fixing session,
involving several tries before finding the correct fix.

• Session S3 is a roller-coaster session. Session S3 and similar ones features a lot
of removal of methods: this indicates either cleanups (such as at the end of the
project, before delivering it) or redistribution of functionality: if the session ends
with a sharp raise (as S3) it could indicate knowledge transfer from a deleted
class to another, either by copy/paste and modify, or by code rewriting.

• Finally, sessions such as S4 can be thought as focused bug-fixing sessions: after a
certain time of evaluation, the programmer focuses on a problem and solves it in
one swift session.

With this classification of programming sessions, we can qualify the evolution of
each project:

Several projects are characterized by a large number of stairs-shaped sessions.
Projects B, D, E and H have a large majority of such sessions, while projects F
and G also have a fairly high number of them. Projects F and G also have a few
“roller-coaster” shaped sessions where some reorganization occurred, but managed
to stay rather focused until the end of the projects. Projects B, D, E and H are
“virtual store” types of projects, which were easier to design and implement than
geometry and role-playing projects: the domain was much more defined, and the
projects were not as open-ended as the other ones. This explains the focus and
efficiency of the students programming these.

Three projects behave differently though: project A (geometry), C (virtual store)
and I (role-playing game). Project C has several “stagnant” sessions, in which the

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109106

implementation was not as direct as other projects. It also features a cleanup phase
near the end. Project I has two “roller-coaster” sessions near the beginning, indi-
cating alternative designs tentatives: one spike is very tall and thin, and the size of
the system rises sharply afterwards. Other sessions are either stagnant or halfway
between stagnant and stairs-shaped. In those periods the design and implemen-
tation were harder to determine. Project A has the most atypic curves of all: it
features an extended roller-coaster near the beginning, then a phase in which the
system is rather stagnant, and yet another roller-coaster near the end of the project,
ending with some cleanup. This project was characterized by a combination of good
extension ideas (using a graphical user interface), and poor design choices (the main
inheritance tree made model classes inherit from user interface classes).

To conclude this study, we comment on the right side of Figure 3. In it the
same data curves are displayed as on the left side with the following exception: it is
drawn as if data was collected at the end of each coding session, rather than after
each change. In fact it mimics the kind of data we would obtain from a mainstream
versioning system such as CVS. We can clearly see that we could not have done an
in-depth analysis like the one we did with such a low data quality.

7 Conclusion

Software evolution research is restrained by the loss of information which are not
captured by most versioning systems. Evolution analysis tools are not used by
developers because they are not integrated in an IDE and require time-consuming
data retrieval and processing phases. They are not suited for smaller-scale, day-to-
day tasks [2].

We presented an alternative approach to gather and process information for
software evolution. We gather data from the IDE the developer is using rather than
the versioning system. We model program change as first-class entities to be closer
to the developer’s thought process. Changes can manipulate the model to bring it
at any point in time in a very fine-grained way.

Our approach being incremental, fine-grained and integrated in an IDE, we
consider it is suited for a daily use by developers. To validate our hypothesis, we
are currently implementing a prototype named SpyWare.

The preliminary results we obtained gives us confidence in the usefulness of our
approach, that we intend to develop further. We were able to both characterize the
student projects at a high level, but also at a lower level, on a session-by-session
basis by using visual patterns.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 107

Acknowledgments: We gratefully acknowledge the financial support of the
Swiss National Science foundation for the projects “COSE - Controlling Software
Evolution” (SNF Project No. 200021-107584/1), and “NOREX - Network of Reengi-
neering Expertise” (SNF SCOPES Project No. IB7320-110997), and the Hasler
Foundation for the project “EvoSpaces - Multi-dimensional navigation spaces for
software evolution” (Hasler Foundation Project No. MMI 1976). We thank Marco
D’Ambros and Mircea Lungu for giving valuable feedback on drafts of this paper.
We also thank the students at the University of Lugano who accepted being moni-
tored while doing their projects.

References

[1] K. Beck. Extreme Programming Explained: Embrace Change. Addison Wesley, 2000.

[2] S. Demeyer, F. Van Rysselberghe, T. Gı̂rba, J. Ratzinger, , R. Marinescu, T. Mens, B. Du Bois,
D. Janssens, S. Ducasse, M. Lanza, M. Rieger, H. Gall, M. Wermelinger, and M. El-Ramly. The Lan-
simulation: A Research and Teaching Example for Refactoring. In Proceedings of IWPSE 2005 (8th
International Workshop on Principles of Software Evolution), pages 123–131, Los Alamitos CA, 2005.
IEEE Computer Society Press.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product release history.
In Proceedings International Conference on Software Maintenance (ICSM ’98), pages 190–198, Los
Alamitos CA, 1998. IEEE Computer Society Press.

[5] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Software evolution observations based on product
release history. In Proceedings International Conference on Software Maintenance (ICSM’97), pages
160–166, Los Alamitos CA, 1997. IEEE Computer Society Press.

[6] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting logical couplings. In
International Workshop on Principles of Software Evolution (IWPSE 2003), pages 13–23, Los Alamitos
CA, 2003. IEEE Computer Society Press.

[7] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In Proceedings 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 40–49, Los Alamitos CA, 2004. IEEE Computer Society Press.

[8] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evolution of class hierarchies. In Proceedings
Ninth European Conference on Software Maintenance and Reengineering (CSMR’05), pages 2–11, Los
Alamitos CA, 2005. IEEE Computer Society.

[9] C. Görg and P. Weissgerber. Detecting and visualizing refactorings from software archives. In
Proceedings of IWPC (13th International Workshop on Program Comprehension, pages 205–214. IEEE
CS Press, 2005.

[10] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future: The story of Squeak,
A practical Smalltalk written in itself. In Proceedings OOPSLA ’97, ACM SIGPLAN Notices, pages
318–326. ACM Press, Nov. 1997.

[11] M. Lehman and L. Belady. Program Evolution: Processes of Software Change. London Academic
Press, London, 1985.

[12] E. Lippe and N. van Oosterom. Operation-based merging. In SDE 5: Proceedings of the fifth ACM
SIGSOFT symposium on Software development environments, pages 78–87, New York, NY, USA, 1992.
ACM Press.

[13] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Software Eng., 28(5):449–462,
2002.

[14] R. Robbes and M. Lanza. Versioning systems for evolution research. In Proceedings of IWPSE 2005
(8th International Workshop on Principles of Software Evolution), pages 155–164. IEEE Computer
Society, 2005.

[15] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke. An automated refactoring tool. In Proceedings
of ICAST ’96, Chicago, IL, Apr. 1996.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109108

[16] Q. Tu and M. W. Godfrey. An integrated approach for studying architectural evolution. In 10th
International Workshop on Program Comprehension (IWPC’02), pages 127–136. IEEE Computer
Society Press, June 2002.

R. Robbes, M. Lanza / Electronic Notes in Theoretical Computer Science 166 (2007) 93–109 109

	Introduction
	Current Approaches to Software Evolution
	Limitations in Information Gathering
	Practical Impacts of Information Loss
	The Lack of Integration
	Ideas Behind our Approach

	An Alternative Approach to Evolution
	Using the IDE as an Information Source
	First-class Change Entities

	Our Prototype: SpyWare
	Change-Based Software Evolution
	Preliminary Results
	Case Study Setup and Description
	Quantitative Data Analysis
	Qualitative Data

	Conclusion
	References

