
https://doi.org/10.1007/s10664-017-9554-9

On the reaction to deprecation of clients of 4 + 1 popular
Java APIs and the JDK

Anand Ashok Sawant1 ·Romain Robbes2 ·
Alberto Bacchelli3

© The Author(s) 2017. This article is an open access publication

Abstract Application Programming Interfaces (APIs) are a tremendous resource—that is,
when they are stable. Several studies have shown that this is unfortunately not the case. Of
those, a large-scale study of API changes in the Pharo Smalltalk ecosystem documented sev-
eral findings about API deprecations and their impact on API clients. We extend this study,
by analyzing clients of both popular third-party Java APIs and the JDK API. This results
in a dataset consisting of more than 25,000 clients of five popular Java APIs on GitHub,
and 60 clients of the JDK API from Maven Central. This work addresses several short-
comings of the previous study, namely: a study of several distinct API clients in a popular,
statically-typed language, with more accurate version information. We compare and con-
trast our findings with the previous study and highlight new ones, particularly on the API
client update practices and the startling similarities between reaction behavior in Smalltalk
and Java. We make a comparison between reaction behavior for third-party APIs and JDK
APIs, given that language APIs are a peculiar case in terms of wide-spread usage, documen-
tation, and support from IDEs. Furthermore, we investigate the connection between reaction
patterns of a client and the deprecation policy adopted by the API used.

Communicated by: Bram Adams and Denys Poshyvanyk

� Anand Ashok Sawant
A.A.Sawant@tudelft.nl

Romain Robbes
rrobbes@unibz.it

Alberto Bacchelli
bacchelli@ifi.uzh.ch

1 Software Engineering Research Group (SERG), Delft University of Technology,
Delft, The Netherlands

2 Software and Systems Engineering Research Group (SwSE), Free University of Bozen-Bolzano,
Bolzano, Italy

3 Zurich Empirical Software Engineering Team (ZEST), University of Zurich, Zurich, Switzerland

Empir Software Eng (2018) 23:2 –21 1 758 9

Published online: r 20171 be3 Octo

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9554-9&domain=pdf
http://orcid.org/0000-0002-5816-8020
mailto:A.A.Sawant@tudelft.nl
mailto:rrobbes@unibz.it
mailto:bacchelli@ifi.uzh.ch

Keywords Application programming interface · API usage · API popularity · Dataset

1 Introduction

An Application Programming Interface (API) is a definition of functionalities provided by
a library or framework made available to other developer, as such. APIs promote the reuse
of existing software systems (Johnson and Foote 1988). In his landmark essay “No Silver
Bullet” (Brooks 1975), Brooks argued that reuse of existing software was one of the most
promising attacks on the essence of the complexity of programming: “The most radical
possible solution for constructing software is not to construct it at all.”

Revisiting the essay three decades later (Fraser et al. 2007), Brooks found that indeed,
reuse remains the most promising attack on essential complexity. APIs enable this: To cite
a single example, we found at least 15,000 users of the Spring API (Sawant and Bacchelli
2016).

However, reuse comes with the cost of dependency on other components. This is not
an issue when said components are stable. But evidence shows that APIs are not always
stable: The Java standard API for instance has an extensive deprecated API.1 Deprecation
is a mechanism employed by API developers to indicate that certain features are obsolete
and htat they will be removed in a future release. API developers often deprecate features,
and when replace them with new ones, changes can break the client’s code. Studies such as
Dig and Johnson’s (2005) found that API changes breaking client code are common.

The usage of a deprecated feature can be potentially harmful. Features may be marked
as deprecated because they are not thread safe, there is a security flaw, or are going to be
replaced by a superior feature. The inherent danger of using a feature that has been marked
as obsolete may be good enough motivation for developers to transition to the replacement
feature.

Besides the aforementioned dangers, using deprecated features can also lead to reduced
code quality, and therefore to increased maintenance costs. With deprecation being a main-
tenance issue, we would like to see if API clients actually react to deprecated features of an
API.

Robbes et al. conducted the largest study of the impact of deprecation on API clients
(Robbes et al. 2012), investigating deprecated methods in the Squeak (Ingalls et al. 1997)
and Pharo (Black et al. 2009) software ecosystems. This study mined more than 2,600
Smalltalk projects hosted on the SqueakSource platform (Lienhard and Renggli 2005). They
investigated whether the popularity of deprecated methods either increased, decreased or
did not change after deprecation.

Robbes et al. found that API changes caused by deprecation can have a major impact
on the studied ecosystems, and that a small percentage of the projects actually reacts to
an API deprecation. Out of the projects that do react, most systematically replace the calls
to deprecated features with those recommended by API developers. Surprisingly, this was
done despite API developers in Smalltalk not documenting their changes as good as one
would expect.

The main limitation of this study is being focused on a niche programming community
i.e., Pharo. This resulted in a small dataset with information from only 2600 projects in

1see http://docs.oracle.com/javase/8/docs/api/deprecated-list.html

Empir Software Eng (2018) 23:2 –21 1 758 9 2159

http://docs.oracle.com/javase/8/docs/api/deprecated-list.html

the entire ecosystem. Additionally, with Smalltalk being a dynamically typed language, the
authors had to rely on heuristics to identify the reaction to deprecated API features.

We conduct a non-exact replication (Juzgado and Vegas 2011) of the previous Smalltalk
(Robbes et al. 2012) study, also striving to overcome its limitations. We position this study
as an explorative study that has no pre-conceived notion as to what is correct behavior with
respect to reaction to deprecation. To that end we study the reactions of more than 25,000
clients of 5 different APIs, using the statically-typed Java language; we also collect accurate
API version information. The API clients analyzed in this study are open-source projects
we collected on the GitHub social coding platform (http://www.github.com 2017).

Furthermore, we also investigate the special case of the Java Development Kit API
(JDK), which may present peculiarities, because of its role popularity and tailored integra-
tion with most IDEs. For example, due to these features developers might be more likely to
react to deprecation in the API of the language, as opposed to deprecations in an API that
they use. To perform this analysis, we collect data from Maven Central (which allows for a
more reliable way to collect JDK version data). We collected data from 56,410 projects and
their histories, out of which we analyze 60 projects (selected to reduce the size of data to be
processed) to see how they dealt with deprecated API elements in Java’s standard APIs.

Our results confirm that only a small fraction of clients react to deprecation. In fact,
in the case of the JDK clients, only 4 are affected and all 4 of these introduce calls to
deprecated entities at the time of usage. Out of those, systematic reactions are rare and most
clients prefer to delete the call made to the deprecated entity as opposed to replacing it
with the suggested alternative one. This happens despite the carefully crafted documentation
accompanying most deprecated entities.

One of the more interesting phenomena that the we observed was that out of the 5 APIs
for which we observed the reaction pattern, we see that each of the APIs has its own way in
which it deprecated features, which then has an impact on the client. APIs such as Spring
appear to deprecate their features in a more conservative manner and thus impact very few
clients. On the other hand, Guava appears to constantly making changes to their API, thus
forcing their clients to deal with deprecation in the API, at the risk of having clients not
upgrading to the latest version of the API. Given these patterns that we observed, we inves-
tigate whether we can categorize APIs based on the strategy they use when deprecating
features. To this end we look at 50 popular Java APIs, and develop heuristics characterizing
how these APIs deprecate features.

2 Methodology

We define the research questions and describe our research method contrasting it with the
study we expand upon (Robbes et al. 2012).

2.1 Research Questions

To better contrast our results with the previous study on Smalltalk, we try to maintain the
same research questions as the original work whenever possible.

The aim of these research questions is similar to the original paper and they aim to deter-
mine (1) whether deprecation of an API artifact affects API clients, (2) whether API clients
do react to deprecation and (3), and to understand if immediately actionable information can
be derived to alleviate the problem. To do this, we find out how often a deprecated entity
impacts API clients and how these clients deal with it.

Empir Software Eng (2018) 23:2 –21 1 758 92160

http://www.github.com

Given the additional information at our disposal in this paper, we add two novel research
questions (RQ0 and RQ6). RQ0 aims to understand the API version upgrade behavior of
API clients and RQ6 looks at the impact of various deprecation policies on the reaction of
API clients. Furthermore, we alter the original order and partially change the methodology
we use to answer the research questions; this leads to some differences in the formulation.
The research questions we investigate are:

RQ0: What API versions do clients use?
RQ1: How does API method deprecation affect clients?
RQ2: What is the scale of reaction in affected clients?
RQ3: What proportion of deprecations does affect clients?
RQ4: What is the time-frame of reaction in affected clients?
RQ5: Do affected clients react similarly?
RQ6: How are clients impacted by API deprecation policies?

2.2 Research Method, Contrasted with the Previous Study

Robbes et al. analyzed projects hosted on the SqueakSource platform, which used the Mon-
ticello versioning system. The dataset contained 7 years of evolution of more than 2600
systems, which collectively had over 3000 contributors. They identified 577 deprecated
methods and 186 deprecated classes. The results were informative, but this previous study
had several shortcomings that we address. We describe the methodology to collect the data
for this study by describing it at increasingly finer granularity: Starting from the selection
of the subject systems to detecting the use of versions, methods, and deprecations. In this
work, the methodologies for the collection of Third-party API usage and JDK API usage is
different, and these differences are reflected in Figs. 1 and 2.

For Third-Party APIs, we select candidate APIs based on their popularity (Fig. 1, top
left); we then build the list of their clients (Fig. 1, bottom left), keeping only active projects;
finally, for each project, we locate the usages of individual API elements in successive
version of these projects (Fig. 1, right).

Historical analysis of API usage
Conducted on each API client

Analysis of API popularity
Computed on each Java project in GitHub

GitHub -
Social coding platform

Java project

POM file
POM

Dependency
Analyzer

Database

Dependencies
per project

Selection of APIs
and their clients

Selected APIs and their clients

EasyMock

5 Java APIs
popular on GitHub

API Client A

25,357 Java clients
of the APIs

API Client

versioning
system

POM fileSource
code file POM

Dependency
Analyzer

Maven
Central

Query for
specific API

version

JAR file

fine-GRAPE

Database

Historical
API usage

Computed for
each commit

Fig. 1 Methodology used to mine data from Third-party API clients

Empir Software Eng (2018) 23:2 –21 1 758 9 2161

Analysis of Projects in Maven Central
Computed on each Java project on Maven Central

Download
each JAR file

JAR store

Java project

Version 1

Version 2

Version N

JAR file 1

JAR file 2

JAR file N

Analysis of JAR files
Computed on each JAR file

JAR file

Database

Detailed
invocation

informationJava .class
file

Parse with
ASM

unzip

Fig. 2 Methodology used to mine data from JDK API clients

For the JDK, every Java project is essentially a client. We first select a diverse sample of
Java projects from Maven Central to study. We then download successive compiled version
of these systems from Maven Central (Fig. 2, left), before analyzing the bytecode to infer
both the JDK version used to compile it, and the use of JDK features (Fig. 2, right).

2.2.1 System Source

The original study was conducted on the Squeak and Pharo ecosystems found on Squeak-
Source, thus the set of systems that were investigated was relatively small. To overcome
this limitation, we focus on a mainstream ecosystem: Java projects hosted on the social cod-
ing platform GitHub and in Maven central. Java is the most popular programming language
according to various rankings (http://www.tiobe.com/tiobe index 2017; http://pypl.github.
io 2017), GitHub is the most popular and largest hosting service (Gousios et al. 2014) and
Maven Central is the largest store of JAR files (Raemaekers et al. 2014).

Third-party APIs (Fig. 1, top left). Our criteria for selection of APIs includes popularity,
reliability, and variety: We measure popularity in terms of number of clients each API has
on GitHub and select from the top 20 as identified by the fine-GRAPE dataset (Sawant
and Bacchelli 2015). We ensure reliability by picking APIs that are regularly developed
and maintained i.e., those that have at least 10 commits in a 6 week period before the data
has been collected. We select APIs pertaining to different domains. These criteria ensure
that the APIs result in a representative evolution history, do not introduce confounding
factors due to poor management, and do not limit the types of clients.
We limit our study to Java projects that use the Maven build system because Maven

based projects use Project Object Model (POM) files to specify and manage the API
dependencies that the project refers to. We searched for POM files in the master branch of
Java projects and found approximately 42,000 Maven based projects on GitHub. By pars-
ing their POM files, we obtained all the APIs they depend on. We then created a ranking
of the most popular APIs, which we used to guide our choice of APIs to investigate.
This selection step results in the choice of 5 APIs, namely: Easymock (2016), Guava

(2016), Guice (2016), Hibernate (2016), and Spring (2016). The first 6 columns of
Table 1 provide additional information on these APIs.

JDK APIs. Clients of the JDK are not necessarily hard to find, GitHub alone contains
879,265 Java based projects. However, we are interested in accurately inferring the ver-
sion of the JDK being used and whether these clients react to the deprecation of features
in various versions of the JDK. This is not a trivial endeavor, given that Java source

Empir Software Eng (2018) 23:2 –21 1 758 92162

http://www.tiobe.com/tiobe_index
http://pypl.github.io
http://pypl.github.io

Ta
bl
e
1

Su
m
m
ar
y
in
fo
rm

at
io
n
on

se
le
ct
ed

cl
ie
nt
s
an
d
A
PI
s

A
PI

U
ni
qu
e
en
tit
ie
s

N
um

be
r
of

U
sa
ge

ac
ro
ss

hi
st
or
ie
s

(G
itH

ub
re
po
)

D
es
cr
ip
tio

n
In
ce
pt
io
n

R
el
ea
se
s

C
la
ss
es

M
et
ho
ds

cl
ie
nt
s

In
vo
ca
tio

ns
A
nn
ot
at
io
ns

E
as
yM

oc
k

A
te
st
in
g
fr
am

ew
or
k
th
at
al
lo
w
s
fo
r
th
e
m
oc
ki
ng

of
Fe
b
06

14
10
2

62
3

64
9

38
,2
53

–

(e
as
ym

oc
k/

Ja
va

ob
je
ct
s
du
ri
ng

te
st
in
g

ea
sy
m
oc
k)

G
ua
va

A
co
lle
ct
io
ns

A
PI

th
at
pr
ov
id
es

da
ta
st
ru
ct
ur
es

th
at
ar
e

A
pr

10
18

23
10

14
,8
28

30
13

1,
14
8,
41
2

–

(g
oo
gl
e/
gu
av
a)

an
ex
te
ns
io
n
to

th
e
da
ta
st
ru
ct
ur
es

al
re
ad
y
pr
es
en
ti
n

th
e
Ja
va

SD
K
.E

xa
m
pl
es

of
th
es
e
ne
w
da
ta
st
ru
ct
ur
es

in
cl
ud
es
:m

ul
tim

ap
s,
m
ul
tis
et
s
an
d
bi
tm

ap
s

G
ui
ce

A
de
pe
nd
en
cy

in
je
ct
io
n
lib

ra
ry

cr
ea
te
d
by

G
oo
gl
e

Ju
n
07

8
31
9

19
99

65
4

59
,0
97

48
,9
45

(g
oo
gl
e/
gu
ic
e)

H
ib
er
na
te

A
fr
am

ew
or
k
fo
r
m
ap
pi
ng

an
ob
je
ct
or
ie
nt
ed

do
m
ai
n
to

N
ov

08
77

20
37

11
,6
25

60
38

19
6,
16
9

16
,2
59

(h
ib
er
na
te
/

a
re
la
tio

na
ld

at
ab
as
e
do
m
ai
n.

W
e
fo
cu
s
on

th
e
co
re

hi
be
rn
at
e-
or
m
)

an
d
en
tit
ym

an
ag
er

pr
oj
ec
ts
un
de
r
th
e
hi
be
rn
at
e

ba
nn
er

Sp
ri
ng

A
fr
am

ew
or
k
th
at
pr
ov
id
es

an
In
ve
rs
io
n
of

C
on
tr
ol
(I
oC

)
Fe
b
07

40
53
76

41
,9
48

15
,0
03

19
,8
94

40
,5
25

(s
pr
in
g-
pr
oj
ec
ts
/

co
nt
ai
ne
r,
w
hi
ch

al
lo
w
s
de
ve
lo
pe
rs
to

ac
ce
ss

Ja
va

sp
ri
ng
-f
ra
m
ew

or
k)

ob
je
ct
s
w
ith

th
e
he
lp

of
re
fl
ec
tio

n.
W
e
ch
oo
se

to
fo
cu
s

on
ju
st
th
e
sp
ri
ng
-c
or
e,
sp
ri
ng
-c
on
te
xt

an
d
sp
ri
ng
-t
es
t

m
od
ul
es

du
e
to

th
ei
r
po
pu
la
ri
ty

Empir Software Eng (2018) 23:2 –21 1 758 9 2163

code files do not specify the version of Java that they are meant for. To overcome this
challenge, we use the Java Archive (JAR) files of projects that were released to Maven
Central.
Maven Central is the central repository for all libraries that can be used by Maven

based projects. It is one of the largest stores of JAR files, where most small and large
organizations release their source code in built form. JAR files consist of class files,
which are a result of compiling Java source code. These class files contain metadata on
the version of the JDK being used. Thus, making JAR files an appropriate source of data
for JDK clients, given that version resolution can be done in it.

2.2.2 Selection of Main Subjects

We select the main subjects of this study:

Third-party APIs (Fig. 1, bottom left) To select the clients of APIs introducing depre-
cated methods, we use the aforementioned analysis of the POM files. We refine our
process using the GHTorrent dataset (Gousios 2013), to select only active projects. We
also remove clients that had not been actively maintained in the 6 months preceding our
data collection, to eliminate ‘dead’ or ‘stagnating’ projects. We totaled 25,357 projects
that refer to one or more of 5 aforementioned popular APIs. The seventh column in
Table 1 provides an overview of the clients selected, by API.

JDK APIs (Fig. 2, left) At the time of data collection, Maven Central included 1,297,604
JAR files pertaining to 150,326 projects that build and release their code on the central
repository. Analyzing all these projects would pose serious technical challenges, thus,
we produced a selection criterium to reduce the number of projects, while preserving
representativeness.
As a first step to filter our project list, we decide to eliminate those projects that have

4 or fewer releases on Maven Central. Projects that have had so few releases are not
likely to have changed the version of the JDK that they use to compile their codebase,
thus rendering them uninteresting to our current purpose. Performing this elimination
step leaves us with 56,410 projects and 1,144,134 JARs that we can analyze. All these
JAR files for each of the projects is downloaded, unzippped and all method invocations
is stored in a database.
Despite having this amount of data, we cannot process all projects for the purpose of

this paper, thus, as a further step of filtering we use the technique outlined by Nagappan
et al. (2013) to sample our set of projects, creating a small and representative dataset
of diverse projects to analyze. The technique allows for the creation of a diverse and
representative sample set of projects that likely cover the entire spectrum of projects.
They define coverage as:

coverage = |UpεP {q|similar(p, q)}|
|U |

Here U is the universe of projects from which a selection is to be made. P is the set of
dimensions along which these projects can be classified. A similarity score is computed
for all projects based on the defined dimensions of the entire universe. The algorithm
keeps adding projects to the subset that increases the similarity score until a coverage of
100% is achieved.

Empir Software Eng (2018) 23:2 –21 1 758 92164

For our analysis, we define the following dimensions to model the projects:

– Number of versions released: The higher the number of versions released by a
project, the more likely the project has made a change in the version of the JDK (or
any other API) that it uses.

– Median version release time: Projects with a lower median release time, release
new versions more often than those with a high inter-release period. This distinction
is important because projects that release often might not actually react to depreca-
tion due to the cost involved, on the other hand, projects with long inter-release time
spans might have a lot of time at their disposal to fix their code.

– Lifespan of the project: Projects that have lasted a long time (e.g., Spring which has
been around for 13 years) have more of a chance of having used multiple versions
of Java and being affected by deprecation due to upgrading the version of the JDK
being used, as opposed to those projects that are young.

– Number of classes: Projects that are larger (those that have more classes) might
have a different reaction pattern to those that are smaller, measuring the number of
classes allows us to make this distinction.

– Starting version: Projects that start with a more recent version of the JDK might
not be affected by deprecation as opposed to those that use an old version of Java.

Nagappan et al. provide R scripts implementing their project selection technique. We
ran these scripts with our dimensions of interest as input and collected a list of 60 diverse
projects that cover the entire space of projects (100% coverage). We thus use these 60
projects for our analysis of client’s reactions to deprecation in entities of the JDK API.

2.2.3 API Version Usage

Explicit library dependencies are rarely mentioned in Smalltalk. There are several ways
to specify these dependencies, often programmatically and not declaratively (for instance,
Smalltalk does not use import statements as Java does). Thus, detecting and analyzing
dependencies between projects requires heuristics (Lungu et al. 2010). In contrast, Maven
projects specify their dependencies explicitly and declaratively: We can thus determine the
API version a project depends on. Hence, we can answer more questions, such as if projects
freeze or upgrade their dependencies. This is more complicated in the case of JDK clients,
as the version definition is not explicit. To overcome this flaw, we use an alternative data
source (Maven Central) such that all information at our disposal can be considered accurate.

Third-party APIs. We only consider projects that encode specific versions of APIs, or
unspecified versions (which are resolved to the latest API version at that date). We do
not consider ranges of versions because very few projects use those (84 for all 5 APIs,
while we include 25,357 API dependencies to these 5 APIs). In addition, few projects
use unspecified API versions (269 of the 25,357, which we do include).

JDK APIs. (Fig. 2, right) Accurate resolution of the version of the Java API is a chal-
lenge on its own, since there is no easy way to find out the version of the JDK being used
by a Java project by only inspecting the source code. However, there are three techniques
that can be used and these are outlined below:

1. Projects that use maven sometimes use the maven compiler plugin in the POM file.
This plugin allows the specification of the version of Java that is being used in the

Empir Software Eng (2018) 23:2 –21 1 758 9 2165

source code and the bytecode version to which this source code is to be compiled.
Often these versions can be the same, there is no hard requirement for them to be
different. One can download all the POM files and parse them to find the usage of
this plugin and see what version of Java is being used.

2. The Java JDK has evolved over time. With every new version, new features have
been introduced. These features are incompatible with older versions of the JDK.
However, these features are forward compatible, thus ensuring that anyone using that
feature must either use the version of the JDK in which the feature was introduced
or a later version. Thus, based on the language features being used one can ascertain
a range of JDKs that may have been used to compile a certain file. Also, cross-
referencing the date of usage of the feature with the date of JDK releases could allow
us to narrow the range. Overall, this would give us a small range of versions that
might have been used.

3. The previous two approaches both rely on parsing the source code to extract the
usage of the Java features and to estimate the version of the JDK being used. How-
ever, the most reliable way to infer the version of Java being used is to look at the
compiled class files of the source code. These class files contain a two-digit inte-
ger header that specifies the version of the JDK that was used to compile it, e.g.,
a class header could be 50, which implies that the class was compiled using JDK
1.6.

We tried the first method outlined above to resolve the version of the JDK being used.
However, when we looked at 135,739 POM files that we managed to download from
GitHub, we found that only 7722 files used the maven compiler plugin. In the larger
context, this was a very small number of files that specified the version of the JDK. Thus,
we found this option nonviable.
The second method can at times result in an inaccurate resolution of the version being

used. This would make it hard to answer the research questions we have with the same
accuracy as for the clients of the 5 Java APIs, hence we decided against using it.
Reading the compiled version of a class is the most accurate way to infer the version

of the JDK being used by a Java project. However, this would imply that we would have
to compile all the Java based project at our disposal. Even with these projects using the
Maven build tool, this task is problematic. First, there is a chance that the dependencies
specified in the POM file might relate to certain internal dependencies that are hosted
by the project’s developers and are not publicly available. Second, some of these POM
files might use a PGP key to verify the authenticity of the dependencies being used,
and this key is not available to us. Third, often the projects on GitHub do not ship with
tests that work in all environments and they might need a certain testing environment to
work properly, without which the Maven build fails. Fourth, it is very time-consuming to
compile every version of every file to get its class file.
With the limitations of compiling GitHub based Java projects, we found an alternative

source of Java based data; Maven central. Maven Central is the standard repository host
for Java projects. Here developers release their projects as libraries such that others can
use them. These projects are in the form of Java Archive (JAR) files that contain class
files. We find this to be an appropriate source of data, given that there are 150,326 distinct
projects released onMaven Central with 1,297,604 JAR files associated with them. These
JAR files can be unpacked to parse the usage of Java features and at the same time
ascertain the version of the JDK that was used to compile the source code.

Empir Software Eng (2018) 23:2 –21 1 758 92166

2.2.4 Fine-Grained Method/Annotation Usage

Due to the lack of explicit type information in Smalltalk, there is no way of actually knowing
if a specific class is referenced and whether the method invocation found is actually from
that referenced class. This does not present an issue when it comes to method invocations
on methods that have unique names in the ecosystem. However, in the case of methods that
have common names such as toString or name or item, this can lead to some imprecise
results. In the previous study, Robbes et al. resorted to a manual analysis of the reactions to
an API change but had to discard cases which were too noisy.

Third-party APIs. (Fig. 1, right) In this study, Java’s static type system addresses this
issue without the need for a tedious, and conservative manual analysis. On the other
hand, Java APIs can be used in various manners. In Guava, actual method invocations
are made on object instances of the Guava API classes, as one would expect. However,
in Guice, clients use annotations to invoke API functionality, resulting in a radically
different interaction model. These API usage variabilities must be considered.

While mining for API usage we must ensure that we connect a method invocation or
annotation usage to the parent class to which it belongs. There are multiple approaches
that can be taken to mining the usage data from source code. The first uses pattern match-
ing to match a method name and the import in a Java file to find what API a certain
method invocation belongs to. The second uses the tool PPA (Dagenais and Hendren
2008) which can work on partial programs and find the usage of a certain method of an
API. The third builds the code of a client project and then parse the bytecode to find
type-resolved invocations. Finally, the fourth uses the Eclipse JDT AST parser to mine
type-resolved invocations from a source code file. We created a method, fine-GRAPE,
based on the last approach (Sawant and Bacchelli 2015, 2016) that meets the following
requirements:2 (1) fine-GRAPE handles the large-scale data in GitHub, (2) it does not
depend on building the client code, (3) it results in a type-checked API usage dataset, (4)
it collects explicit version usage information, and (5) it processes the whole history of
each client.

JDK API. (Fig. 2, right) In the case of JDK clients, we look at class files that are retrieved
from JAR files. These class files contain accurate API usage information. This infor-
mation can be parsed using the ASM (2016) library, which uses the visitor pattern to
visit a class file. For each class, we extract information on the version of the JDK being
used, the annotations used in the class, and the method invocations made. For each of the
method invocations, we have accurate information on the class that the method belongs
to, the parameters and type of parameters being passed to the method, and what the
expected return value is. Overall, we ensure that while parsing the JDK clients we obtain
an accurate representation of usage of the JDK.

2.3 Detect Deprecation

In Smalltalk, users insert a call to a deprecation method in the body of the deprecated
method. This call often indicates which feature replaces the deprecated call. However, there
is no IDE support. The IDE does not indicate to developers that the feature being used is
deprecated. Instead, calls to deprecated methods output runtime warnings.

2More details on fine-GRAPE can be found in our prior work (Sawant and Bacchelli 2016).

Empir Software Eng (2018) 23:2 –21 1 758 9 2167

In contrast, Java provides two different mechanisms to mark a feature as deprecated. The
first is the @deprecated annotation provided in the Javadoc specification. This annotation
is generally used to mark an artifact as deprecated in the documentation of the code. This
feature is present in Java since JDK version 1.1. Since this annotation is purely for docu-
mentation purposes, there is no provision for it to be used in compiler level warnings. This
is reflected in the Java Language Specification(JLS). However, the standard Sun JDK com-
piler does issue a warning to a developer when it encounters the usage of an artifact that
has been marked as deprecated using this mechanism. More recently, JDK 1.5 introduced a
second mechanism to mark an artifact as deprecated with a source code annotation called
@Deprecated (The same JDK introduced the use of source code annotations).

This annotation is a compiler directive to define that an artifact is deprecated. This feature
is part of the Java Language Specification; as such any Java compiler supports it. It is now
common practice to use both annotations when marking a certain feature as deprecated. The
first is used so that developers can indicate in the Javadoc the reasons behind the deprecation
of the artifact and the suggested replacement. The other is now the standard way in which
Java marks features as deprecated.

To identify the deprecated features, we first download the different versions of the APIs
used by the clients from the Maven central server. These APIs are in the form of Java
Archive (JAR) files, containing the compiled classes of the API source. We use the ASM
(2016) class file parsing library to parse all the classes and their respective methods. When-
ever an instance of the @Deprecated annotation is found we mark the entity it refers to as
deprecated and stores this in our database. Since our approach only detects compiler anno-
tations, we do not handle the Javadoc tag. See the threats to validity section for a discussion
of this. We also do not handle methods that were removed from the API without warning,
as these are out of the scope of this study.

3 RQ0: What API Versions do Clients Use?

Our first research question seeks to investigate the popularity of API versions and to
understand the behavior of the clients toward version change. This sets the ground for the
subsequent research questions.

We start considering all the available versions of each API and measure the popularity
in terms of how many clients were actually using it at the time of our data collection. In
the example in Fig. 3, we would count popularity as 1 for v7, 2 for v6, and 2 for v4. The
column ‘number of clients’ in Table 1 specifies the absolute number of clients per each API
and Fig. 4 reports the version popularity results, by API.

Third-party APIs. The general trend shows that a large number of clients use different
versions of the APIs and that there is significant fragmentation between the versions
(especially in the case of Hibernate, where the top three versions are used by less than
25% of the clients). Further, the general trend is that older versions of the APIs are more
popular.
This initial result may indicate that clients have a delayed upgrading behavior, which

could be related with how they deal with maintenance and deprecated methods. For this
reason, we analyze whether the clients updated or never updated their dependencies. In
the example in Fig. 3, we count three clients who upgraded version in their history. If
projects update we measure how long they took to do so (time between the release of the
new version of the API in Maven central and when the project’s POM file is updated).

Empir Software Eng (2018) 23:2 –21 1 758 92168

Example API

goo
boo
foo

v4
goo
boo
foo

goo

foo

goo

foo

time to deprecation time to react

boo
foo

boo boo

v5
time to react

time to
deprecation

& deprecated methods

released versions,
declared methods,

v5 v6 v7

Client 2
used API versions
and API methods

v6
foo

Client 4
used API versions
and API methods

v4 v5 v6
boo

Client 1
used API versions
and API methods

v4
foo
foo

Client 5
used API versions
and API methods

v4 v5 v4
boo

Client 3
used API versions
and API methods

v7v6v4

data collection point

Fig. 3 Exemplification of the behavior of an API and its clients

Table 2 summarizes the results. Most clients freeze to one version of the API they use.
This holds for all the APIs except for Spring, whose clients have at least one update in
74% of the cases. In terms of time to update, the median is lower for clients of APIs that

3rd most popular release2nd most popular release1st most popular release

Latest API release Other releases

3.2.0

2.5.2

3.1.0

3.0.0

11

13

14

2.0.0

3.2.2

4.1.9

3.6.10

3.1.0

3.0.5

3.1.1

18

4.0.0-b4

4.3.6

4.1.0

100%

75%

50%

25%

0%

3.0.0

1.0.0

Easymock Guava Guice Hibernate Spring

1.5 & 1.4

1.7

1.8
(also latest)

1.6

JDK APIThird-party APIs

100%

75%

50%

25%

0%

Fig. 4 Popularity breakdown of versions, by API

Empir Software Eng (2018) 23:2 –21 1 758 9 2169

Table 2 Update behavior of
clients, by API Update time (in days)

Updated clients Mean Median Q1 Q3

Easymock 63 10% 404 272 103 592

Guava 610 20% 140 72 32 139

Guice 49 8% 783 909 251 1150

Hibernate 2454 41% 245 63 33 368

Spring 11,112 74% 195 69 37 186

JDK 19 33% 745 1507 996 1738

have more clients updating, such as Hibernate and Spring. In general, update time varies
considerably—we will come back to this in RQ3.

JDK API. When doing this analysis, we notice one anomaly: two of the projects we ana-
lyzed have no bytecode associated with it. This is because the developers who released
these projects to Maven central, released them only as Javadoc JAR files, without source
code files. During our data collection process, we ensured that anything marked as
Javadoc was not downloaded, however, in the case of these projects they were not marked
as Javadoc but as source files. This seems to indicate that a non-negligible amount of
Maven Central JAR files are not particularly useful or do not provide source code in
some way. From this point forward, we discard the two projects made only of Javadoc
and continue focusing on the 58 projects for which we do have the source code.
The clients are evenly distributed among versions 1.6, 1.7, and 1.8. Java 1.5 lags behind

these three other versions, but despite being more than 13 years old, 11 clients adopt it.
The number of clients using Java 1.6 is 18; despite that, there have been several years for
Java clients to update to Java 1.7 (released in 2011) or Java 1.8 (2014).
Only 19 out of the 58 clients ever change the version of Java that is being used. The

median time to update is almost 5 years; this is to be expected since Java has few major
releases in any given timespan.

4 RQ1: How does API Method Deprecation Affect Clients?

Answering RQ0, we found that most clients do not adopt new API versions. We now
focus on the clients that use deprecated methods and on whether and how they react to
deprecation.

Affected by Deprecation From the data, we classify clients into 4 categories, which we
describe referring to Fig. 3:

• Unaffected: These clients never use a deprecated method. None of the clients in Fig. 3
belong to this category.

• Potentially affected: These clients do not use any deprecated method, but should they
upgrade their version, they would be affected. Client 1 in Fig. 3 belongs to this category.

• Affected: These clients use a method which is already in a deprecated state, but do not
change the API version throughout their history. It happens in the case of Client 2.

Empir Software Eng (2018) 23:2 –21 1 758 92170

• Affected and changing version: These clients use at least one method which gets dep-
recated after updating the API version being used. Clients 3, 4, and 5 belong to this
category.

Figure 5 reports the breakdown of the clients in the four categories.

Third-party APIs. Across all third-party APIs, most clients never use any deprecated
method throughout their entire history. This is particularly surprising in the case of Hiber-
nate, as it deprecated most of its methods (we discuss this in RQ3). Clients affected by
deprecation vary from more than 20% for Easymock and Guava to less than 10% for
Hibernate and almost 0% for Spring. Of these clients, less than one third also change
their API version, thus highlighting a stationary behavior of clients with respect to API
usage, despite our selection of active projects.
Common reactions to deprecation. We investigate how ‘Affected and changing version’
clients deal with deprecation. We exclude ‘Affected’ clients, which do not have strong
incentives to fix a deprecation warning if they do not update their API, as the method is
still functional in their version.
71% and 65% of ‘Affected and changing version’ clients of Easymock and Guava react

to deprecated entities. For Hibernate and Spring, we see 31% and 32% of clients that
react. For all the APIs, the number of clients that fix all calls made to a deprecated entity
is between 16% and 22%. Out of the clients that react, we find that at the method level,
the most popular reaction is to delete the reference to the deprecated method (median of
50% to 67% for Easymock, Guava and Hibernate and 100% for Spring). We define as
‘deletion’ a reaction in which the deprecated entity is removed and no new invocation to
the same API is added.
Some Hibernate and Guava clients roll back to a previous version where the entity is

not yet deprecated. Easymock, Guava, and Hibernate clients tend to replace deprecated

Potentially affectedUnaffected Affected

Affected and changing version

100%

25%

0%

Easymock Guava Hibernate Spring

37%

JDK APIThird-party APIs

100%

25%

0%

37%

Fig. 5 Deprecation status of clients of each API

Empir Software Eng (2018) 23:2 –21 1 758 9 2171

calls with other calls to the same API, however, this number is small. In contrast to what
one would expect as a reaction to deprecation (due to the semantics of the deprecation
warning), a vast majority of projects (95 to 100%) add calls to deprecated API elements,
despite the deprecation being already in place. This concerns even clients that migrate all
their deprecated API elements later on.

The strange case of Guice. We analyzed all the Guice clients and looked for usage
of a deprecated annotation or method, however, we find that none of the projects have
ever used deprecated entities. The reason is that Guice does not have many methods
or annotations that have been deprecated since it follows a very aggressive depreca-
tion policy. In Guice, methods are removed from the API without being deprecated
previously. We observed this behavior in the Pharo ecosystem as well and studied it
separately (Hora et al. 2015). In our next research questions (RQ2–RQ5), thus, we
do not analyze Guice, as the deprecations are not explicitly marked. However, we
do not remove Guice from our study to keep it organic and contrast the deprecation
policy it uses with that of other APIs in RQ6.

JDK API. We see a surprising trend in the case of the Java clients, as also reported on the
rightmost bar in Fig. 5. Only 4 out of 58 projects are affected by deprecation. Also, none
of these projects are among those that change the version of the API that they use; this
implies that at the time of usage of the deprecated feature, the client already knew that it
was deprecated.

5 RQ2: What is the Scale of Reaction in Affected Clients?

The work of Robbes et al. (2012) measures the reactions of individual API changes in terms
of commits and developers affected. Having exact API dependency information, we can
measure API evolution on a per-API basis, rather than per-API element. Hence, we can
measure the magnitude of the changes necessary between two API versions in terms of the
number of methods calls that need to be updated between two versions. Another measure of
the difficulty of the task is the number of different deprecated methods one must react to: It
seems reasonable to think that adapting to 10 usages of the same deprecation is easier than
reacting to 10 usages of 10 different deprecated methods.

Third-party APIs. We consider both ‘actual reactions’ and ‘potential ones’. Actual
reactions. We measure the scale of the actual reactions to API changes. We count sep-
arately reactions to the same deprecated method and the number of single reactions. In
Fig. 3, client 3, after upgrading to v5 and before upgrading to v6, makes two modi-
fications to statements including the deprecated method ‘boo’. We count these as two
reactions to deprecation but count one unique deprecated method. We consider that client
5 reacts to deprecation when rolling back from v5 to v4: We count one reaction and one
unique deprecated method.
We focus on the upper half of the distribution (median, upper quartile, 95th percentile,

and maximum), to assess the critical cases; we expect the effort needed in the bottom
half to be low. Table 3 reports the results. The first column reports the absolute number of
non-frozen affected clients that reacted. The scale of reaction varies: Most of the clients
react to less than a dozen of statements with a single unique deprecated method involved.
Spring stands out with 31 median number of statements with reactions and 17 median

Empir Software Eng (2018) 23:2 –21 1 758 92172

Table 3 Scale of actual clients’ reaction to method deprecation

Non-frozen affected Statements with reaction

clients that reacted (unique deprecated methods involved)

Median Q3 95th perc. Max

Easymock 17 11 (1) 21 (2) 109 (3) (3)

Guava 161 3 (1) 8 (2) 127 (5) 283 (10)

Hibernate 40 5 (1) 20 (16) 41 (27) 59 (40)

Spring 10 31 (17) 54 (21) 104 (27) 131 (27)

number of unique deprecated methods involved. Outliers invest more heavily in reacting
to deprecated methods. As seen next, this may explain the reluctance of some projects to
update.
Potential reactions. Since a large portion of projects do not react, we investigated how
much work was accumulating should they wish to update their dependencies. We thus
counted the number of updates that a project would need to perform to render their code
base compliant with the latest version of the API (i.e., removing all deprecation warn-
ings). In Fig. 3, the only client that is potentially affected by deprecation is client 1, which
would have two statements needing reaction (i.e., those involving the method ‘foo’) and
one unique deprecated method is involved.
As before, we focus on the upper half of the distribution. Table 4 reports the results.

In this case, the first column reports the absolute number of clients that would need a
reaction. We notice that most of the clients use two or less unique deprecated methods.
However, they would generally need to react to a higher number of statements, compared
to the clients that reacted reported in Table 3, except for those using Spring.

Overall, if the majority of projects would not need to invest a large effort to upgrade
to the latest version, a significant minority of projects would need to update a lot of
methods. This can explain their reluctance to do so. However, this situation, if left
unchecked—as is the case now—can and does grow out of control, especially if these
APIs start removing the deprecated features. If there is a silver lining, it is that the number
of unique methods to update is generally low, hence the adaptations can be systematic.
Outliers would have several unique methods to adapt to.

JDK API. We consider only ‘potential reactions’ in the case of the JDK API, as there can
be no ‘actual reactions’. We analyzed all the 58 clients, fast-forwarding them through all
the JDK APIs version to see whether they would be affected by deprecation, should they

Table 4 Scale of potential clients’ reaction to method deprecation

Clients potentially Statements potentially needing reaction

needing reaction (unique deprecated methods involved)

Median Q3 95th perc. Max

Easymock 178 55 (1) 254 (1) 1,120 (5) 4,464 (7)

Guava 917 12 (1) 42 (2) 319 (7) 8,568 (44)

Hibernate 521 15 (1) 35 (1) 216 (2) 17,471 (140)

Spring 41 3 (1) 4 (1) 51 (2) 205 (55)

Empir Software Eng (2018) 23:2 –21 1 758 9 2173

upgrade. We found that none of these clients would be affected in the event that they
would all upgrade to the latest version of the JDK. In other words, none of the analyzed
clients use features that have been deprecated in newer versions of Java.
Overall, reflecting on the reasons why deprecation has almost zero impact on these

clients (answers to RQ0, RQ1, and RQ2), we can hypothesize that the tight integration
of the JDK API in the most popular IDEs and the amount of documentation avail-
able to aid a developer in selecting the most appropriate API feature play a role on the
facts we encountered. For the purpose of this study, we cannot continue with the other
research questions (except for RQ6, in which we cluster the API deprecation behavior
of JDK API) given that there is no reaction data to be analyzed; however, we discuss
(Section 11.2) on why we found such a low number of clients affected by deprecation in
the case of the JDK API.

6 RQ3: What Proportion of Deprecations does Affect Clients?

The previous research question shows that most of the actual and potential reactions of third-
party API clients to method deprecations involve a few unique methods. This does not tell
us how these methods are distributed across all the deprecated API methods. We compute
the proportion of deprecated methods clients use.

In Fig. 3, there is at least one usage of deprecated methods ‘boo’ and ‘foo’, while there
is no usage of ‘goo’. In this case, we would count 3 unique deprecated methods, of which
one is never used by clients.

Table 5 summarizes the results, including the proportion of deprecated methods per API
over the total count of methods and the count of how many of these deprecated methods are
used by clients. APIs such as for Guava, Spring, or Hibernate have more than 1,000 dep-
recations. For Hibernate, 65% of unique methods get eventually deprecated, indicating that
this API makes a heavy usage of this Java feature. The proportion of deprecated methods
that affect clients is, around 10% in all 4 of the APIs.

7 RQ4: What is the Time-Frame of Reaction in Affected Clients?

We investigate the amount of time it takes for a method to become deprecated (‘time to
deprecation’) and the period of time developers take to react to it (‘time to react’) to see if
developers react as soon as they notice that a feature they are using is deprecated. The former
is defined as the interval between the introduction of the call and when it was deprecated, as

Table 5 Deprecated methods
affecting clients, by API Unique deprecated methods

Defined by API Used by clients

Count (% over total) Count (% over all deprecated)

Easymock 124 (20%) 16 (13%)

Guava 1479 (10%) 104 (7%)

Hibernate 7591 (65%) 487 (6%)

Spring 1320 (3%) 149 (11%)

Empir Software Eng (2018) 23:2 –21 1 758 92174

seen in client 3 (Fig. 3); the latter is the amount of time between the reaction to a deprecation
and when it was deprecated (clients 3 and 5).

Time to Deprecation We analyzed the ‘time to deprecation’ for each of the instances
where we found a deprecated entity. The median time for all API clients is 0 days: Most
of the introductions of deprecated method calls happen when clients already know they are
deprecated. In other words, when clients introduce a call to a deprecated entity, that they
know a priori that the entity is already deprecated. This seems to indicate that clients do not
mind using deprecated features.

Time to React Figure 6 reports the time it takes clients to react to a method deprecation,
once it is visible. We see that, for most clients across all APIs, the median reaction time
is 0 days for Guava, Hibernate, and Spring, while for Easymock it is 25 days. A reaction
time of 0 days can indicate that most deprecated method invocations are reacted upon on
the same day the call was either introduced or marked as deprecated. To confirm this, we
looked a little deeper at 20 of these cases to see why the reaction time is 0 days. We see that
in all of the cases the developers have upgraded a version of the API they use, this leads
to them noticing that a feature they use is now deprecated. They react to this deprecation
immediately after the upgrade in version, thus resulting in a reaction time of 0 days.

Barring outliers, reaction times for Hibernate and Spring are in the third quartiles, being
at 0 and 2.5 days. Reaction times are longer for clients of Guava and Easymock, with an
upper quartile of 47 and 200 days respectively. Outliers have a long reaction time, in the
order of hundreds of days. We looked individually at the 9 outliers that have a reaction time
in excess of 300 days. Distilling the actual rationale behind a change is non-trivial. We look
at the commit messages and any kind of code comments that might exist. Only one commit

Guava Hibernate Easymock Spring

0
10

0
20

0
30

0
40

0
50

0

Reaction Time

Fig. 6 Days taken by clients to react to a method deprecation once visible

Empir Software Eng (2018) 23:2 –21 1 758 9 2175

message actually references the fact that a deprecated entity was being reacted to. The other
8 commit messages do not add any information. We also do not see any code comments that
might explain the rationale. We can at best speculate that the reaction to deprecation takes
place as part of a general code cleanup act.

8 RQ5: Do Affected Clients React Similarly?

This research question seeks to investigate the behavior of third-party API clients when it
comes to replacement reactions.

Such an analysis allows us to ascertain whether an approach inspired by Schäfer et al.’s
(2008) would work on the clients in our sample. Their approach recommends API changes
to a client based on common, or systematic patterns in the evolution of other clients of the
same API.

8.1 Consistency of Replacements

There is no definite way to identify if a new call made to the API is a replacement for the
original deprecated call, so we rely on a heuristic: We analyze the co-change relationships
in each class file across all the projects; if we find a commit where a client removes a usage
of a deprecated method (e.g., add(String)) and adds a reference to another method in
the same API (e.g., add(String, Integer)), this new method invocation is a possible
replacement for the original deprecated entity. A drawback is that in-house replacements
or replacements from other competing APIs cannot be identified. Nonetheless, we compute
the frequencies of these co-change relationships to find whether clients react uniformly to a
deprecation.

We found that Easymock clients show no systematic transitions: There are only 3 distinct
methods for which we see replacements and the highest frequency of the co-change rela-
tionships is 34%. For Guava, we find 23 API replacements; in 17% of the cases there is a
systematic transition i.e., there is only one way in which a deprecated method is replaced by
clients. Spring clients only react by deleting deprecated entities instead of replacing them,
resulting in no information on replacements of features. In the case of Hibernate clients,
we find only 4 distinct methods where replacements were made. There were no systematic
replacements and the maximum frequency is 75%.

Since API replacements are rather uncommon in our dataset, with the exception of Guava
clients, we find that while an approach such as the one of Schäfer et al. could conceptually
be quite useful, we would not be able to implement it in our case due to the small amount
of replacement data.

8.2 Quality of documentation.

Very few clients react to deprecation by actually replacing the deprecated call with one that
is not deprecated. This led us to question the quality of the documentation of these APIs.
Ideally one would like to have a clear explanation of the correct replacement for a deprecated
method, as in the Javadoc reported in Fig. 7. However, the results we obtained made us
hypothesize otherwise. We systematically inspected the Javadoc to see whether deprecated
features had documentation on why the feature was deprecated and whether there was an
indication of appropriate replacement (or if a replacement is needed).

Empir Software Eng (2018) 23:2 –21 1 758 92176

Fig. 7 Example of Javadoc associated with deprecated API artifact

We perform a manual analysis to analyze the quality of the API documentations. For
Guava, we investigate all 104 deprecated methods that had an impact on clients; for Easy-
mock, we look at all 16 deprecated methods that had an impact on clients; for Spring and
Hibernate, we inspected a sample of methods (100 each) that have an impact on the clients.

In Easymock, 15 of the 16 deprecated methods are instance creation methods, whose
deprecation message directs the reader to use a Builder pattern instead of these methods. The
last deprecation message is the only one with a rationale and is also the most problematic:
the method is incompatible with Java version 7 since its more conservative compiler does
not accept it; no replacement is given.

In Guava, 61 messages recommend a replacement, 39 of which state that the method is
no longer needed and hence can be safely deleted, and 5 deprecated methods do not have a
message. Guava is also the API with the most diverse deprecation messages. Most messages
that state a method is no longer needed are rather cryptic (“no need to use this”). On the
other hand, several messages have more precise rationales, such as stating that functionality
is being redistributed to other classes. Others provide several alternative recommendations
and detailed instructions and one method provides as many as four alternatives (although
this is because the deprecated method does not have exact equivalents), Guava also specifies
in the deprecation message when entities will be removed (e.g., “This method is scheduled
for removal in Guava 16.0”, or “This method is scheduled for deletion in June 2013.”).

For Hibernate, all the messages provide a replacement, but most provide no rationale
for it. The only exceptions are messages stating the advantages of a recommended database
connection compared to the deprecated one.

For Spring, the messages provide a replacement (88) or state that the method is no longer
needed (12). Spring is the only API that is consistent in specifying in which version of the
API the methods were deprecated. On the other hand, most of the messages do not specify
any rationale for the decision, except JDK version testing methods that are no longer needed
since Spring does not run in early JDK versions anymore.

Overall, maintainers of popular APIs provide their clients with sufficient support to
clients concerning deprecation. We found rationales as to why a method was deprecated, but
not systematically. Replacement is the most commonly suggested solution; this is in contrast

Empir Software Eng (2018) 23:2 –21 1 758 9 2177

to the actual behavior of clients who instead prefer removing references to deprecated
entities as opposed to replacing them, as reported in Section 4.

9 RQ6: How are Clients Impacted by API Deprecation Policies?

During this study, we noticed that each API has its own way to deprecate features. It seems
reasonable to think that this deprecation policy of features may impact a clients’ decision to
adopt and react to these deprecated features. We thus decided to look at this particular issue
in more detail.

9.1 Methodology

To see what different kind of policies of deprecation exist, we first aimed to look at the top
50 APIs that are popularly used by GitHub based Java projects, to get a sufficiently diverse
set of APIs, with a sufficient number of clients that may react differently. However, looking
at only the top 50 most popular APIs might have one downside: Given that many of the APIs
have the same vendor, the deprecation policy adopted by the APIs from the same vendor
may be similar. To overcome this limitation, we looked at the top 200 APIs in terms of
popularity (ranked based on usage of the API among Java projects on GitHub) and selected
the first 50 that had different vendors, this resulted in the APIs listed in Table 6.

Once the APIs had been selected we defined certain criteria to categorize their depreca-
tion behavior on:

Number of deprecated: Number of unique features deprecated during the entire history
of the API. The larger the number of features that are deprecated by an API, the larger
the chance is that a client using that API will be affected by deprecation.

Percentage of deprecated: Percentage of total features deprecated during the entire his-
tory of the API. When an API deprecates a large portion of its features, there is a higher
chance that it might deprecate features that are being used.

Time to deprecate: Median time, in days, taken to deprecate a feature from the moment
it was introduced in the API. A long time to deprecate can indicate that API developers
do not change their API at a fast pace. This fact can be reassuring to clients who are
ensured the stability of the API and its features.

Time to remove: Median time, in days, taken to remove a deprecated feature after the
moment at which it was deprecated. A short removal time gives API clients a very short
window within which they can react to the deprecation of the feature, after which the
change becomes a breaking change. A longer removal time may indicate that the API
does not perform regular cleanup of its code.

Rollbacks: Number of times a deprecated method was marked in a future release as non-
deprecated. A rollback may be performed because the API developers changed their mind
about deprecating a feature. This would send a confusing signal to the API client as they
cannot be sure about the future of the feature that they are using. Ideally, this behavior
should be avoided, because it gives no clear indication about the future of a feature.

Percentage of removed: Percentage of deprecated features eventually removed from the
API. A high percentage suggests that the API performs a lot of cleanup of its depre-
cated features. On the other hand, a low percentage indicates that the API is lax about
removing deprecated features, thus allowing clients to assume they do not have to react
to deprecation.

Empir Software Eng (2018) 23:2 –21 1 758 92178

Table 6 List of 50 APIs selected for RQ6

API Artifact ID Domain Popularity Rank

junit Testing 67,954 1

slf4j-api Logging 18,521 2

log4j Logging 17,421 3

spring-core Dependency injection 15,086 4

mysql-connector-java Database 14,333 6

servlet-api Server 12,044 8

jstl Server 12,007 9

commons-io IO utility 10,821 12

guava Collections 9542 14

hibernate-entitymanager Object relational mapper 8413 16

logback-classic Logging 7597 20

mockito-all Testing 7010 22

commons-lang Utility 6485 26

jackson-databind JSON handling 5905 28

httpclient Server 5584 32

commons-dbcp Database 5486 34

joda-time Time utility 5045 36

commons-logging Logging 4947 37

aspectjrt Aspect oriented 4685 38

testng Testing 4485 40

commons-codec Codec utility 4337 41

commons-fileupload Fileupload utility 4001 45

h2 Database 3952 46

postgresql Database 3816 47

hsqldb Database 3633 49

validation-api Bean validation 3509 52

commons-collections Collections 3406 54

json JSON handling 2952 56

hamcrest-all Testing 2867 57

cglib Bytecode generation 2816 60

selenium-java Browser 2694 61

lombok Eclipse 2472 65

javassist Bytecode generation/manipulation 2466 66

jsoup HTML parser 2333 67

mybatis Database 2199 72

standard Tagging library 2150 74

commons-beanutils Java beans 2147 75

mongo-java-driver Database 2077 78

poi File format manipulation 1940 83

commons-cli Command line utility 1855 84

jersey-client Server 1844 85

dom4j HTML parser 1798 87

c3p0 Database 1782 88

Empir Software Eng (2018) 23:2 –21 1 758 9 2179

Table 6 (continued)

API Artifact ID Domain Popularity Rank

commons-httpclient HTTP Client 1676 91

primefaces UI building 1608 95

commons-pool Object pooling 1583 96

guice Dependency injection 1556 97

freemarker Java beans 1531 98

assertj-core Testing 1527 99

easymock Testing 1484 100

Number of never-removed: Number of deprecated features that were never removed
from the API and that are still present despite being deprecated. An API leaving a lot of
its deprecated features never-removed may signal that the client should not worry about
their code breaking in the near future. Ideally, this number should be quite high given
that the traditional pattern of deprecation is to first deprecate a feature and then after an
interval remove it from the API.

Average deprecations per version: Average number of features deprecated per version
of the API. A high average number of deprecations per version tells us that the API is
very volatile, which might factor into a client’s decision on upgrading the version of the
API being used.

Average removals per version: Average number of deprecated features removed per
version of the API. If the removals per version are high, then this adversely impacts a
client’s decision to change the version being used as making a change ensures that their
code would break.

9.2 Clustering

Using these dimensions, we can run a clustering algorithm on the APIs to see whether
clusters emerge and their nature. The most widespread clustering algorithm which fits our
model is k-means (Lloyd 1982). The k-means clustering algorithm aims to partition a set of
elements into k clusters where each element in the set belongs to a cluster with the nearest
mean. One issue with this clustering technique which is unsupervised, is the estimation of
the number of clusters to be produced. To do so we choose to use the elbow method (Mooi
and Sarstedt 2010), that allows for a visual estimation of the value of k.

The elbow method looks at the percentage of variance explained as a function of the
number of clusters. After a point, adding more clusters in the k-means algorithm should
not result in a better estimation of the data. Using this technique, we calculated the sum of
squares within each cluster for each number of clusters (where the number of clusters varied
from 1 to 15) provided to k-means algorithm and plotted these sums. Looking at the plot,
we determined that the number of clusters that best describes our data is 7. Using this value
as our input for the k-means algorithm, we could establish what the clusters are, what are
the characteristics of these clusters, and which APIs belongs to them.

In Fig. 8, we see a silhouette plot of the clusters that we have obtained from our data.
A silhouette plot essentially provides a succinct graphical representation of how well each
object lies within its cluster. The silhouette value is a measure of how similar an object is
to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges

Empir Software Eng (2018) 23:2 –21 1 758 92180

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width

Cluster

Fig. 8 Silhouette plot of the 7 clusters

from −1 to 1, where a high value indicates that the object is well matched to its own cluster
and poorly matched to neighboring clusters. If most objects have a high value, then the
clustering configuration is appropriate.

Looking at Fig. 8 we see that our clusters are separate from each other. In most cases,
the silhouette values are positive and high. There are only 4 negatives in each cluster, thus
indicating that most objects in each cluster are matched with the others. We see that there
are two clusters with just one API each (Apache commons-collections and Java), these APIs
appear to be outliers in our dataset, in particular, this was expected in the case of the JDK
API.

9.3 Results

We use the dimensions listed above to characterize an API’s policy of deprecating its
features. The goal is to create a categorization of the APIs that are under consideration.
Analyzing the clusters, we derive the defining characteristics of a project that falls in each
cluster, and how the clients of such a project might potentially react. A summary of this
can be found in Table 7. To not bias ourselves, we choose to not look at the APIs that we
have already studied so that we do not allow our previous results to dictate the properties
of each cluster. In the following we describe the characteristics of each cluster and discuss
their potential implications:

Cluster 1: In this cluster (2 elements), the deprecation times and the removal times are
both more than 10 years, as opposed to cluster 7 where the deprecation and
removal times were less than 3 years. This implies that in this case when the
APIs in this cluster deprecate or remove a feature, it is often those features that
were introduced early in the API that are affected. However, these APIs also

Empir Software Eng (2018) 23:2 –21 1 758 9 2181

Table 7 Summary of clusters

Cluster Characteristic Number of APIs

1 Very high deprecation time and removal time 2

2 Large portions of the API are deprecated 1

3 Deprecated features are removed with urgency 15

4 Deprecate very little and take a very long time to do so 1

5 Deprecate a lot at the time of introduction, most likely for experimental features 21

6 Deprecates a lot of features, many of which that are not too old 7

7 Features are not deprecated or removed very easily 6

deprecate very few features in total and less than 6 features per version. Thus,
the scope of a client being affected by deprecation is minimal at best.

Cluster 2: This cluster has only one element. This API (Apache Commons-collections)
is the one out of all 50 APIs that deprecates the largest percentage (30%) of
its API in its history. The median times for deprecation and removal are also
really low for this API, and in many instances, features are introduced in a
deprecated state. This API is also very good at cleaning up its code base by
removing 83% of all deprecated features at some future release. Given the
large usage of deprecation in this API, we can conclude that clients have to be
wary about what feature they use.

Cluster 3: The APIs that fall into this cluster (15 elements) usually have a high median
time to deprecate a feature (more than 2 years), but on the other hand have a
short period to remove the feature (less than 30 days). This gives a client lim-
ited opportunity to react to a deprecation as the deprecated entity will likely be
removed in an upcoming release. This might influence a client to not upgrade
the version of the API being used.

Cluster 4: There is just one element in this cluster: The JDK API. This cluster is charac-
terized by the fact that a very small percentage of the API is deprecated (less
than 1%), and for the features that have been deprecated, there are 621 roll-
backs in deprecation in its lifetime. The median time to deprecate is less than
3 years, and in the event there are removals of a deprecated entity, then the
time to remove is very long, more than 6 years. The number of deprecations
per version is high in comparison to other clusters, so is the number of features
removed per version. Given that a very small percentage of the API is depre-
cated and the removal time being high, we suppose that clients of this API are
not affected by deprecation to a large extent and those that are affected do not
react at all.

Cluster 5: In this cluster (21 elements), we see the most number of APIs. All these APIs
in general do not deprecate a large percentage of their APIs. However, when
they do, it is generally done immediately after the introduction of the feature.
This generally affects only those features that have been introduced later in the
API’s life. Thus, only those clients that adopt the latest feature are going to
be the ones that are affected to a great extent. But given the fact that very few
features are deprecated, we assume the number of affected clients to be very
low for these APIs.

Empir Software Eng (2018) 23:2 –21 1 758 92182

Cluster 6: In this cluster (7 elements), the APIs have a low median deprecation time and
median removal time both under 40 days. At the same time, the projects in this
cluster deprecate quite a lot of methods per version. Many features that are new
and introduced in one release are generally deprecated and rendered obsolete
in the immediate future. This kind of behavior may discourage a client from
adopting new features of the API, due to the fear of being forced to update in
the near future. Thus, for the APIs here we should see minimal clients affected
by deprecation as most might not even adopt the features that get deprecated.

Cluster 7: This cluster (6 elements) is characterized by median removal and deprecation
times higher than 3 years, thus giving the clients of the APIs in this category
the safety of not having to worry about their code breaking in any manner. This
policy may not incentivize clients of the API to react to a deprecated feature.

Based on the cluster definitions we make the following hypotheses, which can be tested
in future work:

Hypothesis 1: Clients of cluster 1, 4 and 7 do not react to deprecated entities as opposed
to clients of APIs that belong to other clusters.

Hypothesis 2: Clients of cluster 3 will react to deprecation with a low reaction time,
otherwise, their code will break.

Hypothesis 3: Clients of cluster 6 will not adopt newer features since these features are
the ones that are generally deprecated.

Hypothesis 4: Clients of cluster 5 will not be affected by deprecation due to the fact a lot
of features are experimental and marked as deprecated due to this.

Hypothesis 5: Clients of cluster 2 will be affected by deprecation regularly due to the
fact that the API deprecates a lot.

In Table 8 we see in the category into which each of the APIs that we study fits into. In
the case of Guava and Hibernate, both fall into cluster 3. We expect to see their clients not
upgrading to the latest version of the API in most cases. This is reflected in the results of
RQ0 as well, where we see that both for Guava and Hibernate the latest releases has very
minimal adoption, whereas older releases have been adopted to a much larger extent.

Spring fits into the seventh cluster, where the clients are not expected to be impacted
by deprecation. We see that reflected in the results of RQ1, where Spring has the least

Table 8 API deprecation characteristics

API Spring Hibernate Guava Easymock Java

Number deprecated 551 110 529 95 1910

Percentage deprecated 11% 1% 3% 4% 1%

Time to deprecate 1454 1043 620 0 927

Time to remove 1456 698 228 1557 3456

Rollbacks 10 0 47 2 629

Percentage removed 45% 100% 60% 90% 59%

Number unremoved 295 0 172 7 152

Average deprecations per version 4 0 11 7 239

Average removals per version 2 0 6 6 141

Cluster 1 2 2 3 7

Empir Software Eng (2018) 23:2 –21 1 758 9 2183

number (and percentage) of clients affected by deprecation. This is to the credit of the
Spring developers who have adopted a policy that does not have any adverse impact on its
clients.

Easymock falls into cluster 6, and here we expect to see a minimal number of clients to be
affected, given that only new features are deprecated, whereas the ones that were originally
introduced are not necessarily deprecated by the API. However, we see from RQ1 that there
are many clients affected by deprecation. This might indicate that it is not only new features
that are being deprecated in Easymock. This result makes Easymock an imperfect fit for the
cluster. Looking at Fig. 8, this does indeed appear to be the case, all elements in cluster 6
do not appear to fit with each other to make it a homogeneous cluster. Given that we did not
allow our cluster definition to be defined by the data that we already had in place, it is to be
expected that for some of these APIs, the cluster fit would be imperfect.

10 Summary of Findings

We first investigated how many API clients actively maintain their projects by updating
their dependencies. We found that, for all the APIs including the JDK API, only a minority
of clients upgrade/change the version of the API they use. As a direct consequence of this,
older versions of APIs are more popular than newer ones.

We then looked at the number of projects that are affected by deprecation. We focused on
projects that change version and are affected by deprecation as they are the ones that show
a full range of reactions. Clients of Guava, Easymock, and Hibernate (to a lesser degree)
were the ones that were most affected, whereas clients of Spring were virtually unaffected
by deprecation. For Guice, we could find no data due to Guice’s aggressive deprecation
policy. In the case of the JDK API, we found very few clients to be affected, but none of
them changed versions, thus we could not analyze their reaction data. We also found that for
most of the clients that were affected, they introduced a call to a deprecated entity, despite
knowing that it was deprecated.

Looking at the reaction behavior of these clients, we saw that ‘deletion’ was the most
popular way to react to a deprecated entity. Replacements were seldom performed, and
finding systematic replacements was rarer. This is despite the fact that these APIs provide
excellent documentation that should aid in the replacement of a deprecated feature. When a
reaction did take place, it was usually almost right after it was first marked as deprecated.

As a final step, we looked at how the different APIs deprecate their features and how such
a deprecation policy can impact a client. We clustered 50 APIs based on certain character-
istics (such as the number of deprecated API elements, and the time to remove deprecated
API elements), and documented the patterns that emerged in seven clusters. For each clus-
ter, we define its primary characteristic and predict the behavior of a client that uses an API
that belongs to the clusters, leading to five hypotheses that can be confirmed or infirmed
in future work. We see that in the case of Guava, Hibernate and Spring clients our clusters
fit perfectly. However, in the case of Easymock, the fit is not as good. This suggests that
further investigation is needed in this case.

11 Discussion

We now discuss our main findings and contrast themwith the findings of the Smalltalk study
we expand upon. Based on this, we give recommendations on future research directions.

Empir Software Eng (2018) 23:2 –21 1 758 92184

11.1 Comparison with the Deprecation Study on Smalltalk

Contrasting our results with those of the study we partially replicate, several interesting
findings emerge:

11.1.1 Proportion of Deprecated Methods Affecting Clients

Both studies found that only a small proportion of deprecated methods affects clients. In
the case of Smalltalk, this proportion is below 15%, but in our results we found it to be
around 10%. Considering that the two studies investigate two largely different ecosystems,
languages, and communities, this similarity is noteworthy. Even though API developers do
not know exactly how their clients use the methods they write and would be interested in
this information (Begel and Zimmermann 2014), the functionalities API developers depre-
cate are mostly unused by the clients, thus deprecation causes few problems. Nevertheless,
this also suggests that most effort that API developers make in properly deprecating some
methods and documenting alternatives is not actually necessary: API developers, in most of
the cases, could directly remove the methods they instead diligently deprecate.

11.1.2 Not Reacting to Deprecation

Despite the differences in the deprecation mechanisms and warnings, most of the clients in
both studies do not react to deprecation. In this study, we could also quantify the impact of
deprecation should clients decide to upgrade their API versions and find that, in some cases,
the impact would be very high.

By not reacting to deprecated calls, we see that the technical debt accrued can grow
to large and unmanageable proportions (e.g., one Hibernate client would have to change
17,471 API invocations).

One reason behind the non-reaction to deprecation might be that some of these deprecated
entities find themselves in dead-code regions of API client code as opposed to essential parts.
This might impact the client’s decision to react. However, the impact of this is hard to deter-
mine given that the cost of executing thousands of API clients in representative execution
scenarios is prohibitive (assuming it is even possible in the first place).

We see that in many cases the preferred way to react to deprecation is by deleting the
invocation. This reaction pattern might be due some APIs advising that the deprecated fea-
ture need not be used anymore and can be safely deleted with no replacement. The impact
of this might be quite high given our findings in Section 8.

We also found more counter-reactions (i.e., adding more calls to methods that are known
to be deprecated) than for Smalltalk clients. This may be related to the way in which the two
platforms raise deprecation warnings: In Java, a deprecation gives a compile-time warning
that can be easily ignored, while in Smalltalk, some deprecations lead to run-time errors,
which require intervention.

11.1.3 Systematic Changes and Deprecation Messages

The Smalltalk study found that in a large number of cases, most clients conduct systematic
replacements to deprecated API elements. In our study, we find that, instead, replacements
are not that common. We deem this difference to be extremely surprising. In fact, the clients
we consider have access to very precise documentation that should act as an aid in the

Empir Software Eng (2018) 23:2 –21 1 758 9 2185

transition from a deprecated API artifact to one that is not deprecated; while this is not the
case for Smalltalk, where only half of the deprecation messages were deemed as useful. This
seems to indicate that proper documentation is not a good enough incentive for API clients
to adopt a correct behavior, also from a maintenance perspective, when facing deprecated
methods. As an indication to developers of language platforms, we have some evidence to
suggest more stringent policies on how deprecation impacts clients’ run-time behavior.

11.1.4 Clients of Deprecated Methods

Overall, we see in the behavior of API clients that deprecation mechanisms are not ideal.
We thought of two reasons for this: (1) developers of clients do not see the importance of
removing references to deprecated artifacts, and (2) current incentives are not working to
overcome this situation. Incentives could be both in the behavior of the API introducing
deprecated calls and in the restriction posed by the engineers of the language. This situa-
tion highlights the need for further research on this topic to understand whether and how
deprecation could be revisited to have a more positive impact on keeping low technical debt
and improve maintainability of software systems. In Section 11.4 we detail some of the first
steps in this direction, clearly emerging from the findings in our study.

11.2 Comparison Between Third-Party APIs and the JDK API

We observe that deprecations in the JDK do not affect the JDK clients to a large degree.
Only 4 out of 58 projects are affected by deprecation and all these 4 introduced a call to
the deprecated artifact despite knowing that it was deprecated. Such a low proportion of
JDK clients being affected was an unexpected finding, we rationalize it with the following
hypotheses:

11.2.1 Early Deprecation of Popular JDK Features

Some of the more popular or used features of the JDK that have been deprecated, were
deprecated in JDK 1.1 (e.g., the Java Date API). For these features, replacement features
have been readily available for a long time. As a sanity check, we looked for the usages
of the Date class in our database on API usages that was mined from GitHub based data.
There we see that only 47 projects ever use this class out of 65,437 Java based projects. This
indicates that almost all clients already use the replacement features instead of the features
that have been deprecated a long time ago.

11.2.2 Nature of Deprecated Features

Manually analyzing the list of features deprecated in the JDK, we found that many of these
features belong to the awt and swing sub-systems. Both these sub-systems provide GUI
features for developers. The nature of the projects hosted onMaven Central is such that most
of these projects do not provide a graphical interface as they are, in most cases, intended
to be used as libraries. Nevertheless, the analysis of the 65,437 GitHub clients also shows
the same behavior, thus mitigating the risk of a sample selection bias. Other than just GUI
features, the JDK also has internal features and security features that have been deprecated.
These are not intended for public use, hence, we do not see these among the projects that
we investigate.

Empir Software Eng (2018) 23:2 –21 1 758 92186

11.2.3 Nature of Projects

Our dataset contains all the projects from Maven Central. The fact that a project is released
in an official site such as Maven Central indicates that high level of adherence to Software
engineering practices among its developers. Given that these projects are in the public eye,
and free for all to reuse, developers of these projects must have made every effort to ensure
high code quality. This might have resulted in us seeing such low usage of deprecated fea-
tures. Moreover, our dataset contains information on over 56,000 projects, and for each
project, we have data on each release. However, we do not have any information at com-
mit level. This might prevent us from detecting real time usage of a deprecated artifact and
any reaction that might take place. All usages of deprecated features might have been taken
out by the time the release is made to Maven Central. Thus, we might miss some depreca-
tion information. Nevertheless, results from the 65,437 GitHub clients are in line with the
findings from Maven Central.

11.2.4 Documentation of the JDK

The JDK API is the best-documented API out of the ones that we have studied in this paper.
They have detailed reasons behind every deprecation, thus allowing a developer to make
an informed choice on reacting to the deprecation. This documentation also mentions the
replacement feature that should be used in the event that a developer would like to react to
the deprecated feature. Java is also one of the most popular languages in the world (http://
www.tiobe.com/tiobe index 2017; http://pypl.github.io 2017), thus leading to the generation
of a large amount of community-based documentation (e.g., Stackoverflow, blog posts, and
books) that provide a developer with every aid imaginable to use the Java API in the right
manner. Also, Java is one of Oracle’s most important projects and the company ensures
that there are plenty of programming guides available on its own website. This amount of
developer support could be one of the reasons why we see very few projects who are affected
by deprecation.

11.2.5 Deprecation Policy in JDK

The Java developers have made a commitment to not removing deprecated features in any
current or future release (http://www.oracle.com/technetwork/java/javase/compatibility-
417013.html#incompatibilities 2017). However, the JDK developers recommend removing
all the deprecated features as soon as possible. The main reason they keep deprecated fea-
tures is to ensure backward source code compatibility with previous versions. This does not
act as an incentive for a developer to change the version of the JDK being used, hence, it
might result in fewer projects changing the JDK version and being affected by deprecation.

11.3 Impact of Deprecation Policy

We see in RQ6 that different APIs deprecate their features in different manners. They all
differ in terms of time taken to deprecate a feature or remove a feature or the number of
features that are removed from the API. Based on different characteristics that we define,
we find that we can cluster 50 APIs into 7 distinct clusters, each with their own defining
characteristic.

Empir Software Eng (2018) 23:2 –21 1 758 9 2187

http://www.tiobe.com/tiobe_index
http://www.tiobe.com/tiobe_index
http://pypl.github.io
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html#incompatibilities
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html#incompatibilities

We see that in the case of Guava, Spring, and Hibernate, the clients react as predicted
by the clusters in which these APIs found themselves. However, in the case of Easymock,
we do not see the expected behavior among its clients. This tells us that the clusters are not
perfect in every case and may have to be expanded upon by studying more APIs. However,
what we do see is that the deprecation policy adopted by an API does indeed have an impact
on its clients, thus providing API developers with an insight into how the deprecation policy
they adopt affects a client and what policy they should adopt in the event they want to
minimize the impact on their client.

11.4 Future Research Directions

Below we enumerate a couple of promising future lines of research worth pursuing:

11.4.1 If it ain’t Broke, don’t Fix it

We were surprised that so many projects did not update their API versions. Those that
often do it slowly, as we saw in the cases of Easymock or Guice. Developers also routinely
leave deprecated method calls in their code base despite the warnings and even often add
new calls. This is despite all the APIs providing precise instructions on which replacements
to use. As such the effort to upgrade to a new version piles up. Studies can be designed
and carried out to determine the reasons for these choices, thus indicating how future
implementations of deprecation can give better incentives to clients of deprecated methods.

11.4.2 Further Investigating the Deprecation Polices

We see that different APIs do actually adopt different deprecation strategies and this appears
to have an impact on the clients of these APIs. However, we have been only able to discuss
this for the APIs in our analysis. As a further step, one could assess the impact of deprecation
policies on the clients for all the APIs that were used to make the clustering. This would
reinforce the idea of deprecation policies and their impact on a client.

11.4.3 Impact of Deprecation Messages

We also wonder if the deprecation messages that Guava has, which explicitly state when the
method will be removed, could act as a double-edged sword: Part of the clients could be
motivated to upgrade quickly, while others may be discouraged and not update the API or
roll back. In the case of Easymock, the particular deprecated method that has no documented
alternative may be a roadblock to upgrade. Studies can be devised to better understand the
role of deprecation messages and their real effectiveness.

11.4.4 Volume of Available Documentation

In the case of popular APIs such as the JDK API or JUnit, there is a large amount of docu-
mentation that is available. This might impact the reaction pattern to deprecation given that
there is likely some document artifact that addresses how to react to a deprecated entity.
On the other hand, for smaller or less popular APIs which do not have as much commu-
nity documentation or vendor based documentation, support for the developer might not be
available. Overall, the volume of API documentation might impact the reaction pattern to
deprecation, a fact that warrants future investigation.

Empir Software Eng (2018) 23:2 –21 1 758 92188

11.5 Threats to Validity

Since we do not detect deprecation that is only specified by Javadoc tags, we may underes-
timate the impact of API deprecation in some cases. To quantify the size of this threat, we
manually checked each API and found that this is an issue only for Hibernate before ver-
sion 4, while the other APIs are unaffected. For this reason, a fraction of Hibernate clients
could have some innacuracies. We considered crawling the online Javadoc of Hibernate to
recover these tags, but we found that the Javadoc of some versions of the API were missing
(e.g. version 3.1.9).

Even though our findings are focused on the clients, for which we have a statistically
significant sample, some of the results depend on the analyzed APIs (such as the impact of
the API deprecation strategies on the clients). As we suggested earlier in this section, further
studies could be conducted to investigate these aspects.

The use of projects from GitHub leads to a number of threats, as documented by
Kalliamvakou et al. (2014). In our data collection, we tried to mitigate these biases (e.g.,
we only selected active projects), but some limitations are still present. The projects are all
open-source and some may be personal projects where maintenance may not be a priority.
GitHub projects may be toy projects or not projects at all (still from Kalliamvakou et al.
2014); we think this is unlikely, as we only select projects that use Maven: these are by def-
inition Java projects, and, by using Maven, show that they adhere to a minimum of software
engineering practices.

Projects on Maven central need not always follow the same name. There are occasions
where a project has renamed itself to another artifact ID or to another group ID. There is no
automated way to keep up with these renames, as this information is unavailable on Maven
central. Due to this, for certain project we might miss out on their evolution and thus might
missclassify their reaction pattern w.r.t JDK deprecations.

The projects on Maven Central were expected to adhere to semantic versioning when
releasing different versions of their projects. However, previous work by Raemaekers et al.
(2014) shows that only 50% of the projects on Maven Central use the versioning system in
the right way. Due to this, we can not and did not rely on version numbers of the various
projects under study to ensure that they are ordered in the right way when we analyze their
evolution. To overcome this we use the release date as a way to order the versions. However,
this might not be accurate given that in some cases a relase pertaining to major version 3
might be made after a release to major version 4. This might impact the accuracy of our
results, however, a manual inspection showed that the former case happens in a very small
percentage of cases, thus the impact on our results appeared to be negligible.

Finally, we only look at the master branch of the projects. We assume that projects follow
the git convention that the master branch is the latest working copy of the code (Chacon
2009). However, we may be missing reactions to API deprecations that have not yet been
merged in the main branch.

12 Related Work

12.1 Studies of API Evolution

Several works study or discuss API evolution, the policies that regard it, and their impact
on API developers and clients.

Empir Software Eng (2018) 23:2 –21 1 758 9 2189

When it comes to an API, one of the first decisions is what to leave out. Many projects
have so-called internal APIs, that, despite being publically accessible, are reserved for inter-
nal usage by the project (Businge et al. 2013a). They are not intended to be used by clients
and may change without warning from one release to the next. Businge et al. (2013a) found
that 44% of 512 Eclipse plugins that they analyzed used internal Eclipse APIs, a finding
echoed in a larger study by Hora et al. (2016), that found that 23.5% of 9,702 Eclipse
client projects on GitHub used internal APIs. Shedding more light on the issue, a survey by
Businge et al. (2013b) found that 70% of 30 respondents used internal APIs because they
couldn’t find a public API with the equivalent functionality, and re-implementation of the
functionality would be too costly. Hora et al. (2016) observed that some internal APIs were
later promoted to public APIs, and presented an approach to recommend internal APIs for
promotion. These findings agree with our study, in that they also show that maintainabil-
ity often takes a back to functionality, a fact reflected in the unwillingness to update APIs,
which can lead to considerable technical debt.

Studies closely related to this paper (i.e., Robbes et al. 2012 and Hora et al. 2015), that
deal with deprecation policies of APIs and their impact on API clients have been performed
on the Pharo ecosystem. The first study focused on API deprecations and their impact on
the entire Pharo ecosystem. The second study focused on API changes that were not marked
as deprecations beforehand. They look at the APIs policy to change features and the impact
these changes have on the client.

Brito et al. (2016) analyze deprecation messages in more than 600 Java systems, finding
that 64% of deprecated methods have replacement messages. This implies that API clients
are provided with support when reacting to deprecation.

While neither Brito’s study nor ours look extensively into the reasons why API elements
are deprecated, other works did. Hou and Yao (2011) studied release notes of the JDK, AWT
and Swing APIs, looking for rationales for the evolution of the APIs. In the case of depre-
cated API elements, several reasons were evoked: Conformance to API naming conventions,
naming improvements (increasing precision, conciseness, fixing typos), simplification of
the API, coupling reduction, improving encapsulation, or replacement of functionality. Of
note, a small portion of APIs elements was deleted without replacements. Our manual anal-
ysis of deprecation messages found that was also the case in the APIs that we studied. We
found relatively few rationales for deletion of API elements, with the most common reason
being that the method concerned was no longer needed.

The versioning policy adopted by an API might give an API client an indication as to
what kind of changes could be expected in that version. To that end, Raemaekers et al.
investigated the relation among breaking changes, deprecation, and the semantic version-
ing policy adopted by an API (Raemaekers et al. 2012). They found that API developers
introduce deprecated artifacts and breaking changes in equal measure across both minor
and major API versions, thus not allowing clients to predict API stability from semantic
versioning.

The evolution policy of Android APIs has been extensively studied. McDonnell et al.
(2013) investigate stability and adoption of the Android API on 10 systems; the API changes
are derived from Android documentation. They found that the Android API’s policy of
evolving quickly leads to clients having troubles catching up with the evolution. Linares-
Vásquez et al. also study the changes in Android, but from the perspective of questions
and answers on Stack Overflow (Linares-Vásquez et al. 2014), not API clients directly.
Bavota et al. (2015) study how changes in the APIs of mobile apps (responsible for defects
if not reacted upon) correlate with user ratings: successful applications depended on less

Empir Software Eng (2018) 23:2 –21 1 758 92190

change-prone APIs. This is one of the few large-scale studies, with more than 5,000 API
applications.

Web based API evolution policies have also been studied. Wang et al. (2014) study the
specific case of the evolution of 11 REST APIs. Instead of analyzing API clients, they also
collect questions and answers from Stack Overflow that concern the changing API elements.
Among the studies considering clients of web APIs, we find for example the one by Espinha
et al. (2015), who study 43 mobile client applications depending on web APIs and how they
respond to web API evolution.

APIs also break. Dig and Johnson studied and classified the API breaking changes in 4
APIs (Dig and Johnson 2006); they did not investigate their impact on clients. They found
that 80% of the changes were due to refactorings. Cossette and Walker (2012) studied five
Java APIs to evaluate how API evolution recommenders would perform in the cases of API
breaking changes. They found that all recommenders handle a subset of the cases, but that
none of them could handle all the cases they referenced.

In a large-scale study of 317 APIs, Xavier et al. (2017) found that for the median library,
14.78% of API changes break compatibility with its previous versions and that the fre-
quency of these changes increased over time. However, not that many clients were impacted
by these breaking changes (median of 2.54%). On the topic of breaking APIs, Bogart et al.
(2016) conducted interviews with API developers in 3 software ecosystems: Eclipse, npm,
and R/CRAN. They found that each ecosystem had a different set of values that influ-
enced their policies and their decisions of whether to break the API or not. In the Eclipse
ecosystem, developers were very reluctant to break APIs, strongly favoring backward com-
patibility; some methods were still present after being deprecated for more than 10 years.
The R/CRAN ecosystem places emphasis on the ease of installation of packages by end-
users, so packages are extensively tested to see if they work. As a result, API developers
notify their clients of the coming API changes, and may also coordinate with them to quickly
resolve issues, a finding also echoed by Decan et al. (2017). Finally, the npm ecosystem
values ease of change for API developers. Following semantic versioning, breaking the API
can be done by changing the major version number of the package. Since packages stay in
the repository, clients are free to upgrade or not when this happens.

Regarding the clusters of APIs that we found, APIs in clusters 1, 4, and 7 seem wary of
imposing too much work on their clients, and as such seem closer to the strategy employed
in the Eclipse ecosystem. APIs in Cluster 5 behave somewhat similarly, at least for older
API elements. On the other hand, the APIs in clusters 2, 3, and 6 are much less wary of
deprecating entities, similarly, to the npm and R/CRAN ecosystems.

Bogart et al. (2016) also detail some strategies clients use to cope with change, includ-
ing actively monitoring APIs for changes, doing so reactively, and limiting the number of
dependencies to APIs. The latter can go to the extreme of keeping a local copy of the API to
avoid migrating to a newer version in the case of R/CRAN. Another behavior is observed by
Decan et al. (2016) in the case of R/CRAN: the rigid policy of forcing all packages to work
together can become burdensome. Indeed, since packages have to react to API changes, the
coordination and reaction costs can be excessive. As a result, an increasing number of R
packages are now primarily found on GitHub, not CRAN, meaning that the developers are
not affected by R/CRAN’s strict policies.

Decan et al. (2017) also investigated the evolution of the package dependencies in the
npm, CRAN, and RubyGems ecosystems. An interesting finding in the context of this paper
is the increasing tendency in the npm and (to a lesser extent) RubyGems packages to specify
maximal version constraints. This means that some package maintainer specifies a maximal
version number of the packages they depend on, to shield themselves from future updates

Empir Software Eng (2018) 23:2 –21 1 758 9 2191

that might force them to react to breaking changes. This strategy is complementary to the
strategies documented by Bogart et al. mentioned above. They note that this behavior was
not observed in R/CRAN, where a single version of each package—the latest—is stored at
any given time, so specifying a specific version is of limited usefulness; package maintainers
have to update anyways. In this study, we found that a large number of API clients did not
update their API version (the exception being Spring), which seems to go along the lines of
the behavior observed by Decan.

12.2 Mining of API Usage

Studies that present approaches to mining API usage from client code are related to our
work, especially with respect to the data collection methodology.

One of the earliest works done in this field is the work of Xie and Pei (2006), where they
developed a tool called MAPO (Mining API usage Pattern from Open source repositories).
MAPO mines code search engines for API usage samples and presents the results to the
developer for inspection.

Mileva et al. (2010) worked in the field of API popularity; they looked at the dependen-
cies of projects hosted on Apache and Sourceforge. Based on this information they ranked
the usage of API elements such as methods and classes. This allowed them to predict the
popularity trend of APIs and their elements.

Hou and Pletcher (2010, 2011) used a popularity based approach to improve code
completion. They developed a tool that gave code completion suggestions based on the
frequency with which a certain class or method of an API was used in the APIs ecosystem.

Lämmel et al. (2011) mine usages of popular Java APIs by crawling SourceForge to
create a corpus of usage examples that form a basis for a study on API evolution. The API
usages are mined using type resolved Java ASTs, and these usages are stored in a database.

12.3 Supporting API Evolution

Beyond empirical studies on API evolution, researchers have proposed several approaches
to support API evolution and reduce the efforts of client developers. Chow and Notkin (1996)
present an approachwhere the API developers annotate changedmethodswith replacement rules
that will be used to update client systems. Henkel and Diwan (2005) propose CatchUp!, a
tool using an IDE to capture and replay refactorings related to the API evolution. Dig et al.
(2007) propose a refactoring-aware version control system for the same purposes.

Dagenais and Robillard observe the framework’s evolution to make API change rec-
ommendations (Dagenais and Robillard 2008), while Schäfer et al. observe the client’s
evolution (Schäfer et al. 2008). Wu et al. present a hybrid approach (Wu et al. 2010) that
includes textual similarity.

Nguyen et al. (2010) propose a tool (LibSync) that uses graph-based techniques to help
developers migrate from one framework version to another.

Finally, Holmes andWalker notify developers of external changes to focus their attention
on these events (Holmes and Walker 2010).

13 Conclusion

We have presented an empirical study on the effect of deprecation of Java API artifacts on
their clients. This work expands upon a similar study done on the Smalltalk ecosystem. The

Empir Software Eng (2018) 23:2 –21 1 758 92192

main differences between the two studies is in the type systems of the language targeted
(static type vs dynamic type), the scale of the dataset (25,357 vs 2600 clients) and the nature
of the dataset (third- party APIs vs third-party and language APIs).

We found that few API clients update the API version that they use. In addition, the
percentage of clients that are affected by deprecated entities is less than 20% for most
APIs—except for Spring where the percentage was unusually low. In the case of the JDK
API, we saw that only 4 clients were affected, and all of them were affected by deprecation
because they introduced a call to the deprecated entity at the time it was already deprecated,
thereby limiting the probability of a reaction from these clients.

Most clients that are affected do not typically react to the deprecated entity, but when a
reaction does take place it is—surprisingly—preferred to react by deletion of the offending
invocation as opposed to replacing it with recommended functionality. When clients do not
upgrade their API versions, they silently accumulate a potentially large amount of technical
debt in the form of future API changes when they do finally upgrade; we suspect this can
serve as an incentive not to upgrade at all.

The results of this study are in some respects similar to that of the Smalltalk study.
This comes as a surprise to us as we expected that the reactions to deprecations by clients
would be more prevalent, owing to the fact that Java is a statically typed language. On
the other hand, we found that the number of replacements in Smalltalk was higher than in
Java, despite Java APIs being better documented. In this study, we also studied how clients
of a language API (JDK API) are affected by deprecation, and we see that in contrast to
Smalltalk APIs, clients are rarely affected by deprecation. We also went further and looked
at the impact of deprecation policies on the reactions of clients, and found that an API’s
policy on deprecation may have a major role to play in a client’s decision to react. This leads
us to question as future work what the reasons behind this are and what can be improved in
Java to change this.

This study is the first to analyze the client reaction behavior to deprecated entities in a
statically-typed and mainstream language like Java. The conclusions drawn in this study
are based on a dataset derived from mining type-checked API usages from a large set of
clients. From the data we gathered, we conclude that deprecation mechanisms as imple-
mented in Java do not provide the right incentives for most developers to migrate away from
the deprecated API elements, even with the downsides that using deprecated entities entail.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Asm bytecode manipulator. http://asm.ow2.org/. Accessed on 7 April 2016
Bavota G, Linares-Vasquez M, Bernal-Cardenas CE, Penta MD, Oliveto R, Poshyvanyk D (2015) The impact

of api change-and fault-proneness on the user ratings of android apps. IEEE Trans Softw Eng (TSE)
41(4):384–407

Begel A, Zimmermann T (2014) Analyze this! 145 questions for data scientists in software engineering. In:
Proceedings of the 36th ACM/IEEE international conference on software engineering, ICSE ’14. ACM,
pp 12–23

Black A, Ducasse S, Nierstrasz O, Pollet D, Cassou D, Denker M (2009) Pharo by example. Square Bracket
Associates

Empir Software Eng (2018) 23:2 –21 1 758 9 2193

http://creativecommons.org/licenses/by/4.0/
http://asm.ow2.org/

Bogart C, Kästner C, Herbsleb JD, Thung F (2016) How to break an API: cost negotiation and commu-
nity values in three software ecosystems. In: Proceedings of the 24th ACM SIGSOFT international
symposium on foundations of software engineering (FSE), pp 109–120

Brito G, Hora A, Valente MT, Robbes R (2016) Do developers deprecate apis with replacement messages?
a large-scale analysis on java systems. In: 23nd IEEE international conference on software analysis,
evolution, and reengineering, SANER 2016, Osaka, Japan, March 14–18, 2016, p to appear

Brooks FP (1975) No silver bullet. Software state-of-the-art, pp 14–29
Businge J, Serebrenik A, van den Brand MG (2013a) Eclipse api usage: the good and the bad. Softw Qual J

23(1):107–141
Businge J, Serebrenik A, van den Brand M (2013b) Analyzing the eclipse API usage: putting the developer in

the loop. In: Proceedings of the 17th european conference on software maintenance and reengineering,
CSMR, pp 37–46

Chacon S (2009) Pro git. Apress
Chow K, Notkin D (1996) Semi-automatic update of applications in response to library changes. In:

Proceedings of international conference on software maintenance (ICSM), pp 359–368
Cossette BE, Walker RJ (2012) Seeking the ground truth: a retroactive study on the evolution and migration

of software libraries. In: Proceedings of 20th international symposium on the foundations of software
engineering (FSE). ACM, p 55

Dagenais B, Hendren L (2008) Enabling static analysis for partial java programs. ACM Sigplan Notices
43(10):313–328

Dagenais B, RobillardMP (2008) Recommending adaptive changes for framework evolution. In: Proceedings
of 30th international conference on software engineering (ICSE), pp 481–490

Decan A, Mens T, Claes M, Grosjean P (2016) When github meets CRAN: an analysis of inter-repository
package dependency problems. In: Proceedings of the 23rd IEEE international conference on software
analysis, evolution, and reengineering (SANER), pp 493–504

Decan A, Mens T, Claes M (2017) An empirical comparison of dependency issues in OSS packaging ecosys-
tems. In: Proceedings of the 24th IEEE international conference on software analysis, evolution and
reengineering (SANER), pp 2–12

Dig D, Johnson RE (2005) The role of refactorings in api evolution. In: ICSM 2005: proceedings Of the 21st
international conference on software maintenance, pp 389–398

Dig D, Johnson R (2006) How do apis evolve? A story of refactoring. J SoftwMaint Evol Res Pract 18(2):83–
107

Dig D, Manzoor K, Johnson R, Nguyen TN (2007) Refactoring-aware configuration management for object-
oriented programs. In: 29th international conference on software engineering, pp 427–436

Easymock api repository. https://github.com/easymock/easymock. Accessed on 7 April 2016
Espinha T, Zaidman A, Gross H-G (2015) Web api fragility: how robust is your mobile application?

In: Proceedings of the 2nd international conference on mobile software engineering and systems
(MOBILESoft). IEEE, pp 12–21

Fraser SD, Brooks Jr FP, Fowler M, Lopez R, Namioka A, Northrop L, Parnas DL, Thomas D (2007)
No silver bullet reloaded: retrospective on essence and accidents of software engineering. In: Proceed-
ings of 22nd ACM SIGPLAN conference on object-oriented programming systems and applications
(OOPSLA). ACM, pp 1026–1030

Gousios G (2013) The ghtorrent dataset and tool suite. In: Proceedings of the 10th working conference on
mining software repositories, MSR 2013, pp 233–236

Gousios G, Vasilescu B, Serebrenik A, Zaidman A (2014) Lean GHTorrent: Github data on demand. In:
Proceedings of the 11th working conference on mining software repositories, pp 384–387

Guava api repository. https://github.com/google/guava. Accessed on 7 April 2016
Guice api repository. https://github.com/google/guice. Accessed on 7 April 2016
Henkel J, Diwan A (2005) Catchup!: capturing and replaying refactorings to support API evolution. In:

Proceedings of 27th international conference on software engineering (ICSE), pp 274–283
Hibernate api repository. https://github.com/hibernate/hibernate-orm. Accessed on 7 April 2016
http://www.github.com. Last Accessed February 2017
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html#incompatibilities. Last Accessed

February 2017
Holmes R, Walker RJ (2010) Customized awareness: recommending relevant external change events. In:

Proceedings of the 32nd ACM/IEEE international conference on software engineering, vol 1. ACM,
pp 465–474

Hora A, Robbes R, Anquetil N, Etien A, Ducasse S, Valente MT (2015) How do developers react to api
evolution? The pharo ecosystem case. In: IEEE international conference on software maintenance and
evolution (ICSME), 2015. IEEE, pp 251–260

Empir Software Eng (2018) 23:2 –21 1 758 92194

https://github.com/easymock/easymock
https://github.com/google/guava
https://github.com/google/guice
https://github.com/hibernate/hibernate-orm
http://www.github.com
http://www.oracle.com/technetwork/java/javase/compatibility-417013.html#incompatibilities

Hora AC, Valente MT, Robbes R, Anquetil N (2016) When should internal interfaces be promoted to pub-
lic? In: Proceedings of the 24th ACM SIGSOFT international symposium on foundations of software
engineering (FSE), pp 278–289

Hou D, Pletcher DM (2010) Towards a better code completion system by api grouping, filtering, and
popularity-based ranking. In: Proceedings of the 2nd international workshop on recommendation
systems for software engineering, RSSE ’10. ACM, pp 26–30

Hou D, Pletcher DM (2011) An evaluation of the strategies of sorting, filtering, and grouping API methods
for code completion. In: IEEE 27th international conference on software maintenance, ICSM 2011,
Williamsburg, VA, USA, September 25–30, 2011, pp 233–242

Hou D, Yao X (2011) Exploring the intent behind API evolution: a case study. In: Proceedings of the 18th
working conference on reverse engineering (WCRE), pp 131–140

Ingalls D, Kaehler T, Maloney J, Wallace S, Kay A (1997) Back to the future: the story of squeak, a practical
smalltalk written in itself. In: Proceedings of the 12th ACM SIGPLAN conference on object-oriented
programming (OOPSLA) 1997, pp 318–326

Johnson RE, Foote B (1988) Designing reusable classes. Journal of Object-Oriented Programming 1(2):22–
35

Juzgado NJ, Vegas S (2011) The role of non-exact replications in software engineering experiments. Empir
Softw Eng 16(3):295–324

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils of
mining github. In: Proceedings of the 11th working conference on mining software repositories. ACM,
pp 92–101

Lämmel R, Pek E, Starek J (2011) Large-scale, ast-based api-usage analysis of open-source java projects. In:
Proceedings of ACM symposium on applied computing (SAC), p 1317

Lienhard A, Renggli L (2005) SqueakSource-Smart Monticello Repository. European Smalltalk User Group
Innovation Technology Award, August

Linares-Vásquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014) How do api changes trigger
stack overflow discussions? a study on the android sdk. In: Proceedings of 22nd international conference
on program comprehension (ICPC). ACM, pp 83–94

Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28(2):129–137
Lungu M, Robbes R, Lanza M (2010) Recovering inter-project dependencies in software ecosystems.

In: ASE’10: proceedings of the 25th IEEE/ACM international conference on automated software
engineering, ASE ’10, pp 309–312

McDonnell T, Ray B, Kim M (2013) An empirical study of API stability and adoption in the android ecosys-
tem. In: Proceedings of 29th IEEE international conference on software maintenance (ICSM). IEEE,
pp 70–79

Mileva YM, Dallmeier V, Zeller A (2010) Mining api popularity. In: Testing–practice and research
techniques. Springer, pp 173–180

Mooi E, Sarstedt M (2010) Cluster analysis. Springer
Nagappan M, Zimmermann T, Bird C (2013) Diversity in software engineering research. In: Proceedings of

the 2013 9th joint meeting on foundations of software engineering. ACM, pp 466–476
Nguyen HA, Nguyen TT, Wilson G. Jr., Nguyen AT, KimM, Nguyen TN (2010) A graph-based approach to

api usage adaptation. In: Proceedings of ACM international conference on object oriented programming
systems languages and applications, pp 302–321

PYPL popularity of programming language. http://pypl.github.io. Accessed on 19 Feb 2017
Raemaekers S, van Deursen A, Visser J (2012) Measuring software library stability through historical version

analysis. In: 28th IEEE international conference on software maintenance (ICSM). IEEE, pp 378–387
Raemaekers S, van Deursen A, Visser J (2014) Semantic versioning versus breaking changes: a study of

the maven repository. In: IEEE 14th international working conference on source code analysis and
manipulation (SCAM), 2014. IEEE, pp 215–224

Robbes R, Lungu M, Röthlisberger D (2012) How do developers react to api deprecation?: the case of a
smalltalk ecosystem. In: Proceedings of 20th international symposium on the foundations of software
engineering (FSE). ACM, p 56

Sawant AA, Bacchelli A (2015) A dataset for api usage. In: Proceedings of 12th IEEE working conference
on mining software repositories (MSR). IEEE, pp 506–509

Sawant AA, Bacchelli A (2016) Fine-grape: fine-grained api usage extractor – an approach and dataset to
investigate api usage. Empir Softw Eng 22(3):1348–1371

Schäfer T, Jonas J, Mezini M (2008) Mining framework usage changes from instantiation code. In:
Proceedings of 30th international conference on software engineering (ICSE), pp 471–480

Spring api repository. https://github.com/spring-projects/spring-framework. Accessed on 7 April 2016
Tiobe index. http://www.tiobe.com/tiobe index. Accessed on 19 Feb 2017

Empir Software Eng (2018) 23:2 –21 1 758 9 2195

http://pypl.github.io
https://github.com/spring-projects/spring-framework
http://www.tiobe.com/tiobe_index

Wang S, Keivanloo I, Zou Y (2014) How do developers react to restful api evolution? Service-Oriented
Computing pp 245–259

Wu W, Guéhéneuc Y-G, Antoniol G, Kim M (2010) Aura: a hybrid approach to identify framework evolu-
tion. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering, vol 1.
ACM, pp 325–334

Xavier L, Brito A, Hora AC, Valente MT (2017) Historical and impact analysis of API breaking changes:
a large-scale study. In: Proceedings of the 24th IEEE international conference on software analysis,
evolution and reengineering, (SANER), pp 138–147

Xie T, Pei J (2006) Mapo: mining api usages from open source repositories. In: Proceedings of the 2006
international workshop on mining software repositories (MSR). ACM, pp 54–57

Anand Ashok Sawant is a PhD student working in the Software Engineering Research Group at the Delft
University of Technology, The Netherlands. His current research interest is in API usage and API adoption.
His work involves mining of API usage from open source repositories, conducting empirical studies on usage
data and qualitative studies, all of which aim to further the understanding of API usage and improve the usage
of APIs.

Romain Robbes is an Associate Professor at the Free University of Bozen-Bolzano, in the SwSE research
group, where he works since April 2017. Before that, he was an Assistant, then Associate Professor at the
University of Chile (Computer Science Department), in the PLEIAD research lab. He earned his PhD in 2008
from the University of Lugano, Switzerland and received his Master’s degree from the University of Caen,
France. His research interests lie in Empirical Software Engineering, including, but not limited to, Mining
Software Repositories. He authored more than 80 papers on these topics, including top software engineering
and programming languages venues such as ICSE, FSE, ASE, EMSE, ECOOP, or OOPSLA, received best
paper awards at WCRE 2009 and MSR 2011, and was the recipient of a Microsoft SEIF award 2011. He
has served in the organizing and program committees of many software engineering conferences (ICSE,
MSR, WCRE, ICSME, OOPSLA, ECOOP, IWPSE, and others) and serves on the Editorial Boards of EMSE
and JSS.

Empir Software Eng (2018) 23:2 –21 1 758 92196

Alberto Bacchelli is SNFS Professor of Empirical Software Engineering at the University of Zurich, Switzer-
land, where he leads the Zurich Empirical Software Engineering Team (ZEST). His primary research interest
is in empirical software engineering. His focus is on developing and applying data science processes and
techniques to conduct empirical experiments on complex knowledge-based activities, particularly the devel-
opment of software, and improve their state of the practice. His goal is understanding and improving complex
knowledge- based activities, such as software engineering, with processes, practices, and tools informed by
data and actors’ needs, and by engaging with other disciplines such as social sciences. He tackles research
questions with both qualitative and quantitative research approaches. Prior to joining UZH, he have worked
four years as assistant professor at Delft University of Technology (TU Delft), The Netherlands, in the
Software Engineering Research Group (SERG).

Empir Software Eng (2018) 23:2 –21 1 758 9 2197

	On the reaction to deprecation of clients of 4+1 popular Java APIs and the JDK
	Abstract
	Introduction
	Methodology
	Research Questions
	Research Method, Contrasted with the Previous Study
	System Source
	Selection of Main Subjects
	API Version Usage
	Fine-Grained Method/Annotation Usage

	Detect Deprecation

	RQ0: What API Versions do Clients Use?
	RQ1: How does API Method Deprecation Affect Clients?
	Affected by Deprecation

	RQ2: What is the Scale of Reaction in Affected Clients?
	RQ3: What Proportion of Deprecations does Affect Clients?
	RQ4: What is the Time-Frame of Reaction in Affected Clients?
	Time to Deprecation
	Time to React

	RQ5: Do Affected Clients React Similarly?
	Consistency of Replacements
	Quality of documentation.

	RQ6: How are Clients Impacted by API Deprecation Policies?
	Methodology
	Clustering
	Results

	Summary of Findings
	Discussion
	Comparison with the Deprecation Study on Smalltalk
	Proportion of Deprecated Methods Affecting Clients
	Not Reacting to Deprecation
	Systematic Changes and Deprecation Messages
	Clients of Deprecated Methods

	Comparison Between Third-Party APIs and the JDK API
	Early Deprecation of Popular JDK Features
	Nature of Deprecated Features
	Nature of Projects
	Documentation of the JDK
	Deprecation Policy in JDK

	Impact of Deprecation Policy
	Future Research Directions
	If it ain't Broke, don't Fix it
	Further Investigating the Deprecation Polices
	Impact of Deprecation Messages
	Volume of Available Documentation

	Threats to Validity

	Related Work
	Studies of API Evolution
	Mining of API Usage
	Supporting API Evolution

	Conclusion
	Open Access
	References

