
Noname manuscript No.
(will be inserted by the editor)

Characteristics of Method Extractions in Java: A Large
Scale Empirical Study

Andre Hora · Romain Robbes

Received: date / Accepted: date

Abstract Extract method is the “Swiss army knife” of refactorings: develop-
ers perform method extraction to introduce alternative signatures, decompose
long code, improve testability, among many other reasons. Although the ra-
tionales behind method extraction are well explored, we are not yet aware of
its characteristics. Assessing this information can provide the basis to better
understand this important refactoring operation as well as improve refactoring
tools and techniques based on the actual behavior of developers. In this pa-
per, we assess characteristics of the extract method refactoring. We rely on a
state-of-the-art technique to detect method extraction, and analyze over 70K
instances of this refactoring, mined from 124 software systems. We investigate
five aspects of this operation: magnitude, content, transformation, size, and
degree. We find that (i) the extract method is among the most popular refac-
torings; (ii) extracted methods are over represented on operations related to
creation, validation, and setup; (iii) methods that are targets of the extrac-
tions are 2.2x longer than the average, and they are reduced by one statement
after the extraction; and (iv) single method extraction represents most, but
not all, of the cases. We conclude by proposing improvements to refactoring
detection, suggestion, and automation tools and techniques to support both
practitioners and researchers.

Keywords Refactoring · Extract Method · Software Repository Mining ·
Software Evolution · Empirical Software Engineering

Andre Hora
Department of Computer Science, UFMG, Brazil, E-mail: andrehora@dcc.ufmg.br

Romain Robbes
Free University of Bozen-Bolzano, Italy, E-mail: rrobbes@unibz.it

2 Andre Hora, Romain Robbes

1 Introduction

During software development, it is a common practice to refactor source code,
that is, improving its internal structures without changing its external be-
haviour [16]. Common refactorings include renaming a class or a method,
moving a method to another class, extracting a piece code to a new method,
pulling up an attribute, among many other. For this purpose, Fowler pro-
poses a catalog of refactoring operations [16], which are broadly adopted by
the software industry [4, 10, 25, 30, 37] and studied by the research commu-
nity [29,39,41,43,46]. Overall, the advantages of refactoring are numerous: re-
moving code duplication, breaking long classes and methods, improving modu-
larisation, increasing code maintainability and readability, to name a few [16].

A key refactoring operation is extract method [39].1 This refactoring ex-
tracts a piece of code from an existing method, creates a new method based
on the extracted code snippet, and calls it in the original method. There are
several reasons to extract methods: developers perform method extraction to
introduce alternative method signatures, to extract reusable methods, and to
decompose methods, but also to improve testability, to enable overriding, and
to enable recursion [39]. Indeed, extract method is recognized as the “Swiss
army knife of refactorings” due to its many usages [39, 46]. As a result of its
relevance, the literature has also proposed techniques to automatically iden-
tify extract method opportunities [38, 45]. These solutions can be integrated
to IDEs so that developers receive refactoring suggestions while programming.

Although the rationales and the opportunities to detect method extraction
are well explored by the literature [38,39,45,46], to the best of our knowledge,
we are not yet aware of many aspects of this operation. In this context, some
important questions to characterize this refactoring are still open, such as:
how many method extractions are performed over time? which methods are
target of the extractions and how do they change? what is the size of the
extracted methods? what is the content of the extractions? Answering them
would provide the basis (i) to better understand how one of the most important
refactorings is performed by developers and (ii) to improve refactoring tools
based on the actual behavior of developers.

In this paper, we assess characteristics of the extract method refactor-
ing. We mine 124 popular Java systems, applying a state-of-the-art technique
(RefDiff [40]) to detect over 70,000 instances of the extract method refactoring.
We analyze these refactorings with respect to five aspects: magnitude, content,
transformation, size, and degree, leading to the following research questions:

– RQ1 (Magnitude): What is the frequency and extension of the extract
method refactoring? We find that extract method is the third most fre-
quent refactoring, after rename and move method. 17% of the refactorings
per system are method extraction; this ratio is independent of the system
size, commits, and project popularity. 2% of the methods are created due
to extraction, affecting 7% of the classes and 30.5% of the packages.

1 https://refactoring.com/catalog/extractMethod.html

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 3

– RQ2 (Content): What is the content of the methods in the extract method
refactoring? After categorizing methods in broad types of operations, we
find that extracted methods are over represented on operations related to
creation, validation, and setup. Operations related to test and accessing are
unlikely to happen on extracted methods. On the other hand, the target
of the extractions are often operations related to processing.

– RQ3 (Transformation): What is the content of the extracted methods as
compared to the target ones? Extracted methods are likely to perform the
same operation as the target ones. Test methods are the only exception:
the extracted block of code is mostly extracted to creation methods.

– RQ4 (Size): How large are the methods in the extract method refactoring?
The target of the extractions are methods 2.2x longer than the average;
they are reduced by one statement after the extraction. The extracted
methods themselves have similar sizes to the average.

– RQ5 (Degree): How many methods have multiple extractions? How many
methods are extracted from multiple places? Only one method is extracted
in the majority of the cases. However, 11% of the methods have multiple
extractions (to decompose code), and 19% of the methods are extracted
from multiple places (to remove duplication).

Overall, we find some particularities regarding the extract method refac-
toring: (i) an over concentration of target and extracted methods on certain
operations, (ii) a longer size of the target methods and equivalence of the ex-
tracted when compared to the average, and (iii) multiple method extractions
from the same method are occasional, but not rare. Based on these observa-
tions, we propose improvements to refactoring detection, suggestion, and au-
tomation tools and techniques to support both practitioners and researchers,
for instance, to improve the UI of refactoring automation tools to include com-
mon prefixes, to recommend extract method when doing certain programming
activities, and to ensure name consistency for multiple extracted methods.

The contributions of this research are threefold:

– We are the first to deeply study the refactoring operation with the most
motivations, i.e., the extract method, from a quantitative perspective.

– We perform a large analysis of the extract method refactoring by assessing
its magnitude, content, transformation, size, and degree.

– We propose improvements to refactoring detection, suggestion, and au-
tomation tools and techniques.

Organization. Section 2 motivates this study by presenting the reasons to carry
on research the extract method refactoring. Section 3 presents real world ex-
amples of method extraction. Section 4 details the study design while Section 5
presents the results. Section 6 discusses the major findings and implications.
Section 7 states the threats to validity and Section 8 presents the related work.
Finally, Section 9 concludes the paper.

4 Andre Hora, Romain Robbes

2 Why Study Method Extraction?

There are important reasons to study the method extraction refactoring: to
better understand it from the point of view of developers, to assess a refactor-
ing that grabs attention of developers, and to improve refactoring tools.

2.1 Understanding how one of the most important refactorings is applied in
source code by developers

The extract method refactoring is versatile: according to developers, it is the
refactoring with the most motivations. Silva et al. [39] found 11 motivations for
the extract method refactoring by performing a firehouse interview [35] (i.e.,
when developers provide feedback shortly after performing a refactoring and
the motivation behind it still fresh in their memory). The most popular mo-
tivation is to extract reusable methods so that they can be called in multiple
places. The second reason is to introduce alternative method signatures, for
example, with extra parameters. The third most frequent motivation to is de-
compose a method to improve its readability. Other motivations are: facilitate
extension; remove duplication; replace a method while preserving backward
compatibility; improve testability; enable overriding; enable recursion; intro-
duce factory method; and introduce async operation. Indeed, in the influential
book on refactoring, Fowler states the extract method as one of the most com-
mon refactoring he performs [16]; he also declares it as a key operation to do
more refactorings: “[...] That’s why I see it as a key refactoring. If you can do
Extract Method, it probably means you can go on more refactorings”.2

The rationales behind the extract method refactoring are well covered by the
literature. However, we still lack basic information about how the extractions
are actually applied, for example, with respect to their content, transforma-
tion, size, and degree. Better understanding these aspects can provide the
basis to improve refactoring tools and techniques.

2.2 Assessing a refactoring that grabs attention of developers

As stated in the previous section, the extract method is a key operation with
several motivations. In addition, it is also a common term in the software com-
munity as it is an operation often referenced during development activities. For
instance, we assessed Stack Overflow, which is the most import Question and
Answers platform nowadays. We found 671 posts including “extract method”
either in the title or in the body.3 From those posts, 276 are questions, which
included 448 answers and 429K views from the community. These questions

2 https://martinfowler.com/articles/refactoringRubicon.html
3 Data collected with the Stack Exchange API: https://data.stackexchange.com

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 5

have 852 tags; the most common ones are: Java (57 occurrences), C# (42),
Refactoring (37), Python (31), and PHP (20). Interestingly, there are also tags
to IDEs, such as Eclipse (16), IntelliJ (6), Visual Studio (4), and Xcode (4).

To better understand the problems faced by the developers, we have manu-
ally inspected all the questions with score > 3, which represent 42 questions in
our dataset. We found four major categories: using refactoring tools, looking for
refactoring tools, how to perform extraction, and side effects of extraction. In 8
(19%) out of the 42 questions, developers asked very specific questions on how
to use refactoring tools. For example, they asked how to automatically extract
a method that contains the Java continue,4 how to change the order of the
extracted method,5 the rationale behind the refactoring shortcuts in the IDE,6

how to extract similar code,7 and the reason the extracted method was static.8

In 8 (19%) questions, developers looked for refactoring tools in specific pro-
gramming languages, IDEs, and platforms, such as Vim, DevExpress, Xcode,
Ruby, and Oracle. For example, a developer looked for a refactoring tool in
Vim that can perform method extraction like in Eclipse.9 In 3 (7%) questions,
developers presented concrete examples and asked how to manually extract
the code, e.g., in the context of abstract classes,10 tests,11 and duplication.12

In 2 (5%) questions, developers asked about the side effect of refactoring op-
erations, particularly, method extraction, for instance, whether it would affect
performance13 and whether it can be applied on database stored procedures.14

Finally, in other 8 questions, the term “extract method” was simply used to
illustrate refactoring operations, while 13 questions were false positives.

“Extract method” is a term often adopted by developers during develop-
ment activities. We found this term in hundreds of Stack Overflow posts and
dozens of questions. Common problems faced by developers on these ques-
tions include: using refactoring tools, looking for refactoring tools, how to
perform extraction, and side effects of extraction.

4 Question ID: 1155947
5 Question ID: 10289461
6 Question ID: 2619228
7 Question ID: 26674797
8 Question ID: 511211
9 https://stackoverflow.com/questions/2470653

10 Question ID: 29257032
11 Question ID: 4930742
12 Question ID: 1898645
13 1247835
14 19972611

6 Andre Hora, Romain Robbes

2.3 Prospect of better refactoring tools and techniques based on the actual
behavior of developers

Long ago, performing method extraction with tool support was more challeng-
ing due to the lack of good refactoring tools [32]. Nowadays, this operation
can be semi automated with the support of popular IDEs, such as Eclipse,
NetBeans, IntelliJ, or Visual Studio. However, studies show that refactoring
tools are commonly underused [23, 33, 34, 36, 39]. That is to say, developers
often prefer to apply the refactoring manually due to several reasons, such as
not trusting automated support [39]. To overcome this limitation, the litera-
ture proposes techniques to automatically identify extract method opportu-
nities [38, 45] and other refactoring operations (e.g., [6–8, 42, 44]) that can be
directly automated by IDE-based refactoring tools.

The literature proposes techniques to improve automated refactoring tools,
aiming to make them more reliable and adopted by developers. We con-
tribute to this research field by providing a large study to assess the actual
behavior of developers performing method extraction in order to prospect
better refactoring tools and techniques.

3 Method Extraction in a Nutshell

When performing the extract method refactoring, developer extracts a piece
of code from an existing method and creates a new one based on the extracted
code snippet. Figure 1 presents the simplest case of method extraction, in
which a single method is extracted.15 In this case, method copyFile() in
version 2 is extracted from copy() in version 1. Notice that copy() is then
updated in version 2 to call the extracted method copyFile(), passing the
relevant arguments.

public void copy(File sourceFolder, File destFolder){
 for (File file : sourceFolder.listFiles()) {
 if (file.isDirectory()) {
 //omitted code
 }
 else {
 copyFile(file, destFile);
 }
 }
}

public void copyFile(File source, File dest) {
 FileInputStream fis = null;
 FileOutputStream fos = null;
 //omitted code
}

public void copy(File sourceFolder, File destFolder){
 for (File file : sourceFolder.listFiles()) {
 if (file.isDirectory()) {
 //omitted code
 }
 else {
 FileInputStream fis = null;
 FileOutputStream fos = null;
 //omitted code
 }
 }
}

version 1 version 2

Fig. 1 Example of the extract method refactoring.

15 Example from Arduino project: https://goo.gl/aD8n1N

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 7

Developers may opt to extract two or more methods when performing
the refactoring. Figure 2 shows a method extraction example in which two
methods are extracted, to decompose code.16 In this case, methods check-

ForUpdatablePlatforms() and checkForUpdatableLibraries() in version
2 are extracted from run() in version 1, which is then updated to call the
extracted methods in version 2. Notice that the extracted code may be slightly
different from the original one. In the example, the extracted code includes the
keyword return, which is absent in the original. In addition, the extracted
code may have other changes, such as renaming, code removal, code addition,
among many other; this makes the automatic detection of this operation a
challenging task [39].

public void run() {
 //omitted code

 boolean updatablePlatforms =
 checkForUpdatablePlatforms();

 boolean updatableLibraries =
 checkForUpdatableLibraries();

 //omitted code
}

static boolean checkForUpdatablePlatforms() {
 return BaseNoGui.getPackages().stream();
}

static boolean checkForUpdatableLibraries() {
 return BaseNoGui.getLibraries().stream();
}

public void run() {
 //omitted code

 boolean updatablePlatforms =
 BaseNoGui.getPackages().stream();

 boolean updatableLibraries =
 BaseNoGui.getLibraries().stream();

 //omitted code
}

version 1 version 2

Fig. 2 Example of the extract method refactoring in which two methods are extracted from
a single one.

Method extraction is not restricted to these scenarios. To avoid code du-
plication, several pieces of code may be extracted from distinct methods and
consolidated in a single one. Figure 3 presents an example in which new-

Monitor() is extracted from methods Editor() and selectSerialPort().17

As in the previous example, the new created methods in version 2 are distinct
when compared to the original one in version 1.

Overall, single and multiple extractions may happen during the refactoring
due to several reasons, for example, to break long code or to avoid duplica-
tion [39]. In addition, the extracted methods may be different from the original
ones, making harder their automated detection.

16 Example from Arduino project: https://goo.gl/CaQWiB
17 Example from Arduino project: https://goo.gl/yPvj5M

8 Andre Hora, Romain Robbes

public Editor(Base ibase, String path, int[] location) {
 //omitted code
 if (serialMonitor == null) {
 serialMonitor =
 new SerialMonitor(Preferences.get(“serial.port”));
 serialMonitor.setIconImage(getIconImage());
 }
 //omitted code
}

public void selectSerialPort(String name) {
 //omitted code
 serialMonitor.setVisible(false);
 serialMonitor =
 new SerialMonitor(Preferences.get(“serial.port”));
 //omitted code
}

public Editor(Base ibase, String path, int[] location) {
 //omitted code
 if (serialMonitor == null) {
 serialMonitor =
 newMonitor(Preferences.get("serial.port"), base);
 serialMonitor.setIconImage(getIconImage());
 }
 //omitted code
}

public void selectSerialPort(String name) {
 //omitted code
 serialMonitor.setVisible(false);
 serialMonitor =
 new newMonitor(Preferences.get("serial.port"), base);
 //omitted code
}

public AbstractMonitor newMonitor(String port, Base base) {
 //omitted code
 return new SerialMonitor(port);
}

version 1 version 2

Fig. 3 Example of the extract method refactoring in which one method is extracted from
two other methods.

4 Study Design

4.1 Collecting the Case Studies

Our case studies are collected from GitHub, the most widely-used social cod-
ing platform nowadays. We started with the 150 most popular Java projects
as sorted by the star metric [9]. We then applied the following process to keep
only relevant projects [21]. First, it was necessary to verify which of these
projects are actually real software systems. In this filtering, we manually re-
moved projects that were tutorials, examples, interviews, guides, among others
non-systems. For example, iluwatar/java-design-patterns18 was the most pop-
ular Java project, but it is not a software system, therefore, it was excluded
from our dataset. Second, we removed the projects with less than 100 com-
mits to filter out less active projects, and also the ones that are mirrored to
GitHub, i.e., not actively developed on it. After this process, we were left with
124 software systems.

Examples of the selected projects include: Elasticsearch, SpringBoot, Spring
Framework, Google Guava, Facebook Fresco, Selenium, Jenkins, Arduino, Had-
oop, JUnit4, which are projects largely adopted world wide. Figure 4 presents
the distribution of the number of (a) Java files, (b) commits, and (c) stars
for the selected projects. On the median, these systems have 219.5 Java files,
802.5 commits, and 7,971 stars. The largest one is Hadoop, with 11,299 Java
files. Bazel is the project with the most commits: 19,183. Finally, the most
popular is RxJava, with 36,472 stars.

18 https://github.com/iluwatar/java-design-patterns

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 9

219.5

100

10000

(a)

of

 J
av

a
F

ile
s

(lo
g

sc
al

e)

Java Files

802.5

100

1000

10000

(b)

of

 C
om

m
its

 (
lo

g
sc

al
e)

Commits

7971
10000

(c)

of

 S
ta

rs
 (

lo
g

sc
al

e)

Stars

Fig. 4 Number of Java files, commits, and stars of the selected systems.

4.2 Selecting the Versions

After collecting the systems, we need to select the versions (i.e., commits) to
be analyzed. Projects using Git may have several branches under development.
Thus, to facilitate evolutionary analysis, we assess the evolution of the main
project branch, using the command git log --first-parent19 to select the
versions, since the Git documentation clearly states: “This option can give a
better overview when viewing the evolution of a particular branch”.

4.3 Computing the Refactorings

In this subsection, we explain how we model and automatically detect the
extract method refactoring.

4.3.1 Modeling Method Extraction

We define two categories of methods to model the extract method refactoring:
the target and the extracted method. The target method is the one in which
the extraction is performed. The extracted method is the one that is created
after the extraction. Consider the examples presented in Figure 5 showing two
versions (v1 and v2) of a system: the black node represents the target method
and the red node represents the extracted method. Figure 5(a) illustrates the
simplest case of method extraction: one method is extracted from the target
one. Notice that from a single target method, one or more methods may be
extracted. In Figure 5(b), for example, two methods are extracted from a
single target method. Conversely, the extracted method may be originated

19 https://git-scm.com/docs/git-log#git-log

10 Andre Hora, Romain Robbes

from one or more target methods. For instance, in Figure 5(c), we see that the
extracted method comes from two target ones. To detect the extract method
refactoring and create the those models, we rely on the refactoring detection
tool RefDiff [40].

Target method Extracted method

(a) (b) (c)

v1 v2 v1 v2 v1 v2

Fig. 5 Method extraction model examples.

4.3.2 Detecting Method Extraction

RefDiff [40] is a state-of-the-art refactoring detection tool on method extrac-
tion detection. RefDiff is a tool that detects refactorings performed in the
version history of a system. It adopts a combination of heuristics based on
static analysis and code similarity to detect 12 well-known refactoring opera-
tions, such as rename class, move class, rename method, inline method, pull
up attribute, and push down attribute. RefDiff receives as input two versions
of a system, and outputs a list of refactorings performed in version n + 1,
when compared to the previous version n. In our study, we focus solely on the
extract method operation.

Accuracy. In our study, we are primarily interested in finding both correct and
complete extract method operations. Therefore, we report here the tool accu-
racy in terms of f-measure, which is the harmonic mean of precision and recall.
RefDiff’s authors provide two evaluations of their tool. First, they evaluated it
using an oracle with well-known refactoring instances performed by students
in seven Java projects. In this case, RefDiff achieved an overall f-measure of
96.8% (precision: 100%; recall: 93.9%). Considering solely the extract method
refactoring, the f-measure is 94.6% (precision: 100%; recall: 89.7%). More-
over, in this evaluation, RefDiff also outperformed the results of similar tools,
Refactoring Miner [39,46], Refactoring Crawler [12], and RefFinder [22]. In the
second evaluation, RefDiff’s authors analyzed 102 real refactoring instances
from 10 GitHub projects. In this case, RefDiff achieved an overall f-measure of
89.3% (precision: 85.4%; recall: 93.6%). Considering solely the extract method
refactoring, the f-measure is 84.7% (precision: 73.5%; recall: 100%).

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 11

Other refactoring detection tools. Recently, Tsantalis et al. [47] proposed the
refactoring detection tool RMiner. When considering all refactoring opera-
tions, RMiner has an f-measure of 92% (precision: 98%; recall of 87%), im-
proving on RefDiff’s overall accuracy. However, when comparing the accuracy
to detect the extract method refactoring on the same dataset, RefDiff pre-
sented slightly better results [47]. In this case, RMiner had f-measure of 91.2%
(precision: 98.6%; recall: 84.7%) while RefDiff had f-measure of 92% (preci-
sion: 93%; recall: 90.9%). Therefore, in this paper, we adopt RefDiff because
it has a better accuracy with respect to the extract method refactoring.

We run the approach to detect the extract method refactoring on each
system (Section 4.1) and its respective set of versions (Section 4.2). We then
assess this data to answer our five research questions. Our dataset and results
are publicly available.20

5 Results

5.1 RQ1: What is the frequency and extension of the extract method
refactoring?

We first investigate the frequency of extract method as compared to other
refactoring operations. Table 1 presents the amount of refactorings in the 124
analyzed systems. In total, we detect 408,448 refactorings. The most frequent
refactoring is the rename method, with 167,705 instances (41%). The second
one is move method, which includes 90,675 instances (22%). The target refac-
toring, extract method, is the third most frequent in our dataset, with 70,059
instances (17%).

Table 1 Frequency of refactorings

Refactoring # %

Rename Method 167,705 41
Move Method 90,675 22
Extract Method 70,059 17
Move Class 40,218 10
Inline Method 12,499 3
Rename Class 11,716 3
Other 15,576 4

Total 408,448 100

Overall, the literature agrees that the extract method refactoring is among
the most popular operations [19, 34, 39, 50] and our empirical study corrob-
orates this finding. For example, Murphy-Hill et al. [34] found that the ex-
tract method was the fourth most frequently performed by developers in the

20 https://bit.ly/2NsxgyB

12 Andre Hora, Romain Robbes

Eclipse IDE: rename 71.8%, extract local variable 7.1%, move 5.6%, and ex-
tract method 4.8%. By analyzing code version history, Silva et al. [39] detected
method extraction to be the most common21 (extract method 33%, move class
30%, and move attribute 9%). Hora et al. [19] found the extract method as
the second most frequent (rename method 26%, extract method 23%, and
move method 22%). Recently, Vassallo et al. [50] found extract method ra-
tios varying from 2.2% to 5.4%, depending of the ecosystem, while the re-
name method was the most popular operation with ratios between 23.6% and
36.7%, independently of the ecosystem. These variations may be explained by
the fact that distinct refactoring detection tools (with different accuracy) were
adopted, distinct software systems were analyzed, and distinct methodology
were performed (e.g., IDE monitoring and code version analysis). As a last
observation, we notice that the rename operations are clearly the most com-
mon, independently of the set up; when they are not included in the analysis,
other operations may have their ratios increased.

Figure 6(a) presents the distribution of the number of extract method
and all refactorings. We notice that each system has on the median 734.5
refactorings. From them, 130 are extract method; in this case, the third quartile
is 431.5, that is, 25% of the systems have at least 431.5 extractions. Figure 6(b)
shows that the ratio of extract method refactoring per system is 17%; the third
quartile achieves 24%.

130

734.5

10

1000

Extract Method All Refactoring

Refactorings
(a)

of

 r
ef

ac
to

rin
gs

 (
lo

g
sc

al
e)

Extract Method
Refactoring

17 %

10

100

Refactorings
(b)

%
 o

f r
ef

ac
to

rin
gs

 (
lo

g
sc

al
e)

Extract Method
Refactoring (%)

Fig. 6 (a) Number of extract method and all refactorings. (b) Ratio of extract method.

We also investigated whether the amount of extracted methods varied with
the size, number of commits, and number of stars of the projects (Figure 7).
We compared the top half with the bottom half of the projects, according
to each metric (with a Mann-Whitney test of significance and Cliff’s Delta

21 The authors excluded the rename operations in their analysis.

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 13

for effect size). There was a very slight tendency (not significant) for smaller
projects to have more method extraction; the same was true for projects with
more commits, but not for stars.

16.5 % 18.5 %

10

100

Higher
(top 50%)

Lower
(bottom 50%)

Java Files
(a)

%
 o

f r
ef

ac
to

rin
gs

 (
lo

g
sc

al
e)

Extractions: Java Files

16 %
19 %

10

100

Higher
(top 50%)

Lower
(bottom 50%)

Commits
(b)

%
 o

f r
ef

ac
to

rin
gs

 (
lo

g
sc

al
e)

Extractions: Commits

17.5 % 17 %

10

100

Higher
(top 50%)

Lower
(bottom 50%)

Stars
(c)

%
 o

f r
ef

ac
to

rin
gs

 (
lo

g
sc

al
e)

Extractions: Stars

Fig. 7 Extract method by (a) number of Java files, (b) commits, and (c) stars.

Finally, we study the extension of the extract method refactoring in terms
of impacted methods, classes, and packages. The median number of methods
per system is 4,526.5. From these methods, on the median, 84.5 are created
due to method extraction. This indicates that around 2% (one out of 50) of the
methods per system are born from method extraction, as shown in Figure 8(a).

To better understand how the extract method refactorings are spread over
the systems, we assess the classes and packages that are directly affected by
them. In this case, we notice that the ratios are higher. Figure 8(b) shows
that on the median 7% of the classes have at least one extracted method.
Regarding packages, the median project has 30.5% of its packages with at
least one extracted method. These figures support our initial impression that
extract method is a relatively common operation.

Summary: Extract method is the third most frequent refactoring; this agrees
with previous studies [19,34,39], in the sense that it is a popular refactoring.
Overall, method extraction represents 17% of the cases; this ratio is indepen-
dent of the system size, commits, and popularity. Around 2% of all methods
are born due to the extract method refactoring; 7% of the classes and 30.5%
of the packages include at least one extracted method.

14 Andre Hora, Romain Robbes

2 %

0.0

2.5

5.0

7.5

Methods
(a)

%
 o

f e
xt

ra
ct

ed
 m

et
ho

ds

Extracted
Methods (%)

7 %

30.5 %

1

10

Classes Packages

Affected Entities
(b)

%
 o

f e
xt

ra
ct

ed
 m

et
ho

ds
 (

lo
g

sc
al

e)

Affected Entities (%)

Fig. 8 (a) Ratio of extracted methods. (b) Affected classes and packages.

5.2 RQ2: What is the content of the methods in the extract method
refactoring?

In this research question, we explore the content of the target and the extracted
methods. As a solution to partially automate this analysis, we focus on the
method prefixes, which are very often verbs and indicate the kind of operations
they perform [20,27]. Then, we categorize these prefixes to better understand
the distinct prefix usages on the target and extracted methods.

5.2.1 Prefix Analysis

We first compare the prefixes of the target and extracted methods with the
prefixes of all system methods, as presented in Tables 2 and 3. We notice that
the prefixes are widespread: the top 10 most common prefixes cover 40% of
target and 38% of extracted methods (cf. bottom of Table 2) and 41% for all
methods (cf. bottom of Table 3). The top 100 prefixes cover 72% of target and
73% of extracted methods (65% of all methods).22 Thus, a first observation
is that the top 100 prefixes for target and extracted methods have higher
coverage than they do in the overall corpus, when considering all methods.
This indicates that their names appear to be slightly less varied.

As presented in Table 2, the most common prefix for the target methods
is test (13%), which is followed by get (9%) and create (4%), totalizing 26%
of the target methods. The most common prefixes for the extracted methods
is get (15%), create (6%), and is (4%); the top three prefixes totalize 25% of
the extracted methods. We notice some differences with the prefixes across all
methods (Table 3). While get is more used in the entire corpus than in the

22 Suffixes were much more widespread, with the top 10 prefixes covering only 7% of
methods.

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 15

Table 2 Top 10 prefixes of the target and extracted.

Pos
Target Methods Extracted Methods

Prefix # % Sys. % Prefix # % Sys. %

1 test 6,886 13 64 52 get 6,111 15 112 90
2 get 4,864 9 101 81 create 2,646 6 82 66
3 create 2,073 4 75 60 is 1,744 4 96 77
4 should 1,560 3 25 20 set 1,386 3 96 77
5 set 1,457 3 92 74 add 1,244 3 80 65
6 on 1,159 2 79 64 new 799 2 60 48
7 add 1,095 2 72 58 assert 595 1 46 37
8 run 755 1 67 54 check 573 1 65 52
9 do 648 1 51 41 build 536 1 54 44
10 visit 644 1 17 13 to 466 1 60 48

Top 10 - 21,141 40 - - - 16,100 38 - -
Top 100 - 38,450 72 - - - 30,529 73 - -

Table 3 Top 10 prefixes of all methods.

Position
All Methods

Prefix # % Sys. %

1 get 372,719 16 124 100
2 test 175,287 8 95 77
3 set 121,757 5 122 98
4 is 57,420 3 121 98
5 create 53,769 2 112 90
6 on 38,330 2 118 95
7 add 35,076 2 111 90
8 should 31,804 1 87 70
9 to 31,264 1 108 87
10 write 23,554 1 93 75

Top 10 - 940,980 41 - -
Top 100 - 1,486,565 65 - -

target methods (16% vs 9%), the second most used prefix across all the corpus,
test, does not appear in the top 10 of extracted method prefixes, but it is the
top one of the target methods. Moreover, we can notice that the prevalence of
prefixes among the 124 systems is not equally distributed (see column “Sys”).
For example, while the prefix get of the extracted methods happens in 112 out
of the 124 systems (90%), the prefix assert occurs only in 46 (37%).

5.2.2 Prefix Categorization

To better understand the differences of prefix usages over the three corpuses,
we performed a manual classification of the top 100 prefixes appearing on these
three corpuses (for a total of 127 distinct prefixes) with respect to the oper-
ation they indicate. The two authors of the paper independently categorized
the prefixes, and after an initial agreement of about 75%, they achieved the
consensus summarized in Table 4. The 12 categories are diverse: they include

16 Andre Hora, Romain Robbes

methods related to creation, validation, and setup as well as methods about
condition, assessing, and test. Table 4 also presents the amount of prefixes on
each category and prefix examples. For instance, the category creation includes
nine prefixes (e.g., create, builder, generate, etc.) while the category validation
has six prefixes (e.g., validate, check, verify, etc).

Table 4 Categorized prefixes.

Categories #Prefixes Examples

Creation 9 create, builder, generate, make, new
Validation 6 validate, check, verify, matches, ensure
Setup 8 setup, initialize, configure, init, load
Processing 22 process, extract, calculate, execute, compute
Conversion 9 convert, format, as, to, from
IO 16 open, close, write, save, print
Collection 17 collect, contains, size, insert, iterator
Coordination 14 schedule, notify, wait, await, fetch
Release 8 release, dispose, shutdown, reset, stop
Condition 8 is, compare, equals, should, can
Accessing 7 get, set, value, index, put
Test 3 test, assert, mock

5.2.3 Extracted Methods Analysis

We present the categories with respect to the extracted methods in Table 5.
For example, it shows that the category creation happen in 4,708 (11.25%) of
the extracted methods and overall in 102,723 methods (4.5%). Column “Pro-
portion” presents whether the category is more represented in the extracted
methods (ratio greater than one) or for all methods (ratio less than one).
Considering the category creation, we notice a ratio of 2.50 (i.e., 11.25/4.5),
meaning that this category is proportionally much more concentrated in the
extracted methods than in the all methods. In addition to creation, the ex-
tracted methods are also very concentrated in the categories validation and
setup, both being close to twice as common in extracted methods than in all
methods. Thus, it seems that initialization steps in general represent behaviour
that is easier to isolate. The same applies for validation steps. Interestingly,
this is not the case for the test category, which is very under represented in
extracted methods. While improving testability is a reason for extracting meth-
ods, it is possible that such a goal is better achieved by extracting a validation
procedure in order to better test it, than by refactoring the tests themselves
(indeed, this is confirmed by the classification of the target methods that we
present next).

Continuing with the extracted methods, the categories of processing, con-
version, IO, collection, and coordination, also have relatively more extracted
methods. Categories release, and condition have slightly more extracted meth-
ods while accessing and test have proportionally less extractions. Indeed, test

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 17

Table 5 Categories of the extracted methods (Low: ratio ≤ 1; Medium: 1 < ratio ≤ 1.25;
High: 1.25 < ratio ≤ 1.75; Very high: ratio > 1.75).

Categories
Extracted Methods All Methods Proportion (Ext/All)

% # % Ratio Concent.

Creation 4,708 11.25 102,723 4.5 2.50 Very high
Validation 1,149 2.75 29,009 1.28 2.15 Very high
Setup 1,468 3.50 41,239 1.81 1.93 Very high
Processing 2,962 7.08 111,202 4.87 1.45 High
Conversion 1,584 3.79 61,088 2.68 1.41 High
IO 2,167 5.17 88,799 3.89 1.33 High
Collection 2,463 5.88 104,262 4.57 1.29 High
Coordination 2,123 5.07 89,933 3.94 1.29 High
Release 684 1.63 31,425 1.38 1.18 Medium
Condition 2,492 5.95 126,171 5.53 1.08 Medium
Accessing 8,163 19.49 521,151 22.87 0.85 Low
Test 1,064 2.54 187,275 8.22 0.31 Low

is the category with the lowest ratio of extraction (0.31), meaning that ex-
tractions related to test are more unlikely. The same happens to accessing :
although this category has 19.49% of the extractions, it is more common in
all methods (22.87%).

5.2.4 Target Methods Analysis

Table 6 presents the classification for the target methods.23 In this case, cat-
egories processing is over represented. Since processing contains a variety of
prefixes describing potentially complex operation, it makes sense these opera-
tions would be refactored to isolate steps of these processes. Operations related
to setup and creation happen in both target and extracted methods, although
they are more frequent in extracted methods (particularly creation). While
these initalization steps are good targets for extractions, it is possible that
complex initalization procedures would be in need of further decomposition.
Notice that test is the third most frequent category, meaning that although
developers do not tend to extract unit test methods (i.e., to extract meth-
ods prefixed with test), they do refactor test methods to modularize them, as
indeed suggested by good development practices to improve code maintain-
ability [27].

We notice that several categories that denote simpler operations (e.g., con-
dition, conversion, and, particularly, accessing) are under represented in tar-
get methods. This is also intuitive, since these likely less complex operations
also represent more modular behaviour in themselves. Accessing is under-
represented in both extracted and target methods, despite being the most
common category, thus it seems that these basic methods are both too simple
to be decomposed and somewhat too simple to be a valuable step to extract
in a complex operation. Conversion methods, on the other hand, being more

23 We omit the “All Methods” column in Table 6 because it is already presented in Table 5.

18 Andre Hora, Romain Robbes

Table 6 Categories of the target methods (Low: ratio ≤ 1; Medium: 1 < ratio ≤ 1.25; High:
1.25 < ratio ≤ 1.75; Very high: ratio > 1.75).

Categories
Target Methods Proportion (Base/All)

% Ratio Concent.

Processing 4,986 9.39 1.93 Very high
Setup 1,628 3.05 1.69 High
Test 7,243 13.62 1.66 High
Coordination 3,381 6.37 1.59 High
Creation 3,783 7.11 1.58 High
Collection 3,165 5.96 1.30 High
IO 2,769 5.20 1.29 High
Validation 931 1.75 1.28 High
Condition 2,699 5.07 0.91 Low
Conversion 1,148 2.17 0.81 Low
Release 572 1.07 0.78 Low
Accessing 7,084 13.33 0.58 Low

represented in extracted methods, seem to indicate operations that are at the
right step of abstraction for such a refactoring.

Summary: Extracted methods are over concentrated on operations related to
creation, validation, and setup. Extractions often occur on operations related
to processing. Test methods are often target methods for extraction, but are
not extracted themselves; the opposite is true for conversion methods. Basic
operations, such as accessing, are more commonly found in methods not
related to the extract refactoring.

5.3 RQ3: What is the content of the extracted methods as compared to the
target ones?

This research question assesses the content of the extracted methods as com-
pared to the target methods. For each method category, Table 7 shows the
three most extracted categories. We notice that, in the majority of the cases,
the extracted methods mostly belong to the same category of their target
methods. For example, 49% of the conversion methods are extracted to con-
version themselves. Similarly, the accessing methods are mostly extracted to
accessing (58%). Interestingly, the test category is the only distinct from the
other ones. In this case, test methods are mostly extracted to creation (24%).
Indeed, from the previous research question, we have seen that developers do
refactor test methods. Here, thus, we can observe that developers tend to refac-
tor test methods mostly to extract creation methods. For example, method
testInsertAndSelect() is extracted to createRow(int,String) in project
Apache Storm24 to avoid repetitive row instantiations.

The second most extracted methods are dominated by accessing : 9 out of
the 12 categories are extracted to accessing, while 2 out of 12 are creation

24 https://bit.ly/32lnFzd

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 19

Table 7 Categories of target methods and their respective extracted methods by category.
Accessing is highlighted in bold and Creation in underline.

Target Method 1st Extracted Meths 2nd Extracted Meths 3rd Extracted Meths
Category Cat. # % Cat. # % Cat. # %

Conversion Conver. 551 49 Acces. 160 14 Creat. 144 13
Accessing Acces. 4,096 58 Creat. 656 9 Cond. 486 7
Setup Setup 593 29 Acces. 465 23 Creat. 327 16
Processing Proces. 1,722 30 Acces. 1,127 20 Creat. 581 10
Collection Collec. 1,325 39 Acces. 679 20 Creat. 315 9
Creation Creat. 2,071 48 Acces. 756 18 Collec. 274 6
Test Creat. 1638 24 Test 1,376 20 Acces. 1,043 15
IO IO 1,352 45 Acces. 485 16 Cond. 234 8
Release Release 308 55 Acces. 48 9 IO 38 7
Validation Valid. 329 34 Acces. 154 16 Cond. 144 15
Coordination Coord. 1,036 28 Acces. 819 22 Creat. 343 9
Condition Cond. 662 27 Creat. 515 21 Acces. 392 16

methods. Both categories encompass 11 of the 12 categories, with the only
exception occurring for the test category, where creation methods are first. In
addition, the third most extracted methods are often concentrated on creation,
with 5 out of 12 categories, with accessing being in two additional categories.
All in all, the accessing category appears in the top 3 of all 12 categories, while
the creation category is in the top 3 for 9 out of 12 categories in total. Thus,
while methods that are extracted tend to be first most extracted to the same
category, we see that accessing and creation are predominant choices as well.

Table 8 details the previous analysis by showing the extracted methods
by prefix instead of category. We see that get, set, and create prefixes are
spread over all categories; this is not surprising because these prefixes belong
to the categories accessing and creation. By checking other relevant prefixes,
we verify the specific methods that are born from the extraction. For example,
conversion methods often originate methods with prefixes to and from. From
the IO category is extracted methods with prefixes write and read while from
the category validation is extracted check and is.

Tables 9 and 10 present the top 10 most common prefix transformations
in both absolute and relative values. As shown in Table 9, the most frequent
prefix transformations in absolute values are get → get (2,835 times), test
→ create (1,063), and create → create (1,003). Notice that the prefix test
is also often extracted to of and get. Table 10 present another view of the
data: the transformations with higher proportion. Interestingly, in this case,
all transformations remain with the same prefix, suggesting that their content
is not changing. For example, 70% of the methods prefixed with mock are
extracted to mock themselves.

Table 11 explores common prefixes in target methods and presents their
three most extracted prefixes. For example, target methods prefixed with get
are often extracted to methods prefixed with get (47%), create (12%), and is
(4%). Overall, as in the category analysis, at the prefix level the content of

20 Andre Hora, Romain Robbes

Table 8 Categories of target methods and their respective extracted methods by prefix.

Target Method 1st Extracted Meths 2nd Extracted Meths 3rd Extracted Meths
Category Prefix # % Prefix # % Prefix # %

Conversion to 183 13 get 121 9 from 75 5
Accessing get 3,164 36 set 564 6 create 389 4
Setup get 335 14 create 190 8 load 172 7
Processing get 875 12 create 345 5 parse 329 4
Collection add 650 15 get 489 11 remove 171 4
Creation create 1,139 22 get 583 11 new 356 7
Test create 1,095 12 assert 828 9 of 780 8
IO get 384 10 write 316 8 read 250 6
Release clear 68 10 stop 54 8 shutdown 49 7
Validation check 154 12 get 129 10 is 103 8
Coordination get 555 12 create 224 5 set 205 4
Condition is 428 12 get 290 8 create 276 8

Table 9 Top 10 most common prefix transformations in absolute values.

Prefix on...
#

Target Method Extracted Method

get get 2,835
test create 1,063
create create 1,003
test of 778
test get 734
add add 569
set set 532
create get 375
is is 363
get create 284

Table 10 Top 10 most common prefix transformations in relative values.

Prefix on...
%

Target Method Extracted Method

mock mock 70
dispose dispose 55
is is 55
wait wait 50
builder builder 50
get get 48
of of 46
as as 45
assert assert 44
new new 44

the extracted methods are mostly the same of their target methods, with test
being the sole exception.

Qualitative Analysis. Overall, in this research question, we found that ex-
tracted methods often remain in the same category of the target ones. We

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 21

Table 11 Common prefixes of target methods and their respective extracted prefixes.

Target Meth 1st Extracted Meths 2nd Extracted Meths 3rd Extracted Meths
Prefix Prefix # % Prefix # % Prefix # %

get get 2,835 47 create 1,063 12 is 281 4
test create 1,063 12 of 778 9 get 734 8
create create 1,003 35 get 375 13 add 110 4
add add 569 39 get 164 11 create 43 3
set set 532 29 get 168 9 create 73 4
is is 363 55 get 73 11 has 21 3
mock mock 21 70 create 6 20 initialize 1 3
dispose dispose 17 55 get 4 13 unregister 4 13
wait wait 73 50 current 9 6 get 7 5
assert assert 162 44 get 34 9 create 26 7

manually inspected method extractions to better understand these cases, lead-
ing to distinct explanations. First, the extracted method may be changed
to another prefix within the same category. For example, the target method
buildBean(Class,Map) was extracted to createInjector();25 notice that
both methods belong to the creation category as they have the build and cre-
ate prefixes. In other cases, the methods may remain with the same prefix
but change the suffix, as the following example, in which the accessing cate-
gory was preserved: getInstance() was extracted to getErrorReporter().26

Another scenario is to keep the prefix, but add a new suffix, as in the transfor-
mation from startBundle() to startBundleLocked().27 Changes also occur
in the parameters, with the addition of new parameters (e.g., from delete-

PendingReports() to deletePendingReports(boolean))28 or the change of
parameter types (e.g., from to(TypeLiteral) to to(Key)).29 Finally, we also
find cases where the method change the class, as in the example in which
the target method ErrorReporter.getCustomData(String) is extracted to
CrashReportDataFactory.getCustomData(String).30 Table 12 summarizes
how methods remain in the same category after being extracted.

Another interesting observation is that the extracted methods tend to
be more specific than the target ones, that is, the extracted methods indi-
cate more precisely the performing task. This happens both when the cat-
egory remains the same and when the category changes. For instance, in
Google ExoPlayer, the target method assertSpans() was extracted to several
specific ones, such as assertStyle(), assertFont(), assertBackground(),
assertUnderline(), among others.31 Table 13 presents examples of methods
being specialized after the extraction.

25 https://bit.ly/36EJn4k
26 https://bit.ly/2pJsogM
27 https://bit.ly/34vuMXh
28 https://bit.ly/2oUebxa
29 https://bit.ly/2rcsqOt
30 https://bit.ly/2CcVCXY
31 https://bit.ly/2PWN2Vu

22 Andre Hora, Romain Robbes

Table 12 Reasons to methods remain in the same category.

Reason Example

Change prefix in the same category buildBean(Class,Map) → createInjector()

Change suffix getInstance() → getErrorReporter()

Add new suffix startBundle() → startBundleLocked()

Add new parameters deletePendingReports() →
deletePendingReports(boolean,boolean)

Change parameter type to(TypeLiteral) → to(Key)

Change class ErrorReporter.getCustomData() →
CrashReportDataFactory.getCustomData()

Table 13 Examples of transformation specialization.

Category Target Method Extracted Method

Same

assertSpans() assertStyle()

decode() decodeFile()

post() postSingleEvent()

reselectTracks() releasePeriodsFrom()

injectLinks() injectRuntimeLinks()

Different

execute() restoreDatabaseFiles()

update() resolveDependency()

after() closePageCache()

start() connectorPortRegister()

shouldRebuildFromLog() getDatabasePath()

Summary: Extracted methods are likely to remain with the same content
of the original ones. Test methods are the only exception: they are mostly
extracted to creation methods. Overall, accessing is the second and creation
the third category. This tendency is also detected at the prefix level.

5.4 RQ4: How large are the methods in the extract method refactoring?

We assess the size of the methods involved in the extract method refactoring,
that is, the target and extracted methods. We measure size in number of
statements because this metric is not biased by formatting nor commenting
changes. Then, we measure how their number of parameters varies.

5.4.1 Number of Statements

Figure 9 shows the number of statements of the target methods (before and
after) as well as the extracted methods. To provide additional context, we
present in the last plot the number of statement for all methods in the cor-
pus. Before the extraction, the target methods have 5.76 statements; after the
extraction, they shrink down to 4.75 statements. This represents a reduction
of 21% on the number of statements (this difference is statistically significant,
with p-value < 0.001 for Mann-Whitney test and effect-size small for Cliff’s

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 23

Delta). Regarding the extracted methods, they have 2.45 statements, i.e., 42%
of the number of statements of the target method. The methods in the entire
corpus are slightly larger (2.635 statements) than the extracted ones, however,
the difference is not statistically significant. In contrast, they are much smaller
than the target methods (with p-value < 0.001 and effect-size large). Figure 10
makes clear the distinction among the methods: while most of the target meth-
ods have 5 or more statements, most of the extracted methods have a single
statement. Target methods are unlikely to have only one statement.

5.76
4.75

2.45 2.635

0

5

10

15

20

Target Methods
Before

Target Methods
After

Extracted Methods All Methods

Methods

of

 s
ta

te
m

en
ts

Size in Number of Statements

Fig. 9 Number of statements in the target (before and after), extracted, and all methods.

Size in Number of Statements

%
 o

f s
ta

te
m

en
ts

0

15

30

45

60

Target Methods

Before

Target Methods

After

Extracted Methods All Methods

18%
12%

39%

47%

32%
37%

34%36%

50%51%

27%

17%

1 2-4 >=5

Fig. 10 Statements in the target (before and after), extracted, and all methods.

Table 14 presents the top 10 systems that most reduced their target meth-
ods after an extraction. Among the 124 analyzed projects, JetBrains Material

24 Andre Hora, Romain Robbes

Theme had the highest reduction: its target methods were reduced by 106%
(from 8.54 statements to 4.14). Timber JakeWharton, Calligraphy, and An-
droid PickerView also had a large reduction, over 60%. However, we detect
that the reduction is not correlated with the number of statements of the tar-
get method (Spearman rho = 0.11). That is, overall, the biggest extractions
do not necessarily happen on the largest target methods. For example, the
Android PickerView target methods were reduced by 62% (from 21.86 state-
ments to 13.5), while the Glide Transformations target methods were reduced
by only 7% (from 17.5 statements to 16.25).

Table 14 Top 10 systems with most reduction in number of statements.

System
Statement in Target Methods

Reduction (%)
Before After

JetBrains Material Theme 8.54 4.14 -106
Timber JakeWharton 5.33 2.92 -83
Calligraphy 2.89 1.67 -73
Android PickerView 21.86 13.5 -62
Tink 8.7 5.58 -56
AndPermission 2.08 1.35 -54
Eureka 5.35 3.52 -52
CircleImageView 4.0 2.71 -48
Easypermissions 3.79 2.57 -47
EventBus 5.96 4.08 -46

5.4.2 Number of Parameters

In Figure 11, we assess the number of parameters for the same set of meth-
ods. The median does not change when we compare the target methods before
and after (both with 1.28). The extracted methods also have a similar median
amount of parameters (median 1.285), but the distribution is much more nar-
row. In contrast, looking at all methods, these tend to have less parameters,
with a median of 1.06 (this difference is statistically significant, with p-value
< 0.001 and effect-size medium), and an even narrower distribution.

Figure 12 details the parameter analysis and highlights the differences be-
tween target and extracted methods: the extracted methods are more likely
to have 1 or 2 parameter than the target methods, which are likelier to have
either more or less parameters.

Summary: The target methods are 2.2x longer than the average ones, and
tend to have more parameters. After the extraction, the target methods are
reduced by one statement. The extracted methods are similar in size to the
average, but have more parameters, very often one or two parameters.

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 25

1.28 1.28 1.285
1.06

0

1

2

3

Target Methods
Before

Target Methods
After

Extracted Methods All Methods

Methods

of

 p
ar

am
et

er
s

Size in Number of Parameters

Fig. 11 Number of parameters in the target (before and after), extracted, and all methods.

Size in Number of Parameters

%
 o

f s
ta

te
m

en
ts

0

18

35

53

70

Target Methods

Before

Target Methods

After

Extracted Methods All Methods

12%15%17%17%

44%

61%

45%45% 44%

25%

38%38%

0 1-2 >=3

Fig. 12 Parameters in the target (before and after), extracted, and all methods.

5.5 RQ5: How many methods have multiple extractions? How many methods
are extracted from multiple places?

In this last research question, we assess the methods that have multiple extrac-
tions; for that, we measure the out-degree of the target methods. Conversely,
we assess the methods that are extracted from multiple ones; in this case, we
compute the in-degree of the extracted methods. Considering the examples
presented in Figure 5, the target methods in A and B have out-degree 1 and
2, respectively,32 while the extracted method in C has in-degree 2. We recall
that target methods with out-degree ≥ 2 (e.g., case B) are often related to
decomposition of long code, while extracted methods with in-degree ≥ 2 (e.g.,
case C) are related to the removal of code duplication. Figure 13 presents the

32 We only count the out-degree in the target methods with respect to the extracted
methods, that is, the dashed lines in Figure 5.

26 Andre Hora, Romain Robbes

distribution per system. Figure 13(a) shows that 89% of the target methods
have out-degree 1, while only 11% have out-degree ≥ 2. That is to say, 11%
of the extractions produce multiple methods. Moreover, Figure 13(b) presents
that 81% of the extracted methods have in-degree 1, while 19% have in-degree
≥ 2. This means that 19% of the extractions are originated from multiple
methods. Considering all the systems, 6,843 methods have out-degree ≥ 2 and
9,382 in-degree ≥ 2.

89 %

11 %

0

25

50

75

100

1 >= 2

Out Degree
(a)

%
 o

f d
eg

re
e

Out Degree (Target Methods)

81 %

19 %

0

25

50

75

100

1 >= 2

In Degree
(b)

%
 o

f d
eg

re
e

In Degree (Extracted Methods)

Fig. 13 (a) Out-degree of the target methods (1: single extractions; ≥ 2: multiple extrac-
tions). (b) In-degree of the extracted methods (1: extracted from one method; ≥ 2: extracted
from multiple methods).

According to developers, code decomposition is one of the most important
motivations to apply the extract method refactoring [39]. To better understand
these cases, we analyze two aspects related to multiple extractions: their size
and consistency.

5.5.1 Size of Multiple Extractions

Figure 14 presents the size of the methods with single and multiple extractions
in number of statements. We notice that the ones with single extractions have
on the median 5.53 statements while the ones with multiple extractions is much
larger, 8.54 statements. That is, methods that undergo multiple extractions
are on the median 54% longer than methods with single extractions.

5.5.2 Consistency of Multiple Extractions

We also assess the methods that are created due to multiple extractions. Fig-
ure 15(a) shows that each system has on the median 35 methods created due
to multiple extractions. From these methods, we notice that on the median,
15.5 have common prefixes. This indicates that 45% of the extracted methods

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 27

5.53

8.54

0

10

20

30

40

Methods with single
extractions

Methods with multiple
extractions

Methods

of

 s
ta

te
m

en
ts

Size in Number of Statements

Fig. 14 Number of statements in methods with single and multiple extractions.

due to decomposition have common prefixes, as presented in Figure 15(b).
Interestingly, the ratio of common prefixes is particularly high: the same pre-
fixes are frequently used when decomposing a method. For example, in project
MPAndroidChart, two methods are extracted from drawData() with the same
prefix is: isOffCanvasRight() and isOffCanvasLeft().33 In project neo4j,
five methods are extracted from shouldReadBasicEntities() with the same
prefix contains.34 In a more extreme case also in project neo4j, 12 methods
are extracted from method HaRequestType210(), all with the same prefix
register.35

Summary: If most refactorings extract a single method from a single target
methods, exceptions are not uncommon: 11% of the methods have multiple
extractions (to decompose code); 19% of the methods are extracted from
multiple places (to remove duplication).

6 Findings and Implications

In RQ1 we detected that the extract method refactoring is among the most
popular operations [19, 34, 39], representing 17% in our dataset. It also sup-
ported our initial impression that the extract method is a relatively common
refactoring: we found that it impacts 2% of the methods, 7% of the classes,
and 30.5% of the packages. In RQs 2, 3, 4, and 5, we dig on the content,
transformation, size, and degree to better understand how method extraction

33 https://goo.gl/qbTHRz
34 https://goo.gl/otn7dC
35 https://goo.gl/yeDPLa

28 Andre Hora, Romain Robbes

35

15.5

10

100

1000

Methods originated from
multiple extractions

Methods originated from
multiple extractions

with common prefixes

(a)

of

 m
et

ho
ds

 (
lo

g
sc

al
e)

Consistency of Multiple Extractions

45 %

10

100

Methods originated from
multiple extractions

with common prefixes

(b)

%
 o

f m
et

ho
ds

 (
lo

g
sc

al
e)

Consistency (%)

Fig. 15 Consistency of the methods originated from multiple extractions. (a) Methods with
common prefixes. (b) Ratio of methods with common prefixes.

is performed by developers. Our major findings and implications are summa-
rized in Table 15 and detailed in the following subsections.

6.1 Target and extracted methods are over concentrated on certain
operations

We detected that the extracted methods are very often related to creation,
validation, and setup operations. Furthermore, extractions commonly occur
on operations related to processing. We also detected that test methods are
often target methods for extraction, but are not extracted themselves; the
opposite is true for conversion methods.

These findings provide the basis to improve two approaches that support
the extract method refactoring: (i) techniques to identify extract method op-
portunities [38,45] and (ii) refactoring automation tools (as the ones provided
by Eclipse, NetBeans, IntelliJ, and Visual Studio). Currently, these techniques
and tools do not propose names for the extracted methods, leaving this task
to the end users. Therefore, we state the following implications:

1. We suggest that refactoring automation tools can have their UIs improved
to include common prefixes (e.g., the ones in Table 2) to help developers
name the extracted methods.

2. In a more elaborated solution, the task of naming the extracted methods
can be semi automated by inspecting their content. In this case, by solely
detecting getting, creating, verification, addition, and setting operations, at
least 40% of the extracted methods can be prefixed with intention revealing
names. Several machine learning approaches have been proposed to gener-
ate a candidate method name given its method body (e.g., [2,3,49]); name
suggestion for the newly extracted method would be a natural fit for these

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 29

Table 15 Summary of findings and implications.

Findings Implications

Over concentration of tar-
get and extracted methods
on certain operations

1. Improve the UI of refactoring automation tools to
include common prefixes

2. Semi automate the task of naming the extracted
methods by inspecting their content

3. Tailor techniques to identify extract method op-
portunities to certain target and source methods

4. Recommend extract method when doing certain
programming activity

Longer size of the target
methods and equivalence
of the extracted when com-
pared to the average

1. Filter out the methods that are equal or smaller
than the usual ones when looking for candidates
for extraction

2. Extract methods with size equivalent to or smaller
than the usual ones when extracting methods

3. Reduce the target method size in at least one
statement to perform better than what is done
nowadays by developers

Occasionality of multiple
method extractions

1. Propose new techniques to identify multiple
method extraction opportunities

2. Ensure name consistency for multiple extracted
methods

3. Marry clone detection and extract method sugges-
tion

4. Construct refactoring violation tools to detect bad
refactoring practices

approaches, which could perhaps even benefit from the over representation
of some categories of extracted methods.

3. Our categorization also provides further insights on which methods are tar-
get and source of extractions, which may be useful to improve the precision
of techniques that recommend methods to be extracted (e.g., [38,45]). For
example, instead of naively analysing all the software system looking for
candidate methods to be extracted, these tools can only analyze some cat-
egory of methods (e.g., the top 5 over represented in Table 6: processing,
setup, test, coordination, and creation), while ignoring other categories
(e.g., accessing and release). Thus, techniques to identify extract method
opportunities can be tailored to certain target and source methods, repro-
ducing the actual behaviour of developers.

4. Our categorization have implications in the way refactoring operations are
prioritized and/or recommended. For example, suppose a developer is refac-
toring a test method; in this case, he may be advised to extract a creation

30 Andre Hora, Romain Robbes

method, since this is a commonly found transformation. Moreover, the
refactoring recommendation engine could be tuned to detect specific cate-
gories of methods.

6.2 Target methods are longer than the average while extracted methods
have size equivalent to the average

We found that the target methods are 2.2x longer than the average ones.
After the extraction, the target methods reduce their size by one statement.
Moreover, the extracted methods are similar in size to the average methods,
but have more parameters, very often one or two parameters.

Techniques to identify extract method opportunities can benefit from the
fact that the target methods are statistically different from the usual ones
while the extracted methods are equivalent in statements. In this context, our
results bring numbers to better calibrate these techniques. Thus, we present
the following implications:

1. When looking for candidates for extraction, these techniques can filter out
the methods that are equal or smaller than the usual ones, since those
are rarely target of extractions (e.g., in [38], a threshold of at least three
statements was fixed for candidates).

2. Based on our findings, ideally, these techniques should extract methods
with size equivalent to or smaller than the usual ones, not longer. Large
blocks of code are much more rarely extracted.

3. Techniques that recommend extract method refactorings should strive to
reduce the target method size in at least one statement to reproduce what
developers actually do nowadays.

6.3 Multiple method extractions are not uncommon

We detected that most refactorings extract a single method from a single
target methods. However, exceptions are not rare: 11% of the methods have
multiple extractions in order to decompose code while 19% of the methods are
extracted from multiple places in order to remove code duplication.

Techniques to identify extract method opportunities [38,45] focus on single
method extractions, which are in fact the most common cases. However, mul-
tiple extractions related to code decomposition and code duplication removal
represent 11% and 19% of the cases, which is not a negligible ratio. Therefore,
we present the following implications:

1. New techniques can be proposed to identify multiple method extraction
opportunities. Indeed, decomposing long method and removing duplica-
tion are among the motivations behind extract method [39], and those
are the ones likely to generate multiple extractions. Thus, techniques that

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 31

propose to extract multiple code blocks from a single method, would be
valuable additions. For instance, we detected that methods in which multi-
ple extractions were made are overall 54% longer than methods with single
extractions.

2. As a follow-up to a technique dedicated to extracting multiple code block,
an approach that promotes name consistency among the extracted methods
would be a valuable addition. A name suggestion approach that is able to
take into account previous named extractions could leverage the previous
suggestions to promote this consistency.

3. Since it is common to use an extracted method in multiple contexts to
reduce duplication, approaches that marry clone detection and extract
method suggestion could be designed. After a method is successfully ex-
tracted, an additional analysis could look for similar code fragments across
the code base, and attempt to use the newly extracted method there.

4. We envision that refactoring detection tools (e.g., [39, 40, 46, 47]) can also
be the basis to construct refactoring violation tools (in the sense of code
violation tools as FindBugs [5] and PMD [11]), so that developers can de-
tect bad refactoring practices. For example, given that methods originated
from decomposition are commonly equally prefixed, a possible violation
would be that the extracted methods are not consistently prefixed or not
prefixed at all. In fact, we found both cases in our dataset: the ones in
which all but one extracted method is prefixed and the ones in which none
of the extracted methods are prefixed; although this is not necessarily a
problem, it would be important to at least warn the developer who applied
it.

7 Threats to Validity

7.1 Construct Validity

The construct validity is related to whether the measurement in the study
reflects real-world situations.

Refactoring in other programming languages. Refactoring can be performed
in code written in any programming language. For example, recently, Fowler
updated his catalog of refactoring operations, originally written for Java, to
include JavaScript and functional examples.36 Previously, the catalog was also
transcripted to C++.37 Thus, even though refactoring operations are more
fomented in the Java ecosystem, most operations are language independent.

Extract method operation. The specific refactoring studied in this paper, ex-
tract method, is not restricted to Java, but can be applied to any OO or pro-

36 https://www.oreilly.com/library/view/refactoring-improving-the/9780134757681
37 http://jczeus.com/refac cpp.html

32 Andre Hora, Romain Robbes

cedural programming language.38 Indeed, due to its many facets (e.g., remove
duplication, decompose long method, etc.), method extraction can be seen
as a key operation, independently of the programming language paradigm.
Moreover, as presented in our motivation section, extract method is a term
often adopted by developers during development tasks, and often found in
commit logs and issues. Finally, as stated in RQ1, extract method operations
are among the most popular refactorings, after rename and move.

7.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the
experimental results

Accuracy to detect refactoring. We relied on RefDiff [40] to detect the refac-
torings. To the best of our knowledge, RefDiff is a state-of-the-art refactoring
tool to detect method extraction. Its f-measure varies from 84.7% to 94.6%
with respect to method extraction detection [40]. Thus, the due to the high
accuracy of RefDiff, the risks of false positives and false negatives are reduced.

Manual classification. Our manual classification based on prefixes may have
some imprecisions. Two authors performed it, with an agreement of around
75%, with differences being discussed until consensus was reached. Another
source of imprecision is that a prefix may cover several use cases. For instance,
part of the methods under the set prefix are actually setUp methods of JUnit
tests, and would hence better be classified as testing. However, we find that
such cases are limited as compared to the size of our corpus.

7.3 External Validity

The external validity is related to the possibility to generalize our results. We
analyzed over 70K extract method refactorings mined from 124 popular, real-
world, and open source Java systems. In RQ1, we also detected that the extract
method is independent of system size, level of commits, and popularity. Despite
these observations, our findings—as usual in empirical software engineering—
may not be directly generalized to other systems, particularly to commercial
nor to the ones implemented in other programming languages.

8 Related Work

8.1 Techniques to Detect Refactorings

There are several techniques intended to detect refactoring in version histo-
ries. These techniques are important to several applications, such as empiri-

38 https://refactoring.com/catalog/extractFunction.html

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 33

cal studies about software evolution [19, 47]. Earlier refactoring detection ap-
proaches included the one of Weissgerber and Diehl [52], and Xing and Strou-
lia [55]. Other tools are Refactoring Miner [39, 46], Refactoring Crawler [12],
and RefFinder [22]. RefDiff [40], the tool adopted in this study, combines
heuristics based on static analysis and code similarity to detect 11 refactoring
operations. Overall, when considering all refactorings, the f-measure of RefD-
iff varies from 89.3% to 96.8%. Recently, Tsantalis et al. [47] proposed the
refactoring detection tool RMiner. This solution relies on an AST-based state-
ment matching algorithm without user-defined thresholds. When considering
all refactoring operations, RMiner has f-measure of 92%, improving RefDiff’s
overall accuracy. We recall that in this paper we adopted RefDiff because it
has better accuracy with respect to the extract method refactoring (see Sec-
tion 4.3.2 for more details), nevertheless we acknowledge that RMiner could
also be used with no significant loss.

8.2 Refactoring Automation Tools and Techniques to Identify Refactorings
Opportunities

Refactorings can be semi automated with the support of modern IDEs, such
as Eclipse, NetBeans, IntelliJ, or Visual Studio, all of which support dozens of
refactorings. Some studies, however, show that these kind of refactoring tools
are commonly underused [23,33,34,36,39,48]. Often, developers prefer to apply
a refactoring manually due to several reasons, such as not trusting automated
support, simplicity of the operation, not finding the proper operation, and not
being familiar with the refactoring capabilities [39].

To overcome this limitation, the literature proposes techniques to auto-
matically identify refactoring opportunities. These solutions can, for example,
be integrated to IDEs so that developers receive refactoring suggestions while
programming. Techniques are then proposed to automatically identify oppor-
tunities, for instance, to extract method [38,45], to extract class [6,7], and to
move method [8, 42, 44]. Our study derives implications to possibly improve
tools related to method extraction, regarding the size of the target and ex-
tracted methods and their parameters, as well as the name of the involved
methods.

8.3 Refactoring Assessment

Other studies focus on assessing refactoring to better understand them and
propose better tools. Murphy et al. [31] analyzed the Eclipse IDE and captured
refactoring usage. Murphy-Hill and Black observed developers performing ex-
tract method refactorings, and found several usability issues, particularly when
selecting a valid range of source code [33]. Negara et al. [36] investigated man-
ual and automated refactorings. They found that over 50% of the refactorings
are performed manually and also that 30% are not stored on version control

34 Andre Hora, Romain Robbes

systems. Vakilian and Johnson instrumented an IDE to detect refactoring us-
ability problems [48], finding several usability issues, such as unclear error
messages, or overly strong pre-conditions. Murphy-Hill et al. [34] performed a
large analysis in four datasets to better understand how developers actually
refactor. They found, for example, that developers frequently do not indicate
refactorings in commit logs, that developers often do not configure refactoring
tools, that about 90% of refactorings are performed manually, and that devel-
opers commonly mix refactorings with other programming activities. Hora et
al. [19] assessed the impact of refactoring operations on software evolution and
MSR studies (e.g., [17, 18, 26, 28, 53, 54]). The authors detected that between
10 and 21% of the code changes at method level are about refactoring opera-
tions and, consequently, 25% of the code entities may have their histories split.
Kim et al. [23,24] performed a field study of refactoring benefits and challenges
at Microsoft. They detected that developers are not restricted to rigorous defi-
nitions on the behavior preserving aspect of refactoring. Wang [51] interviewed
professional software developers on self-motivated and management factors for
refactoring activities.

Recently, Silva et al. [39] investigated why developers perform refactoring
activities. They asked the developers who actually performed the changes to
explain the reasons behind their decisions. The authors produced a catalogue of
44 distinct motivations for 12 refactoring operations, such as extract method,
move class, and move attribute. It was detected that the extract method is
the most versatile refactoring, with 11 distinct motivations. They also found
that refactoring is mainly driven by changes in the requirements and that the
IDE used by the developers affects the adoption of automated tools. Our study
contributes to this research topic by providing a deep analysis of the extract
method refactoring.

8.4 Class and Method Stereotypes

Dragan et al. [14] introduced Method and Class stereotypes. Method Stereo-
types would constitute an alternative to our ad-hoc classification of methods
via their prefixes. The Stereotypes were defined based on static analysis of the
programming language and its idioms, with an instantiation of the approach
for C++. The work presents a taxonomy of method stereotypes that cov-
ers four main categories (accessor, mutator, collaborational, and creational).
Accessor methods return information from the object, without mutating it.
The category includes getters, predicates (returning booleans), and property
(which derive information from the object state). Mutator methods change
the state of the object, including setters and command methods (a command
is more complex change, usually spanning more than one attribute). Collab-
orational methods interact with objects from another class, and may either
access these objects, or mutate them. Finally, Creational methods involve cre-
ating or destroying new objects, either with constructors, desctructors, or fac-
tory methods. Method stereotypes have been used in a variety of contexts: to

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 35

characterize software systems [15], to improve on information retrieval-based
feature location [1], or to characterize commits [13].

Compared to our prefix-based classification, we see some similarities, but
also some differences. In particular, our classification is based on the meaning
of the prefixes, rather than the structure of the code. While this may make
it more sensitive to ambiguities in the prefixes, it allows it to be finer-grained
in the kind of task that methods perform. For instance, our classification has
specific categories for methods related to specific types of concerns, such as
testing, conversion, collections, coordination, validation, setup, or release. In-
corporating method stereotypes to include a taxonomy based on structural
aspects would however be a valuable avenue for future work.

9 Conclusion

This paper presented a large empirical study to better understand the char-
acteristics of extract method refactoring. We analyzed 124 software systems
and detected 408,448 refactorings, of which 70,059 were instances of the ex-
tract method refactoring. Five research questions were proposed to assess the
magnitude, content, transformation, size, and degree of the target refactoring.
We reiterate the most interesting findings from our analysis:

– The extract method is the third most frequent refactoring, after rename and
move method. 17% of the refactorings per system are method extraction.

– Of all methods, 2% are created due to method extraction; 7% of the classes
and 30.5% of the packages include at least one extracted method.

– Method extractions are over concentrated on operations related to creation,
validation, and setup.

– The target of the extractions are methods 2.2x longer than the average
ones, and tend to have more parameters. In contrast, the extracted methods
have size equivalent to the average ones.

– In 11% of the cases, more than one method is extracted; while 19% of
extracted methods are used in more than one place.

We found particularities regarding the extract method refactoring, for ex-
ample, an over concentration of target and extracted methods on certain op-
erations and longer size of the target methods as well as equivalence of the ex-
tracted when compared to the average. Based on these findings, we highlighted
several implications to improve refactoring tools and techniques, particularly
to detect, automate, and suggest the extract method refactoring.

As future work, we plan to further explore the method categories, for in-
stance: probably there is a difference in the size of methods across categories
(e.g., extracted accessing methods are possibly smaller). Moreover, we plan to
perform a qualitative analysis with the support of Stack Overflow questions

36 Andre Hora, Romain Robbes

and answers to better understand the major concerns of developers when ap-
plying the extract method operation. Finally, we plan to expand this research
to better understand other important and challenging refactoring operations,
such as move and inline method.

References

1. Alhindawi, N., Dragan, N., Collard, M.L., Maletic, J.I.: Improving feature location
by enhancing source code with stereotypes. In: International Conference on Software
Maintenance, pp. 300–309. Ieee (2013)

2. Allamanis, M., Barr, E.T., Bird, C., Sutton, C.: Suggesting accurate method and class
names. In: Joint Meeting on Foundations of Software Engineering, pp. 38–49 (2015)

3. Allamanis, M., Peng, H., Sutton, C.: A convolutional attention network for extreme
summarization of source code. In: International Conference on Machine Learning, pp.
2091–2100 (2016)

4. Ambler, S.W., Sadalage, P.J.: Refactoring databases: Evolutionary database design.
Pearson Education (2006)

5. Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix, J.: Using static
analysis to find bugs. IEEE software 25(5), 22–29 (2008)

6. Bavota, G., De Lucia, A., Marcus, A., Oliveto, R.: Automating extract class refactoring:
an improved method and its evaluation. Empirical Software Engineering 19(6), 1617–
1664 (2014)

7. Bavota, G., Oliveto, R., De Lucia, A., Antoniol, G., Gueheneuc, Y.G.: Playing with
refactoring: Identifying extract class opportunities through game theory. In: Interna-
tional Conference on Software Maintenance (ICSM), pp. 1–5 (2010)

8. Bavota, G., Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: Methodbook: Rec-
ommending move method refactorings via relational topic models. IEEE Transactions
on Software Engineering 40(7), 671–694 (2014)

9. Borges, H., Valente, M.T.: What’s in a GitHub star? understanding repository starring
practices in a social coding platform. Journal of Systems and Software (2018)

10. Brown, W.H., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: AntiPatterns: refac-
toring software, architectures, and projects in crisis. John Wiley & Sons, Inc. (1998)

11. Copeland, T.: PMD applied, vol. 10. Centennial Books Arexandria, Va, USA (2005)
12. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated detection of refactorings

in evolving components. In: European Conference on Object-Oriented Programming,
pp. 404–428 (2006)

13. Dragan, N., Collard, M.L., Hammad, M., Maletic, J.I.: Using stereotypes to help char-
acterize commits. In: International Conference on Software Maintenance (ICSM), pp.
520–523. IEEE (2011)

14. Dragan, N., Collard, M.L., Maletic, J.I.: Reverse engineering method stereotypes. In:
International Conference on Software Maintenance, pp. 24–34. IEEE (2006)

15. Dragan, N., Collard, M.L., Maletic, J.I.: Using method stereotype distribution as a
signature descriptor for software systems. In: International Conference on Software
Maintenance, pp. 567–570. IEEE (2009)

16. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

17. Hora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., Valente, M.T.: How do devel-
opers react to API evolution? the Pharo ecosystem case. In: International Conference
on Software Maintenance and Evolution, pp. 251–260 (2015)

18. Hora, A., Robbes, R., Valente, M.T., Anquetil, N., Etien, A., Ducasse, S.: How do
developers react to API evolution? a large-scale empirical study. Software Quality
Journal 26(1), 161–191 (2018)

19. Hora, A., Silva, D., Robbes, R., Valente, M.T.: Assessing the threat of untracked changes
in software evolution. In: International Conference on Software Engineering, pp. 1102–
1113 (2018)

Characteristics of Method Extractions in Java: A Large Scale Empirical Study 37

20. Host, E.W., Ostvold, B.M.: The programmer’s lexicon, volume i: The verbs. In: Inter-
national Working Conference on Source Code Analysis and Manipulation, pp. 193–202
(2007)

21. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
The promises and perils of mining github. In: Working Conference on Mining Software
Repositories, pp. 92–101 (2014)

22. Kim, M., Gee, M., Loh, A., Rachatasumrit, N.: Ref-Finder: a refactoring reconstruction
tool based on logic query templates. In: International Symposium on the Foundations
of Software Engineering, pp. 371–372 (2010)

23. Kim, M., Zimmermann, T., Nagappan, N.: A field study of refactoring challenges and
benefits. In: International Symposium on the Foundations of Software Engineering,
p. 50 (2012)

24. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring challenges
and benefits at microsoft. IEEE Transactions on Software Engineering 40(7), 633–649
(2014)

25. Lippert, M., Roock, S.: Refactoring in large software projects: performing complex re-
structurings successfully. John Wiley & Sons (2006)

26. Livshits, B., Zimmermann, T.: DynaMine: finding common error patterns by mining
software revision histories. In: International Symposium on the Foundations of Software
Engineering, pp. 296–305 (2005)

27. Martin, R.C.: Clean code: a handbook of agile software craftsmanship. Pearson Educa-
tion (2009)

28. Meng, S., Wang, X., Zhang, L., Mei, H.: A history-based matching approach to identi-
fication of framework evolution. In: International Conference on Software Engineering,
pp. 353–363 (2012)

29. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Transactions on software
engineering 30(2), 126–139 (2004)

30. Meszaros, G.: xUnit test patterns: Refactoring test code. Pearson Education (2007)
31. Murphy, G.C., Kersten, M., Findlater, L.: How are Java software developers using the

Elipse IDE? IEEE Software 23(4), 76–83 (2006)
32. Murphy-Hill, E., Black, A.P.: Breaking the barriers to successful refactoring: observa-

tions and tools for extract method. In: International Conference on Software engineering,
pp. 421–430 (2008)

33. Murphy-Hill, E., Black, A.P.: Refactoring tools: Fitness for purpose. IEEE Software
25(5) (2008)

34. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it. IEEE
Transactions on Software Engineering 38(1), 5–18 (2012)

35. Murphy-Hill, E., Zimmermann, T., Bird, C., Nagappan, N.: The design space of bug
fixes and how developers navigate it. IEEE Transactions on Software Engineering 41(1),
65–81 (2015)

36. Negara, S., Chen, N., Vakilian, M., Johnson, R.E., Dig, D.: A comparative study of
manual and automated refactorings. In: European Conference on Object-Oriented Pro-
gramming, pp. 552–576. Springer (2013)

37. Roberts, D., Brant, J., Johnson, R.: A Refactoring Tool for Smalltalk. Theory and
Practice of Object Systems 3(4) (1997)

38. Silva, D., Terra, R., Valente, M.T.: Recommending automated extract method refac-
torings. In: International Conference on Program Comprehension (ICPC), pp. 146–156
(2014)

39. Silva, D., Tsantalis, N., Valente, M.T.: Why we refactor? confessions of GitHub con-
tributors. In: International Symposium on the Foundations of Software Engineering,
pp. 858–870 (2016)

40. Silva, D., Valente, M.T.: RefDiff: detecting refactorings in version histories. In: Inter-
national Conference on Mining Software Repositories, pp. 269–279 (2017)

41. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: European
Conference on Software Maintenance and Reengineering, pp. 30–38 (2001)

42. Terra, R., Valente, M.T., Miranda, S., , Sales, V.: JMove: A novel heuristic and tool to
detect move method refactoring opportunities. Journal of Systems and Software 138,
19–36 (2018)

38 Andre Hora, Romain Robbes

43. Tourwé, T., Mens, T.: Identifying refactoring opportunities using logic meta program-
ming. In: European Conference on Software Maintenance and Reengineering, pp. 91–100
(2003)

44. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring opportuni-
ties. IEEE Transactions on Software Engineering 35(3) (2009)

45. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring oppor-
tunities for the decomposition of methods. Journal of Systems and Software 84(10),
1757–1782 (2011)

46. Tsantalis, N., Guana, V., Stroulia, E., Hindle, A.: A multidimensional empirical study on
refactoring activity. In: Conference of the Centre for Advanced Studies on Collaborative
Research, pp. 132–146 (2013)

47. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate and ef-
ficient refactoring detection in commit history. In: International Conference on Software
Engineering, pp. 483–494 (2018)

48. Vakilian, M., Johnson, R.E.: Alternate refactoring paths reveal usability problems. In:
Proceedings of the 36th International Conference on Software Engineering, pp. 1106–
1116 (2014)

49. Vasilescu, B., Casalnuovo, C., Devanbu, P.: Recovering clear, natural identifiers from
obfuscated js names. In: Joint Meeting on Foundations of Software Engineering, pp.
683–693 (2017)

50. Vassallo, C., Grano, G., Palomba, F., Gall, H.C., Bacchelli, A.: A large-scale empir-
ical exploration on refactoring activities in open source software projects. Science of
Computer Programming 180, 1–15 (2019)

51. Wang, Y.: What motivate software engineers to refactor source code? evidences from
professional developers. In: International Conference on Software Maintenance, pp.
413–416 (2009)

52. Weissgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In: Inter-
national Conference on Automated Software Engineering, pp. 231–240 (2006)

53. Wu, W., Gueheneuc, Y.G., Antoniol, G., Kim, M.: AURA: a hybrid approach to identify
framework evolution. In: International Conference on Software Engineering, pp. 325–334
(2010)

54. Xavier, L., Brito, A., Hora, A., Valente, M.T.: Historical and impact analysis of API
breaking changes: A large scale study. In: International Conference on Software Analysis,
Evolution and Reengineering, pp. 138–147 (2017)

55. Xing, Z., Stroulia, E.: Refactoring detection based on umldiff change-facts queries. In:
Working Conference on Reverse Engineering, pp. 263–274 (2006)

