
Empir Software Eng (2015) 20:745–782
DOI 10.1007/s10664-013-9298-0

Object-oriented software extensions in practice

Romain Robbes ·David Róthlisberger · Éric Tanter

Published online: 29 January 2014
© Springer Science+Business Media New York 2014

Abstract As software evolves, data types have to be extended, possibly with new data vari-
ants or new operations. Object-oriented design is well-known to support data extensions
well. In fact, most popular books showcase data extensions to illustrate how objects ade-
quately support software evolution. Conversely, operation extensions are typically better
supported by a functional design. A large body of programming language research has been
devoted to the challenge of properly supporting both kinds of extensions. While this chal-
lenge is well-known from a language design standpoint, it has not been studied empirically.
We perform such a study on a large sample of Smalltalk projects (over half a billion lines of
code) and their evolution over more than 130,000 committed changes. Our study of exten-
sions during software evolution finds that extensions are indeed prevalent evolution tasks,
and that both kinds of extensions are equally common in object-oriented software. We also
discuss findings about: the evolution of the kinds of extensions over time; the viability of the
Visitor pattern as an object-oriented solution to operation extensions; the change-proneness
of extensions; and the prevalence of extensions by third parties. This study suggests that
object-oriented design alone is not sufficient, and that practical support for both kinds of
program decomposition approaches are in fact needed, either by the programming language
or by the development environment.

Keywords Object-oriented programming · Software evolution · Data extensions ·
Operation extensions · Empirical studies · Mining software repositories

Communicated by: Arie van Deursen

R. Robbes (�) · É. Tanter
PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile
e-mail: rrobbes@dcc.uchile.cl

É. Tanter
e-mail: etanter@dcc.uchile.cl

D. Röthlisberger
School of Informatics and Telecommunications, Universidad Diego Portales, Santiago, Chile
e-mail: roethlis@mail.udp.cl

mailto:rrobbes@dcc.uchile.cl
mailto:etanter@dcc.uchile.cl
mailto:roethlis@mail.udp.cl

746 Empir Software Eng (2015) 20:745–782

1 Introduction

Lehman’s laws of software evolution (Lehman and Belady 1985) tell us that software sys-
tems must continuously adapt, or become progressively less useful to their users. Over
time, new functionality is added to software systems. Inevitably, some functionality needs
to extend existing system components. Depending on the programming paradigm used,
different extensions have different consequences.

Extensions can happen along two dimensions: new data variants, or new operations.
Object-oriented programming is well-known for seamlessly supporting extensibility of
data variants, by introducing new kinds of objects. In contrast, the functional design
approach (Krishnamurthi et al. 1998)—where the variants of a data type are processed
by case-analyzing procedures—is better suited to support additions of new operations, by
introducing new procedures. Conversely, supporting new operations for objects requires
modifying all object definitions to add new methods, and adding new data variants in the
functional approach implies modifying all existing procedures to handle the new cases.

This complementarity between data types and “procedural data values” (objects) dates
back to the work of Reynolds in the 1970s (Reynolds 1975) and has been described by
other researchers since then (e.g., Cook 1990; Krishnamurthi et al. 1998; Wadler 1998).
Supporting both forms of extensions appropriately is a challenge that has a strong practi-
cal relevance, because the choice of a programming paradigm (or design approach) greatly
influences the kind of extension that is supported in a localized manner, without modify-
ing existing code. For instance, choosing an object-oriented decomposition to implement a
system whose evolution predominantly involves operation extensions is like using a ham-
mer to paint a wall: possible, but more complicated than using an appropriate tool, such
as a brush. The object-oriented programming community has in fact designed a solution
to handle operation extensions, called the Visitor design pattern (Gamma et al. 1994). A
visitor makes it possible to turn an operation extension scenario into a data extension sce-
nario. But once adopted, the Visitor pattern complicates data extensions, since a new data
type implies the modification of all existing visitor classes. Many programming language
constructs have been proposed in order to support both dimensions of extension in a modu-
lar (and type safe) manner (e.g. Krishnamurthi et al. 1998; Oliveira 2009; Torgersen 2004;
Zenger and Odersky 2005).

As a matter of fact, the literature on object-oriented programming very often illustrates
the superiority of objects in dealing with software evolution by showcasing data extension
scenarios (see Booch 1994 and Shalloway Trott 2004 for two popular books). Meyer also
claims that “One of the most frequent forms of extension to a system will be the addition
of new types [...] This is where object technology shines in its full glory” (Meyer 2009).
However, there is no empirical data on how frequently data extensions do occur, nor is there
evidence that data extensions are significantly more common than operation extensions,
even in object-oriented software.

The extensibility challenge can be investigated both from the point of view of the imple-
menters of a system—the kinds of extensions that have to be dealt with in the evolution of
the system—and from the point of view of black-box third-party extensions. The latter is
usually seen as the extensibility/expression problem stricto sensu (Wadler 1998; Torgersen
2004). This work is concerned with both viewpoints, and studies the evolution of open-
source object-oriented projects through their commit history. For the first perspective, we
look at how the implementers of a project add new data variants and operations to their class
hierarchies as the system evolves. Even if there is no strong impediment to change existing

Empir Software Eng (2015) 20:745–782 747

code in this setting, being able to express these extensions modularly does matter; it is well-
known that most of the costs of software development are in maintenance and evolution, not
in initial development (Erlikh 2000). For the third-party extension viewpoint, we also look
at how programmers extend external libraries, contrasting the findings of both settings.

Concretely, we seek to answer the following research questions:1

Q1: Are extensions prevalent in practice? Looking at the evolution of software, is it
really the case that new data variants and operations are frequently added? Or are other
kinds of changes (e.g. changing the implementation of a method) much more common
as to render the point moot?

Q2: Are data extensions more common than operation extensions? If, as is com-
monly said in the literature, object-oriented programming is really superior in dealing
with extensible software, we would expect object-oriented projects to showcase a greater
number of data extension cases. Is it really the case? Or conversely, are there much more
operation extensions, suggesting that another programming abstraction would be more
adequate? Or, are both kinds of extensions similarly important in practice?

Q3: How do extensions occur over time? Over the lifetime of an object-oriented sys-
tem, do both kinds of extensions manifest regularly? Or are unanticipated design
decisions leading to more problematic extension cases as the system ages?

Q4: Is the Visitor pattern a suitable solution? How much is the Visitor pattern used in
practice? In cases where it is adopted, are its benefits clearly observable? Are visitor and
visited hierarchies more stable than others?

Q5: How stable are extensions over time? Once an extension is performed, is it fre-
quent to update its definition? More precisely, for operation extensions, are the various
implementations of an operation uniformly subject to changes, thereby making their
non-modular implementation problematic in practice?

Q6: Are third-party extensions special? If we only consider extensions by third-
party—the expression problem stricto sensu—do we observe similar prevalence results
with respect to both kinds of extensions? How much is a mechanism like open classes
(known in Smalltalk as “class extensions”) really used to perform third-party operation
extensions?

Why Study Smalltalk? By observing the evolution of a large number of open source
Smalltalk projects, this paper presents elements of answers to these questions. We chose
to study Smalltalk for two reasons. First, Smalltalk is one of the languages that supports
third-party extensions, allowing us to investigate our last research question. Second, we did
previous work on the same corpus (Callaú et al. 2012; Robbes et al. 2012a) allowing us to
reuse our expertise about the systems we investigate, the data we gathered, and part of the
tool support we implemented.

Smalltalk is a dynamically-typed object-oriented language, like JavaScript, Python and
Ruby, which are increasingly popular. Therefore, this study does not answer the research
questions above in a typed context. Whether or not static typing has an influence on exten-
sions during software evolution is an open question that future studies should address. Also,
because Smalltalk is object oriented, we get to observe how object programmers actually
benefit (or not) from working in that paradigm. Studies based on other languages, including

1This paper extends our previous conference publication (Robbes et al. 2012b) with two new research ques-
tions, one related to the stability of extensions (Q5) and the other related to the analysis of third-party
extensions (Q6).

748 Empir Software Eng (2015) 20:745–782

abstract eval()
abstract print()

Expr

abstract eval()
Expr

eval(){ ... }
Num

eval(){ ... }
Add

eval(){ ... }
Sub

eval(){ ... }
print(){ ... }

Num
eval(){ ... }
print(){ ... }

Add
eval(){ ... }
print(){ ... }

Sub

abstract eval()
Expr

eval(){ ... }
Num

eval(){ ... }
Add

a b c

Fig. 1 A class hierarchy (a) and two extensions: data extension (b), and operation extension (c). Changes
are highlighted in gray

those that natively support both decomposition approaches, would be needed to answer the
research questions above in general. This study is therefore a first step towards providing
substance to the long-running debate that takes place in the programming language research
community about different forms of data abstractions (Cook 2009).

Structure of the Paper Section 2 briefly reviews background and related work. Section 3
describes the experimental setup, explaining how the data was collected and processed.
The next six sections report our findings related to the six research questions stated above.
Section 10 discusses threats to the validity of this study, and Section 11 concludes.

2 Background and Related Work

We first explain the different kinds of extensions and how to deal with them in object-
oriented programming, including the Visitor design pattern. We then review related studies
of object-oriented programming practice.

2.1 Extensibility in OOP

Consider the object-oriented design of a simple programming language of arithmetic expres-
sions (Fig. 1a).2 Expression subclasses Num and Add implement their own evaluation
method. A first kind of extension is data extension, which consists in adding new data vari-
ants; in that case, a new kind of expression (Fig. 1b). Note how the object paradigm makes
this extension localized: it is enough to add a new subclass. A second kind of extension
is operation extension, e.g. extending the protocol of expressions, such that they can also
be pretty-printed. The object-oriented decomposition is much less suited for this kind
of extension, which requires invasive and non-localized modifications of existing classes
(Fig. 1c).

One could also decide to implement the different variants of the operation in separate
objects (e.g. NumPrinter, AddPrinter). The superclass Expr can declare a Printer
field and implement print so that it delegates to these objects. In terms of modularity,
each subclass still needs to initialize the printer field adequately, therefore the scattering
related to the operation remains.

Finally, in certain scenarios, the new operation is independent of the particular subclass,
in which case it can be defined as a single method in the superclass. It is then inherited in all
subclasses, without having to modify them. Such an extension is therefore implementable

2Anticipating the fact that we study Smalltalk code, we present the example in a dynamically-typed class-
based setting, using inheritance to define data variants.

Empir Software Eng (2015) 20:745–782 749

modularly with an object-oriented decomposition; but it would also be implementable mod-
ularly with a functional decomposition. For this reason, we do not focus on such cases in
this paper.

The Visitor design pattern (Gamma et al. 1994) is the standard way to handle operation
extensions in a modular manner in object-oriented programming. It is illustrated on Fig. 2.
It consists of preparing the hierarchy to extend so that it accepts visitor objects, e.g. add a
method accept on each class of the Expr hierarchy (Fig. 2a). A separate hierarchy of vis-
itors is then defined, each for its own operation (e.g. EvalV extends from ExprVisitor).
Adding a new operation on the hierarchy is now expressed as adding a new visitor subclass,
e.g. PrintV (Fig. 2b). Note that applying the Visitor pattern increases the complexity of
the system, and that adding a new data variant in the visited hierarchy (e.g. Sub) implies
extending all the visitors with new visit methods (Fig. 2c).

2.2 Related Work

As far as we are aware, there are no empirical studies of the prevalence of extensions dur-
ing software evolution, nor on comparing the kinds of extensions (data vs. operation) that
happen in real world projects. There are however several related studies of characteristics
of source code, class hierarchies, and their evolution.

Gı̂rba et al. define a visualization of class hierarchies that incorporates evolutionary met-
rics, such as age of class, age of inheritance links etc. (Gı̂rba et al. 2005). Based on a study
of two open-source systems, they identify several visual patterns to characterize the evolu-
tion of the hierarchies. The patterns are however coarse as the unit of granularity is the class,
and are aimed to answer general evolution questions, such as the distribution of changes
across hierarchies.

A study by van Rysselberghe and Demeyer analyzed hierarchy changes on two Java
systems (Van Rysselberghe and Demeyer 2007). The exploratory study led to the formula-
tion of 7 hypotheses to be investigated, such as “Hierarchy changes are likely to insert an
additional abstraction between the old parent and the center class” and “Inheritance is only
rarely replaced by composition”. Due to its limited extent this study however only hinted at
the answer to the hypotheses; its findings need to be confirmed by a larger-scale study.

Baxter et al. performed an empirical study on 16 releases of several Java systems, in
order to investigate the distribution of several metrics and whether those followed power
laws (Baxter et al. 2006). Later, Tempero et al. focused on the use of inheritance in Java
software, using the same corpus (expanded to 93 programs), and a suite of 23 metrics
(Tempero et al. 2008); they found a larger amount of inheritance than they expected: around
three-quarters of classes used inheritance (for half of the applications in the corpus). A

accept(Visitor)
Expr

accept(Visitor v){...}
Num

accept(Visitor v){ ... }
Add

abstract visit(Num n)
abstract visit(Add a)

ExprVisitor

visit(Num n){...}
visit(Add a){...}

EvalV
visit(Num n){...}
visit(Add a){...}

PrintV

abstract visit(Num n)
abstract visit(Add a)
abstract visit(Sub s)

ExprVisitor

visit(Num n){...}
visit(Add a){...}
visit(Sub s){...}

EvalV
visit(Num n){...}
visit(Add a){...}
visit(Sub s){...}

PrintV

a b c

Fig. 2 A class hierarchy prepared to accept visitors (a). The hierarchy of visitors is extended with a visitor for
printing (b). Adding a new data type implies modifying all the visitor hierarchy (c). Changes are highlighted
in gray

750 Empir Software Eng (2015) 20:745–782

large-scale survey of programmers by Gorschek et al. (2010) found a lack of consensus
on what the size of classes and depth of hierarchies should be. A recent large-scale study
(2,080 Java programs, found on Sourceforge) by Grechanik et al. formulated 32 research
questions (Grechanik et al. 2010). Of those, several were related to class hierarchies. They
found that almost 50 % of the classes are written without using inheritance, and that 71 %
of the hierarchies had a depth of one. These findings differ somewhat from the ones of Tem-
pero, who found a higher usage of inheritance. However, the metrics used in both studies
differ, so comparison is difficult. All of these studies investigate a large number of research
questions—trading depth for breadth—while we focus on the handful of questions that
allow us to characterize extensions during the evolution of object-oriented software.

Parnin et al. (2012) investigated how 20 open-source Java projects adopted the Java
Generics, and found that there was less Generics usage than they expected, and that most
cases were due to type-safe collection traversals.

Finally, Aversano et al. studied the evolution of several design patterns, including the
Visitor pattern, on three software systems (Aversano et al. 2007). They found that classes
involved in the Visitor pattern were among the most changed in one of the systems (Eclipse
JDT), but that the changes were mostly in the visitor hierarchy, not in the visited hierarchy.
The study considers design patterns in general, and is focused on three systems only.

3 Experimental Setup

3.1 Data Collection

Squeaksource We analyze a large extract of the Squeaksource3 repository for Smalltalk
projects written in either Squeak or Pharo (a fork of Squeak). Squeaksource is the foun-
dation for the software ecosystem that the Squeak and Pharo community have built over
the years. The majority of Squeak and Pharo developers use Squeaksource as their primary
source code repository, making it a nearly complete view of the Squeak and Pharo software
ecosystem. The Squeaksource extract we analyze spans 8 years and involves approximately
2,500 projects consisting of more than 95,000 unique classes. Summing all versions of all
projects yields nearly 600 million lines of code. Over the course of these 8 years, more than
2,300 developers committed around 130,000 changes to Squeaksource. Figure 3 shows an
evolution plot of the Squeaksource repository illustrating how the number of committed
versions grows from 2003 to July 2011, marking the end of the period we analyze in this
paper. The graph shows sustained activity for the entire period, with thousands of monthly
commits in the later periods.

Monticello To version their source code in Squeaksource, developers use the versioning
system Monticello. When committing a new version of a project, Monticello stores a snap-
shot of the entire committed package, without computing the delta to the previous version.
Squeaksource is hence a large filesystem directory. With each commit, meta-information is
recorded. Monticello has the particularity that it is a language-aware version control system:
it was designed for the specific purpose of versioning Smalltalk code. As such, Monticello
versions code at the level of packages, classes, and methods, not at the level of files and
lines of code. This allows the analyses (differencing, merging, conflict detection, etc) to

3http://www.squeaksource.com

http://www.squeaksource.com

Empir Software Eng (2015) 20:745–782 751

Fig. 3 The evolution of the Squeaksource repository from January 2003 to July 2011 in terms of number of
versions contributed

be done at the level of methods and classes, instead of simply lines of code, providing a
clearer view of the conflicts. A further interesting aspect of Monticello is that is supports
class extensions: a method can be defined and versioned in another package than the class
it belongs to. This feature allows a package to extend the behavior of an existing class; we
will inspect that particular feature in Section 9. All these advantages do not come for free: a
language-aware versioning system such as Monticello can not be used to version resources
beyond source code (e.g. documentation, graphics, etc) (Robbes and Lanza 2005).

Ecco To actually analyze the Squeaksource repository we use the Ecco model (Robbes and
Lungu 2011). Ecco is a lightweight representation of software systems and their versions in
an ecosystem. The main unit of abstraction is the system (or software project). For each pair
of successive versions of a system, Ecco only keeps the changes between the versions. These
changes consist of sets of additions, modifications, and removals of classes and methods in
the system. Meta-information such as author, timestamp, and links to one or more ancestors
and successors versions are maintained as well; the model allows multiple links between
ancestors and successors to accommodate forks and merge operation.

Ecco allows us to effectively and efficiently process and analyze the large set of changes
(approximately. 13GB of compressed source code) we extracted from Squeaksource. Ecco

752 Empir Software Eng (2015) 20:745–782

visitEntry:
CZVisitor

visitEntry:
CZRawOutputer

visitEntry:
CZVisitor

visitEntry:
CZRawOutputer

visitEntry:
CZHtmlOutputer

visitEntry:
visitField:

CZRawOutputer
visitEntry:
visitField:

CZHtmlOutputer

visitEntry:
visitField:

CZOutputer

visitEntry:
CZOutputer

visitEntry:
CZRawOutputer

visitEntry:
CZHtmlOutputer

a b c d

Fig. 4 The Citezen visitor hierarchy: a initial version, b after a data extension, c after renaming the root
class, and d after an operation extension

acts as a front-end for Monticello, abstracting its functionality to the level of the analysis.
Each package version in Ecco is associated to a Monticello package version; this allows
us to get detail on demand about the projects in the system when it is deemed necessary,
accessing Monticello’s APIs for that. Likewise, we use Monticello’s difference engine to
extract the changes between the versions of the system; the actual change analysis specific
to this study is described in the next section.

3.2 Data Processing

Before analyzing extension scenarios in the code base, we process the changes from
Squeaksource in various steps, described below.

Extension Detection We limit our analysis to the granularity of methods. We do not look
into the source code of methods, but stop at the method boundary. Moreover, we only study
the additions of classes and methods, but not their modifications. The kinds of extensions
can be well quantified by keeping track of additions of classes and methods, since a data
extension corresponds to the addition of one or more classes to a hierarchy and an operation
extension to the addition of a new method to several classes of a hierarchy.

To detect operation and data extensions, we track the evolution of each class hierarchy in
a software project. A real example of such a hierarchy evolution is depicted in Fig. 4, which
shows the visitor hierarchy of Citezen, an application for managing bibtex files on the
web. If in a particular change a new class is added to a hierarchy, we consider the addition
to be a data extension4 (shown in Fig. 4b where class CZHtmlOutputer has been added).
The addition of a method with the same name to a least two classes of a hierarchy in a
particular change is considered to be an operation extension (e.g. Fig. 4d, where method
visitField: is introduced). If a change adds only one method to a class hierarchy, but
previous or subsequent changes add methods with that name to the same hierarchy, this
single method addition is also considered to be part of an operation extension. Additions
of methods being unique in the hierarchy in current, previous and subsequent versions are
not considered in this study because such additions are local by definition and hence do not
impose a problem from an extensibility point of view.

In the case where several classes containing methods with the same name are added to
the same hierarchy in the same change, these added methods could actually be detected as
operation extensions. For a data extension, we however consider all methods added in the
new classes to belong to this data extension, thus no operation extensions are identified in
such a scenario.

The root class of any hierarchy can be renamed during the lifetime of a project (e.g. root
class CZVisitor is renamed to CZOutputer in Fig. 4c). In Monticello, renaming an

4Adding a new subclass of Object is not considered a data extension.

Empir Software Eng (2015) 20:745–782 753

entity means removing the entity with the old name and adding a new entity with the new
name. As we can hence not directly determine a rename of a root class in the changes, we
employ an algorithm that tests for every removed root class whether any class newly added
in the same change might actually be the renamed version of this root class. For this we
compare the set of methods of the removed class with the one of the newly-added class
(subclasses of the new and old class are not compared to make the algorithm independent
of possible renames to subclasses occurring in the same change). If these sets overlap for at
least 80 % of the methods, we consider this change as a rename and exchange the old root
of the hierarchy with the newly-added class.

Extension Weighting While simply counting the number of extensions gives us an idea
of their relative frequency, we want to study the phenomenon further. We also weight the
extensions by the number of methods involved in them, in order to have an approximation
of the size of each kind of extensions.

The reason we measure the number of methods, and not for instance the number of lines
of code, is that the difference between the two kinds of extension is one of modularity. In
the case of a data extension, the set of methods implementing the new behavior is added in a
single module. In the case of an operation extension however, the set of methods is scattered
over a set of modules. The complexity of each individual method would be very similar
in each decomposition, but the factor that varies is their location in the system. Adding an
operation as a set of methods in several classes implies identifying the classes that need
to change, and understand each changing class enough to add the new method. One could
argue that such a process requires more effort due to the multiple context switches involved.
However, this is hard to measure. In the absence of that, we believe the number of methods
contained in the extension is a good indicator of both the size and the scattered-ness of the
extension, and use that metric in the rest of the paper.

Visitor Detection To detect occurrences of the Visitor pattern and extensions to them, we
search for methods whose name is starting with accept or visit. What follows this
prefix is usually the name of the class being visited, e.g. visitField: typically accepts
an instance of class Field (or subclasses). The visitor hierarchy is the class hierarchy
in which one or more methods following this name pattern are located, while the visited
hierarchy is the hierarchy containing the visited class (e.g. Field). We also support the
case when a visitor is visiting various hierarchies, or when a visited hierarchy is visited by
several independent visitors.

Aggregation Beyond class hierarchies, we are also interested in how our analysis translates
to the level of projects. Recent work by Posnett et al. shows that findings at one level of
abstraction do not necessarily translate to finer or coarser levels—a phenomenon known as
the ecological fallacy (Posnett et al. 2011). For our study we expect that the proportion of
projects featuring extensions is higher than the same proportion for class hierarchies. Since
the extensions could also be concentrated on a few, possibly large projects, the project level
analysis is important to reveal how extensions are distributed over the projects.

Classification To ease the analysis of the data, we classify the changes, that is, the com-
mits to the projects in three categories: (i) initial, (ii) large, and (iii) selected commits. (i)
The first commit to a project reflects the initial development of a project. (ii) Large com-
mits consist of more than 50 added classes and methods. Note that initial commits are often
also large commits. The threshold value of 50 additions of classes and methods is motivated

754 Empir Software Eng (2015) 20:745–782

by the fact that the distribution of commit size has an inflection point near 50 additions,
meaning that the number of commits per number of additions is from a peak at one addition
rapidly decreasing to 50 additions per commit while from there on its slowly and steadily
decreasing, hence only outlier commits include more than 50 additions. (iii) Selected com-
mits are all commits neither classified as initial nor large. This classification is necessary
because initial commits carry no change information, and large commits can hardly be
meaningfully analyzed because they contain too many changes and are therefore considered
as noise (Zimmermann et al. 2005).

We also classify class hierarchies and projects in two categories: (i) all and (ii) large
hierarchies or projects. A large hierarchy has a size of more than five classes. A large project
is one with more than 50 classes. The selected thresholds approximately represent the third
quartile of the distributions, that is, only 25 % of all hierarchies have more than five classes
while only 25 % of the projects have more then 45 classes. To be in sync with the threshold
of 50 additions for large commits, we have opted to use a 50 classes threshold for large
projects instead of the 45 classes representing the third quartile.

This classification is interesting because the impact of an operation extension is arguably
more critical in large cases.

Filtering A large and publicly accessible repository like Squeaksource typically also con-
tains many toy or abandoned projects that would add undesired noise to our analysis. Hence
we only take into account class hierarchies that have been changed at least five times and that
contain at least two classes (one root and one subclass). Except for the first measurement of
Section 4, we only analyze selected commits.

3.3 Basic Statistics in Squeaksource

Processing the dataset as discussed gives us the following information to be analyzed in
detail in subsequent sections (Fig. 5): We start with 131,544 commits; of those, 13,148
commits are classified as large or initial commits, leaving us with 118,396 selected commits.
The 95,662 classes are organized in 48,595 hierarchies. Of those, 20,045 have more than
one class. This means that 28,550 of the 95,662 classes (29.84 %) do not use inheritance, a
figure that concords with that reported by Tempero et al. (2008).

Out of these hierarchies, we select 10,390 satisfying our thresholds of size (at least 2
classes) and activity (at least 5 changes); these are the focus of our analysis. Of these 10,390
class hierarchies, 2,879 have at least an operation or a data extension in selected commits.
Also, 2,360 of these 10,390 class hierarchies are classified as large (more than 5 classes).
We analyze 2505 projects, of which 569 are classified as large (more than 50 classes); 1036
of the projects feature either operation or data extensions in selected commits.

In a single commit, the largest operation extension we found added 40 methods to the
hierarchy, whereas 36 classes were added to the same hierarchy in a single commit. This
excludes large and initial commits, including several legitimate operation extensions. These
large values lead us to investigate the distribution of the metrics.

Distribution of Metrics Figure 6 shows the distribution of our metrics of interest across
projects and class hierarchies, applying a logarithmic scale on the y-axis to account for the
relative large number of hierarchies and projects with no extensions. None of the distribution
follows the characteristic “bell shape” of a normal distribution. Instead, they seem to follow
exponential or power-law distributions, where the overwhelming majority of observations
has very low metric values, and a minority has high values. Previous work confirmed that

Empir Software Eng (2015) 20:745–782 755

All commits (131,544)

Selected commits (118,396)

All hierarchies (48,595)

 2 classes (20,045)1 class (28,550)

Selected (10,390)< 5 changes (9,655)

Large
(2,360)Small (8,030)

All projects (2,505)

Large (569)Small (1,936)

Initial (9,795) and/or large (12,293)

< 50 classes 50 classes

< 50 classes 50 cls

Fig. 5 Diagram showing number of selected commits, hierarchies and projects after filters have been applied

power laws are common in software, be it in Java source code (Baxter et al. 2006), or even in
a variety of metrics, including source code metrics, but also dependencies between libraries
(Louridas et al. 2008). This observation and the presence of outliers on the tail end of the
distributions, leads us to use robust descriptors when characterizing the distributions, i.e. the
median instead of the mean, and either boxplots (showing percentiles) or violin plots as a
visual summary of the distributions.

1
10

10
0

10
00

Hierarchies: Size

Number of classes

F
re

qu
en

cy

0 100 250 400 550 700

1
10

10
0

10
00

Operation extensions

Number of operation extensions

F
re

qu
en

cy

0 40 80 140 200 260

1
10

10
0

10
00

Data extensions

Number of data extensions

F
re

qu
en

cy

0 30 60 90 120 160

1
5

50
50

0

Projects: Size

Number of classes

F
re

qu
en

cy

0 400 1000 1600 2200

1
5

50
50

0

Operation extensions

Number of operation extensions

F
re

qu
en

cy

0 100 250 400 550

1
5

50
50

0

Data extensions

Number of data extensions

F
re

qu
en

cy

0 100 200 300 400

a b c

d e f

Fig. 6 Histograms showing the distribution of size and extension metrics across hierarchies and projects.
Note that a logarithmic scale is used for the frequency (y-axis)

756 Empir Software Eng (2015) 20:745–782

Statistical Tests For the analysis of the data, for instance regarding differences in distribu-
tions of the two kinds of extensions, we cannot rely on parametric tests as the distribution
of the data strongly departs from normality and thus breaks the assumptions of most para-
metric tests. However, given the large size of our sample, a non-parametric test such as the
Mann-Whitney U-test would almost certainly find a statistically significant difference in
the values of the distributions, and being in favor of data extensions. However such a test
would not tell us anything about the magnitude of the difference, i.e. whether the differ-
ence is practically significant. As such, we measure the effect size of the differences in the
distributions.

The most well-known effect-size metric is Cohen’s d; however, it is not robust to depar-
tures from normality. As such, we opted for a non-parametric effect size, Vargha and
Delaney’s Â12 (Vargha and Delaney 2000). This effect size measure was recommended by
Arcuri and Briand in the case of algorithms whose performance follow geometric distri-
butions which strongly depart from normality (Arcuri and Briand 2011). Â12 ranges from
0 to 1, and measures the probability that a value taken at random from the first sample
is higher than a value taken at random from the second sample. We take use of the Â12
effect size measure in Section 5.2 when analyzing the difference between data and operation
extensions.

To quantify relationships in the data between different variables, for instance between
size of hierarchies and number of extensions (e.g. in Section 5.3), we compute the Spearman
correlation. Correlation ranges from 1 (perfectly correlated), to −1 (perfect inverse correla-
tion), with 0 being uncorrelated. Spearman’s ρ is a rank-based, non-parametric correlation,
and as such it is less sensitive to outliers than alternatives (e.g. Pearson’s product-moment
correlation). Commonly-used thresholds for correlation are: 0.1 (small), 0.3 (medium), and
(0.5) strong. We also report the statistical significance of the correlations we encounter,
using the common threshold of p < 0.05 for significance.

To ensure the replicability of this study, we make publicly available all data extracted
from Squeaksource in a comma-separated format along with all R scripts we developed to
visualize and statistically analyze this data, in order to give other researchers the possibility
to reproduce and extend our study. All necessary files are contained in this archive: http://
tinyurl.com/p6usq9c.

4 Are Extensions Prevalent?

We first estimate the prevalence of extensions by looking at the frequency of extension
changes in commits. In a second step, we study the frequency of extensions in hierarchies
and projects.

4.1 Frequency of Extensions in Commits

Intuitively, the frequency of extension events across commits tells us how often developers
need to perform extensions over time: if extensions are extremely rare, then the challenge
of dealing with both kinds of extensions is interesting from a theoretical standpoint, but has
little practical impact. Figure 7 shows the proportion of commits featuring operation and
data extensions versus commits that feature neither of these.5 Of the 131,544 commits we

5We discuss the relative prevalence of both kinds of extensions in Section 5.

http://tinyurl.com/p6usq9c
http://tinyurl.com/p6usq9c

Empir Software Eng (2015) 20:745–782 757

Operation Data Both Either Neither

All commits
0

20
40

60
80

10
0

Operation Data Both Either Neither

Selected commits

0
20

40
60

80
10

0a b

Fig. 7 Percentages of commits featuring extensions. a all commits; b selected commits

analyzed, 11,802 (8.97 %) feature either an operation or a data extension (commits with
data extensions: 5.49 %; commits with operation extensions: 6.56 %). If we only consider
selected commits (that is, we filter out both large and initial commits), the proportion rises
to 9.41 % (data extension: 5.54 %; operation extensions: 6.86 %). This means that in nearly
one out of 10 commit, developers perform either a data or an operation extension in the
system they work on.

Operation extensions are potentially more problematic than data extensions, at least they
are considered to not align with the “clean case” of extending object-oriented software.
We can see that operation extensions occur in 6.56 % of all commits (6.87 % of selected
commits).

4.2 Frequency of Extensions in Class Hierarchies and Projects

To view the problem from another angle, we also measure the proportion of hierarchies that
feature extensions at any given point in their life. This gives the proportion of hierarchies for
which a developer will be expected to perform extensions. Figure 8 shows the proportions
of hierarchies featuring at least one extension during their lifetime, versus hierarchies that
do not. Out of the 10,390 hierarchies we observed, 27.70 % (2,879) become subject of
extensions sooner or later. Clearly, a large portion of hierarchies need refinements over time.
Importantly, 19.35 % of all class hierarchies are subject to operation extensions, which are
not modularly supported by objects.

Intuitively, extensions are more problematic for larger hierarchies, where the complexity
is higher. We measured the proportion of large hierarchies that are subject to extensions.
We find that an overwhelming majority (1,883 out of 2,360, i.e. 79.81 %) of these large
hierarchies feature extensions. Also, more than 62.48 % of these hierarchies are subject
to operation extensions. Across large, more complex hierarchies, the modularity issue to
express extensions is no longer a minority case; it is the norm. As expected and highlighted
in Fig. 9 the number of extensions increase with the size of the hierarchy, for both data and
operation extensions. Computing the Spearman correlation measure reveals a fairly strong

758 Empir Software Eng (2015) 20:745–782

Operation Data Both Either Neither

All hierarchies
0

20
40

60
80

10
0

Operation Data Both Either Neither

Large hierarchies

0
20

40
60

80
10

0

a b

Fig. 8 Percentages of hierarchies featuring extensions. a all hierarchies; b large hierarchies only (5 or more
classes)

correlation between number of extensions and size of hierarchy: ρ = 0.48 for data and
ρ = 0.55 for operation extensions.

Figure 10 highlights the percentages of projects featuring extensions. In brief, 41 % of all
projects feature extensions (data extensions: 37.16 %; operation extensions: 33.35 %; both:
29.06 %). A very large majority (84.02 %) of large projects (i.e. projects with more than
50 classes) have to deal with extensions (data extensions: 79.20 %; operation extensions:
78 %; both: 73.19 %). The larger a project the more extensions it features as depicted in
Fig. 11: The number of both data and operation extensions steadily grows with the number
of classes in a project. The Spearman correlation between number of extensions and number
of classes in a project is strong: ρ = 0.60 for data and ρ = 0.61 for operation extensions.

ba

Fig. 9 Effect of size of hierarchy on number of extensions. a data extensions; b operation extensions

Empir Software Eng (2015) 20:745–782 759

Operation Data Both Either Neither

All projects
0

20
40

60
80

10
0

Operation Data Both Either Neither

Large projects

0
20

40
60

80
10

0a b

Fig. 10 Percentages of projects featuring extensions. a all projects; b large projects only (50 or more classes)

4.3 Summary

Extensions regularly occur in practice: one out of ten commits (9.41 %) features an exten-
sion. Further, a fifth of all class hierarchies have to be extended with new operations; this
rate increases to over 60 % for large hierarchies. We can conclude that developers are often
confronted with extensions that are not modularly supported by object-oriented design.
Moreover, for large hierarchies—where one can suppose the impact is more severe—the
problem is all the more prevalent.

Far from being a theoretical curiosity, properly supporting both kinds of extensions is of
practical concern for software developers, and hence effectively deserves the attention of
the community.

a b

Fig. 11 Effect of project size on number of extensions. a data extensions; b operation extensions

760 Empir Software Eng (2015) 20:745–782

5 Comparing Data and Operation Extensions

Having established that extensions are prevalent, we now focus on the distribution of the
extension cases across the two categories of extensions. Underlying the research question
is the intuition, present in the literature, that if the object-oriented paradigm is well-suited
for most kinds of evolutions, we expect data extensions to be much more common than
operation extensions.

5.1 Frequency of Both Kinds of Events

We have already seen in the previous section that both kinds of extensions happen in prac-
tice. Looking back at Figs. 7 and 8, we notice that both types of extensions happen with a
somewhat similar frequency (i.e. 5.5 to 6.5 % of all commits, 60–65 % of large hierarchies,
etc.) and routinely overlap.6 This gives us a first impression that operation extensions are
actually not uncommon; rather, they seem to occur with relatively the same frequency as
data extensions.

To investigate the problem more closely, we look at the distributions of both kinds of
events, for the subset of hierarchies which experience these events. In order to evaluate the
problem beyond frequency, we also look at the distributions of the weighted coefficients we
introduced earlier—where the weight of an extension is defined by the number of methods
it contains.

Figure 12 shows the distributions of both kinds of events as box-and-whiskers plots, for
both unweighted—to evaluate frequency—and weighted—to evaluate scattering and size—
distributions, for the 28 % of hierarchies that feature at least one of the two events during
their life time.

If only frequency is considered (Fig. 12a), we see that hierarchies featuring extensions
have an identical median value of two extensions for both kinds of extensions. This tells us
that the distributions are very similar in terms of frequency. The impression is reinforced by
the significant overlap of the boxes. All in all, both kinds of extensions seem to happen with
the same regularity, with data extensions being only slightly more common.

In the weighted case, (Fig. 12b), a different picture emerges. The median number of
methods to introduce a data extension is higher (7) than the number of methods to intro-
duce an operation extensions (3). However, the boxes still overlap significantly: the 75th
percentile of operation extensions is higher than the median of data extensions. If operation
extensions are larger, the difference is not so high that one can ignore operation extensions
altogether. Further, the number of methods involved in operation extensions shows that some
of the operations are very scattered.

Figures 13 and 14 show the distributions of the commits and projects, respectively,
that contain at least one kind of extension. The box plots illustrate that the commit and
project distributions share with the distribution of extensions for hierarchies the same pat-

6Cases where both kinds of extensions overlap in the same hierarchy are especially interesting because they
correspond to scenarios that no single data abstraction mechanism would be able to handle properly.

Empir Software Eng (2015) 20:745–782 761

Operation Data

0
2

4
6

8
10

 Count

Operation Data
0

10
20

30
40

 Weighted counta b

Fig. 12 Boxplots of distribution of extensions for hierarchies featuring them. a unweighted; b weighted

tern of an extremely large overlap in the unweighted case, and a still large overlap in the
weighted case—with the upper quartile of weighted operation extensions above the median
of weighted data extensions.

For commits, the weighted data extension median is 1, while the weighted operation
extension’s 3rd quartile is 4; for projects, we have 20 and 25, respectively.

5.2 Quantifying the Difference Between Kinds of Extension

A visual inspection of the distributions of extensions shows that the distribution of the two
kinds of extensions largely overlap in terms of frequency, and still overlap significantly

Operation Data

0
1

2
3

4
5

Count

Operation Data

0
2

4
6

8
10

12

Weighted counta b

Fig. 13 Boxplots of distribution of extensions for commits featuring them. a unweighted; b weighted

762 Empir Software Eng (2015) 20:745–782

Operation Data

0
5

10
15

20
25

30

Operation Data

0
20

40
60

80
10

0
12

0

Weighted count
a b

Count

Fig. 14 Boxplots of distribution of extensions for projects featuring them. a unweighted; b weighted

when weighting is applied. In this section, we seek to quantify the difference by computing
the effect size measure Â12 as described in Section 3.3.

In the case of unweighted frequencies of both kinds of extensions, we obtain for the effect
size an Â12 value of 0.5554 in favor of data extensions, i.e. there is a 55 % probability that
a randomly chosen frequency of data extension is higher than a randomly chosen frequency
of operation extension. This is very close to 50 %, where the effect would be null. Since
Cohen’s d has well-accepted thresholds for effect sizes, we computed an estimate of the
equivalent Cohen’s d for this value. Our estimation of Cohen’s d gives us 0.03, an effect
that is considered as trivial, barely worth mentioning.7

If we weight the measurements by number of methods, the picture is somewhat different.
The advantage towards data extensions increases, with Â12 being 0.6197: A randomly-
chosen weighted data extension count has a 62 % probability of being larger than a randomly
picked weighted operation extension count. If this higher probability seems reassuring, we
do not know how to interpret that value. We again computed an estimate of the equivalent
Cohen’s d for this probability; we obtained a value of 0.25, which gives us a small effect.
In other words, if data extensions are more common (barely), and involve more methods
(somewhat), a large part of the extensions still are done by adding operations. For the object-
oriented paradigm to be most suited for most extensions, we would have expected a much
larger advantage in favor of data extensions, with at least a medium, if not a large effect
size. We quantified the effect size at the level of projects, where we obtained nearly identi-
cal results (Â12 : 0.5514 (unweighted) and 0.6307 (weighted); estimate of d: 0.05 and 0.25).
These findings show that in practice, both kinds of extensions are needed in object-oriented
programs; as such, adequate means to express both kinds of extensions are required in order
to assist developers.

7Cohen’s d varies from -1 to 1; the commonly accepted thresholds for effect size are 0.2 (small), 0.5
(medium), and 0.8 (strong). Negative values of d indicate an effect in the opposite direction, and have
identical thresholds.

Empir Software Eng (2015) 20:745–782 763

5.3 Relationship with Size of Hierarchies

We now look at how the size of hierarchies affects the number of extensions and their kinds.
The scatterplots in Fig. 15 show the relationship between size of hierarchies and: all exten-
sions (a); data extensions (b); operation extensions (c); and ratio of operation extensions
over all extensions (d).

To quantify the relationships, we measure the Spearman correlation (see Section 3.3)
between the number of extensions and the size of the hierarchies. Note that all the
correlations below are highly statistically significant: in all cases, p ≪ 0.01.

We start with both kinds of extensions taken together (Fig. 15a). We see an upward trend
(large hierarchies have more extensions) and find a strong correlation (ρ = 0.67). This
corroborates our findings in Section 4.2, where we found that 80 % of the hierarchies with
five or more classes had extensions.

Figure 15b shows the relation between the size of hierarchies and the number of data
extensions. We see an upward trend as well, giving us the impression that overall larger-
sized hierarchies have more data extensions. The Spearman correlation yields a value of
ρ = 0.48, which qualifies for a medium correlation.

The same situation holds with respect to the relationship between operation extensions
and size, as shown in Fig. 15c. Surprisingly, we observe a higher correlation between
size and number of operation extensions, passing the strong threshold, with ρ = 0.55.
If we weight the observations, we see an increase in the correlation for operation exten-
sions (ρ = 0.59), and a decrease in the correlation for data extensions (ρ = 0.42). We

a b

c d

Fig. 15 Effect of size of hierarchies on kinds of extensions

764 Empir Software Eng (2015) 20:745–782

have seen previously that both kinds of extensions are prevalent, with a small advantage
for data extensions; here, operation extensions tend to increase more with the size of the
hierarchies.

Having observed that operation extensions seem to “take the edge” in large hierarchies,
we investigated if this behavior extends to the proportion of extensions. We computed the
ratio of operation extensions over all extensions, and investigated its relationship to size.
However, as Fig. 15d shows, we found no visible relationship: hierarchies are nearly evenly
spread across the ratio spectrum. Since the overall difference in correlation was not very
large, the relationship practically disappears when the ratio is taken into account. Clearly,
there are other factors at play also influencing the relationship between the two variables,
as we see next.

In the interest of completeness, we mention that relationships taken at the project level
exhibit a similar behavior, having significant, medium-to-strong correlations in the first
three cases (a, b, and c).

5.4 Summary

Analyzing the frequency and the number of methods present in each kind of extension,
we see overall that data extensions are slightly more frequent than operation extensions.
However, this difference is very small: operation extensions are mostly as frequent as data
extensions, and only somewhat smaller. If the extension mechanisms of object-oriented pro-
gramming was adequate in most cases, the proportion of data extensions would be much
larger.

To make matters worse, while both kinds of extensions are unsurprisingly correlated
with the size of hierarchies, we find that operation extensions are actually slightly more
correlated with size. Large hierarchies seem to necessitate more operation extensions.

6 Extensions and Evolution

In the previous section, we have seen that even if both kinds of extensions are correlated
with the size of hierarchies, the ratio of operation extensions over both extensions was not
obviously correlated with size. However, there may be other factors influencing this ratio.
In particular, Lehman’s laws of software evolution (Lehman and Belady 1985) say that
software systems tend to decay over time, if no effort is undertaken to prevent that. Thus
it seems reasonable to think that over time, unanticipated design decisions lead to more
extensions that do not fit the class hierarchy, and as such need to be done via operation
extensions. Hence, we analyze the proportion of operation extensions out of all extensions
over time.

6.1 Introducing Periods

To answer this question we split the evolution of class hierarchies in periods. We gather
all the commits affecting a candidate hierarchy, sort them according to time, and split
the resulting list in 50 slices, each representing one period of the evolution. If a hierar-
chy was changed less than 50 times, we distribute the changes across the periods as close
to being equidistant as possible. Since there is considerable variation in the number of

Empir Software Eng (2015) 20:745–782 765

changes between hierarchies, this ensures a uniform distribution of the changes over the 50
periods.8

We then aggregate all the changes of all the hierarchies that belong to the same period.
For each of these sets of changes, we sum the number of operation and data extensions, and
compute the ratio of data extensions over all extensions, resulting in a proportion between
0 and 1 for all periods.

We also investigate the phenomenon at the level of projects; there, the only difference is
that we gather all the changes related to a project before splitting the history in 50 periods. If
a hierarchy is added later in a project, its changes will be distributed across the later periods
of the project evolution only.

6.2 Evolution of the Ratio of Operation Extensions

Figure 16 plots the evolution of the proportion of operation extensions among all extensions
over time, considering both hierarchies (a) and projects (b). To highlight the overall trend, a
smoothed fitted curve is added to the scatterplots.

In both cases, there is clearly an increase of the ratio of operation extensions over all
extensions over time. The effect is more pronounced when hierarchies are considered on
their own, which is not surprising: a possible reason being that new hierarchies may be
added to projects later on. These hierarchies will then be “younger” and for a while offset the
upward trend. It is interesting that the smoothed curve on the project scatterplot rises more
sharply in the last periods: a possible explanation is that by then, the “young” hierarchies
have begun to also become older, and seen their ratio increase, in turn impacting the project.

After a visual check, we quantify the relationship. The Spearman correlation indicates
for both cases a significant relationship, which also confirms the visual impression that
the effect is more pronounced for hierarchies in isolation than it is for projects. We find a
Spearman correlation of ρ = 0.60 (p ≪ 0.01) for hierarchies, and of ρ = 0.51 (p ≪
0.01) for projects.

If we take weighting into account (not shown in the figure), the relationship—
unsurprisingly—drops. It however stays significant. The correlation of the weighted ratio
with time for hierarchies is ρ = 0.38 (p = 0.007), and for projects, ρ = 0.33 (p = 0.018,
less than the usual 0.05 threshold).

Of course, these correlations are not very strong; nor should we expect them to be. There
are many more factors, beyond mere time passing, that could explain why a given hierarchy
may need more of a certain kind of extension than others.

6.3 Summary

If we consider a high ratio of operation extensions as a sign for developers frequently not
following the easier case of object-oriented software development, these results confirm
Lehman’s observations that software systems decay over time. We have found a moderate,
yet significant, relationship between the ratio of operation extensions over all extensions
and the age (as changes per periods), for both hierarchies and projects.

8We contemplated splitting the sets of changes in equal time periods, instead of equal number of commits
per period. However, determining the time periods involves computing the time interval based on the first
and the last change of the hierarchies. This introduces a bias in the earlier and later periods (more changes
are found in the very first and very last periods), hence we discarded that idea.

766 Empir Software Eng (2015) 20:745–782

a b

Fig. 16 Proportion of operation extensions among all extensions over time. a hierarchies; b projects

In our overall analysis, this adds evidence towards the emerging trend that more com-
plex hierarchies (i.e. larger, older, etc.) are more confronted with extensions that do not
fit the paradigm than other ones. Further, they seem to require proportionally more opera-
tion extensions than data extensions. These results cement the relevance of supporting both
kinds of extensions adequately, as the most problematic hierarchies are the ones that need
solutions the most.

7 Is the Visitor Pattern a Suitable Solution?

The well-known solution to operation extensions in object-oriented software is the Visi-
tor pattern (Gamma et al. 1994), as briefly described in Section 2.1. Is the Visitor pattern
enough? We first analyze the prevalence of visitors in our data set, and then look at how
both visitor hierarchies and the hierarchies they visit are themselves subject to operation
extensions.

7.1 Prevalence of the Visitor Pattern

Our visitor detection algorithm (Section 3.2) reveals that a minority of classes are involved
as either visitors or visitees. Out of the 2,879 hierarchies that experienced at least an exten-
sion, 34 are visitors, and 49 are visitees, corresponding to a total of 2.88 % of these
hierarchies. In all the 10,271 hierarchies, we find 57 visitor hierarchies, and 62 visited
hierarchies, for an even smaller proportion of 1.16 %.9

9The discrepancy in number of hierarchies is because there may not be a one-to-one mapping between visitors
and visited hierarchies.

Empir Software Eng (2015) 20:745–782 767

All in all, usages of the Visitor pattern are few and far between. If it alleviates the issue
of dealing with operation extensions, it cannot do so on a large scale, either because it
cannot cover all cases, because few programmers have knowledge of the pattern (which,
considering the popularity of design patterns, seems somewhat unlikely), or because the
adoption cost of the pattern is judged too high. We also notice that the proportion of visitor
and visited classes that experience extensions (83 out of 119, or 69.7 %) is much higher
than the proportion of hierarchies overall (2,879 out of 10,271, or 28 %). This seems to
indicate that classes involved in the visitor pattern are extended more than other classes.
This warrants further investigation.

7.2 How are Visitors and Visitees Extended?

Considering the documented drawbacks of the Visitor pattern (adding a new class in the
visited hierarchy impacts all the visitors), we would expect the uses of the Visitor pattern
to follow the Gang of Four’s recommendations, and be applied to stable visited hierar-
chies only (Gamma et al. 1994). This means that visited hierarchies should feature less
data extensions, and the corresponding visitor hierarchies should undergo less operation
extensions.

Figure 17 shows the distribution of extension metrics, normalized by hierarchy size
measured in number of classes, contrasting normal hierarchies, visitor hierarchies, visited
hierarchies, and the last two kinds of hierarchies taken together. First, in Fig. 17a, visitors
and visited hierarchies seem to exhibit less data extensions than normal hierarchies, in pro-
portion to the size of the hierarchy. This is particularly noticeable in for visitor hierarchies,
where the difference is statistically significant (p < 0.02). Second, in Fig. 17b, we see that
both visitor and visited hierarchies seem to feature around the same number of extensions
than normal hierarchies.

More operation extensions, while visitor hierarchies take around the same number of
operation extensions than normal hierarchies.

Besides the statistically significant difference in data extensions between visitor and nor-
mal hierarchies, all other relationships were found to not be significant (with p-values in the
range of 0.2 to 0.4). This makes classes involved in the Visitor pattern no worse, but also

None Visitors Visitees Either

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Data extensions

P
ro

po
rt

io
n

None Visitors Visitees Either

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Operation extensions

P
ro

po
rt

io
n

a b

Fig. 17 Distribution of data and operation extensions by role in the Visitor pattern

768 Empir Software Eng (2015) 20:745–782

no better, than regular classes, for both roles and both metrics, except for visitor hierarchies
and data extensions. In that particular case, we found that visitor hierarchies had compara-
tively less data extensions than normal hierarchies, meaning that comparatively less visitors
were added after the initial introduction of the hierarchy.

Overall, this suggests that the GoF advice of using the Visitor pattern on stable hier-
archies may not be followed in practice. We have observed several examples of operation
extensions in visitors that were performed to retrofit the visitors to data extensions in the
visited hierarchies.

7.3 Summary

We find that the Visitor pattern is not used very often in our dataset. Further, visitor and
visited hierarchies seem to feature the same rate of extensions as other hierarchies (when
accounting for size). We can conclude that the Visitor pattern is a viable solution only for
a subset of all the extension cases. In addition, we noticed that visited hierarchies still suf-
fer from operation extensions, which should normally be handled in the visitors. Finally,
the results show that the GoF advice—the Visitor pattern should be applied only to stable
hierarchies—is hardly followed in practice. This differs from Aversano’s study, which found
that visited hierarchies were stable, albeit on three systems only (Aversano et al. 2007).

8 How Stable are Extensions?

The modular implementation of stable extensions is less crucial than that of unstable ones:
occasional crosscutting changes are less harmful than frequent ones. Furthermore, for unsta-
ble extensions, the distribution of the changes across source code locations—also known as
entropy—matters: if the location that changes is predictable, it is less problematic than if
changes can potentially occur anywhere.

8.1 Data Processing for Extension Stability

To investigate the stability of extensions over time, we extend our analysis to take into
account changes to extensions, instead of only looking at the additions of new extensions as
we did before.

We define the change proneness of a given method as the probability of it changing in a
revision since it is present in the system; more formally, the change proneness is the ratio
of the number of times the method was changed, over the number of times the method was
present in a revision (excluding the revision when it was added to the system). This gives us
a value ranging from 0 for a method that has been introduced but never changed, to 1 for a
method that has been introduced and then changed in every subsequent revision. We restrict
the analysis to methods that were present in at least 5 versions.

Note that unlike in the previous analysis, we do not apply any filtering on the type of
commits: the large commits and initial version commits that were filtered previously con-
tained a large number of additions that were constituting noise, but this is not true for the
modifications. Each method is then tagged by how it was introduced in the ecosystem, either
as a method introduced as part of a data extension, as an operation extension, or as part of
the normal development process. In some cases a method can be added several times; if it
is added as both a data and an operation extension, it is counted as both.

Empir Software Eng (2015) 20:745–782 769

8.2 Change Proneness by Kinds of Extensions

Figure 18 shows a violin plot for the distribution of the change proneness of all the meth-
ods, according to their category of introduction. The violin plot also shows the frequency of
values in a distribution on the horizontal axis. The wider the “violin”, the more data points
with the same value exist. The white dot represents the median, the black box the interquar-
tile range (50 % of the values are between the 25th and the 75th percentile), similar as in
a box plot. The vertical lines leaving the black box depict the 5th and the 95th percentile,
respectively, like the whiskers in a box plot. In Fig. 18 we can see that all the distributions
have essentially the same shape, with a large majority of methods having a low change
proneness, and few outliers that have a higher change proneness. The medians for each dis-
tribution are: 2.9 % (operation), 3.3 % (data), and 4.8 % (normal), with the first quartiles at
1.2 %, 1.2 %, and 1.7 %, and the third quartiles at 7.9, 9.1, and 13.2 %.

As such the data shows that methods introduced via operation and data extensions are
actually somewhat less prone to change than other methods. The figure also seems to indi-
cate that methods introduced via operation extensions are slightly less change-prone than
methods introduced via data extensions.

The Wilcoxon rank-sum tests find significant differences between all the distributions
(with p < 10−4 in all cases), however some of it is due to the large sample sizes; computing
the Â12 effect sizes shows that the differences between methods introduced by data and
operation extensions are trivial (Â12 = 0.514, for an equivalent d = 0.04). On the other
hand, differences between normal and data extensions (Â12 = 0.571, d = 0.19), and normal
and operation extensions (Â12 = 0.586, d = 0.23), are small, but genuine. This reflects
what is visible in the figure.

To conclude, methods introduced by each kind of extension are slightly less change-
prone than methods introduced by regular software development. However, the difference
is small, and the two kinds of extensions are virtually indistinguishable.

Fig. 18 Distribution of change proneness of operation and data extensions compared to normal methods

770 Empir Software Eng (2015) 20:745–782

8.3 Entropy of Operation Extensions

In order to understand the impact of non-modular extensions on software maintenance
scenarios, it is informative to study how the changes are distributed across the multi-
ple implementations of the same message.10 In object-oriented terminology, methods are
invoked by sending messages to objects. The name of the invoked method is equal to the
message sent (e.g. visitField: in Section 3.2 is both the name of message and method).
Each message (or operation) can be implemented by several methods with that name but in
different classes. The concretely invoked method is depending on the object receiving the
message send at runtime.

Indeed, if the changes are consistently applied to a single implementor of a message,
then the situation is arguably better than if the changes are equally likely to be introduced to
all implementors of a message. In the latter scenario, developers are much more likely to be
forced to inspect all the implementors of a given message in the case it has to be modified.

More precisely, we use the concept of normalized entropy as defined by Shannon (1948)
and used in defect prediction by Hassan (2009). The entropy characterizes the predictabil-
ity of the distribution of values across categories, so that the entropy is lowest (0) when all
the values belong to one of the categories, and highest (1) when the values are equally dis-
tributed over the possible categories. More formally, for a probability distribution p, where∑n

k=1 pk = 1, the normalized entropy is defined as:

entropy = −
n∑

k=1

pklog2(pk) (1)

In our case, we compute the entropy of a given polymorphic message based on the change
proneness of the methods that implement the message. The change proneness of message
m will be 0, for instance, if it has several implementations in different classes, but only one
of them ever changes. It will be at its maximum value of 1 when the probability that each
implementor changes is equal. We performed this process for all the messages that were
introduced via operation extensions.

Figure 19a shows the distribution of the entropy of the change proneness of all the imple-
mentors of messages added as operation extensions. What we can see is the shape of a
bimodal distribution, with a peak at the minimum entropy of 0, and another at the maximum
entropy of 1, with a lower density between the two extremes. The peak at 0 is larger (indeed
the median is at 0), which is good news at first glance: the majority of operation extensions
are changed constantly, rather than unpredictably. However, the second peak is accompa-
nied with the 3rd quartile (which is at 0.91), which means that 25 % of all messages have an
entropy higher than 0.9. This needs to be inspected more closely, as a significant minority
of message implementations are changing in an unpredictable manner.

To have a clearer picture of these high-entropy messages, we set up finer-grained classi-
fications of the operation extensions, first according to their change proneness—Fig. 19b,
c, and d—, and then according to the number of implementors of the message—Fig. 19e, f,
and g.

10Note that because data extensions are by definition modular in an object-oriented decomposition, it is
unnecessary to study the distribution of their changes.

Empir Software Eng (2015) 20:745–782 771

entropy overall

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

 prone <= 0.06

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

prone <= 0.2

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

prone >= 0.2

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

2 impls

0.0 0.4 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

3−7 impls

0.0 0.4 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

8+ impls

0.0 0.4 0.8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

a b c d

e f g

Fig. 19 Distribution of entropy of changes performed to operation extensions (x-axis: entropy; y-axis: per-
centage). a Overall, b–d depending on change proneness of the operation extension, e–g depending on
number of implementors of the extension

We decided to define bins for both change proneness and number of implementors
(low, median and high proneness, few, median and many implementors) because when we
examined the scatterplots of extension entropy and these metrics, we realized that their
relationships are not linear which makes an overall analysis regarding the correlation of
proneness/implementors and entropy unsuited. Hence, we investigated variations of the dis-
tributions across different bins. We determined the thresholds separating the bins based on
the distributions of the change proneness and number of implementors, noting in particular
the presence of early peaks and long tails in the distributions. In each case, we used two
thresholds: one for the majority of values that is situated before the peak (change proneness
of 0.06 in one case, 2 implementors in the other), and one separating the values after the
peak and the extreme values at the end of the tail (change proneness of 0.2 in one case, and
7 implementors in the other).

Change Proneness The rationale for the classification based on change proneness is that if
the messages that change in an unpredictable manner are the ones that do not change often,
then it is less problematic than if the reverse is true. We ordered the operation extensions
based on their overall change proneness (i.e. the change proneness of a given message is
obtained by averaging the change proneness of each implementor), and divided them in
three categories or bins, as described above.

As illustrated in Fig. 19b–d, the results unfortunately indicate that messages who are
change-prone (Fig. 19d), have a higher entropy than the other categories; the median entropy

772 Empir Software Eng (2015) 20:745–782

among the operation extensions with high change proneness is 0.80, whereas it is 0 in the
low case, and 0.30 in the medium case. The third quartile is also higher (0.98, versus 0.92
for medium change proneness, and 0.85 for low change proneness).

We also find statistically significant differences: Â12 for the probability that the entropy
of a high change proneness is higher than of a medium change proneness equals to 0.58,
while Â12 for high change proneness compared to low change proneness is 0.63, translating
to a d of 0.35 and 0.52, or small and medium effects. As such, we find that the overall
change proneness of a message has an effect on its overall entropy: messages with a higher
change proneness are more likely to have a higher entropy.

Number of Implementors The rationale for classifying changes according to the number of
implementors of a message is simple: if the entropy of a message is high, but the numbers of
implementors is low, then the programmer has few locations to check before doing a change
to a polymorphic message. Conversely, messages with a higher number of implementors
with a high entropy are more problematic, since the effort involved is higher. We split the
operation extensions in three groups, as described above and obtain the results depicted in
Fig. 19e–g.

We see a similar behavior as with change proneness: as we progress among the categories
of number of implementors, there is a tendency towards higher entropy. More specifically,
the distribution when there are two implementors only is strongly bimodal, with either very
high or very low entropy values, whereas for the other categories, the entropy values are
much more spread out. The median message in the low category (2 implementors) has an
entropy of 0; it rises to 0.58 for the medium category, and 0.62 for the high category. As far
as effect sizes are concerned, the Â12 metric is of 0.59 between low and medium number
of implementors (d = 0.43), and of 0.63 between small and large number of implementors
(d = 0.59). The difference in entropy between medium and large number of implementors
is small, with an Â12 of 0.52 (d = 0.09).

8.4 Summary

Summing up all our conclusions on the topic of change proneness, we can conclude that if
methods introduced as part of operation extensions are about as prone to change as those
introduced as data extensions, and less change-prone than normal methods, this does not
mean that their maintenance is necessarily easier.

As a measure of the difficulty of maintaining a set of scattered methods, we chose the
entropy measurement, which describes how predictable or unpredictable the location of the
changes over time are.

According to our entropy measurement, we find that a relatively large minority of
operation extensions have a large entropy in their change proneness, meaning that all imple-
mentors of the extension are nearly equally likely to be changed. This leads to unpredictable
modifications of these extensions, and potentially crosscutting modifications across several
classes.

To make matters worse, we found that the messages with a higher average change
proneness were likely to have a higher entropy, i.e., to have less predictable change patterns.

Furthermore, we found that messages with a larger number of implementors, i.e., a larger
number of locations that can change, were more likely to have a higher entropy. When
modifications are hard to predict, it is very likely that the number of possibilities is large,
making the effort to verify all the locations that much harder.

Empir Software Eng (2015) 20:745–782 773

As such, far from altering the conclusions of our previous work, our study of change
proneness leads us to conclude that operation extensions can pose a maintenance problem.
When they do, the problem is likely to be in the most complex cases; this supports our
conclusions that more satisfactory means to deal with operation extensions are needed.

9 The Case of Third-Party Extensions

As we mentioned earlier, there are two points of view from which one can study extensions.
The one we have investigated so far refers to local extensions made by the implementers of
the system themselves while it evolves. The second point of view, also known as the expres-
sion problem proper, refers to third-party extensions, i.e. extensions to existing libraries.
The problem there lies in the fact that modifying third-party code is usually difficult as the
code is not accessible, or needs to be recompiled.

Smalltalk is an interesting data point in this context as well, because Smalltalk is one
of the rare languages where it is possible to modify third-party code quite easily. Smalltalk
supports a mechanism of class extensions, that is, methods a project can add to classes of
another project or to core classes such as Object. This mechanism is also known as open
classes (Clifton et al. 2000), or inter-type declarations in AspectJ (Kiczales et al. 2001),
and is similar to partial classes in C#, mixins in Ruby or mixin composition of traits in
Scala. Methods introduced through class extensions have access to the instance variables
of the class, just like other methods. The version control system used by Squeaksource,
Monticello, supports class extensions and can easily export them as part of a project. In
short, the class extension mechanism of Smalltalk can be used by programmers to define
third-party operation extensions.

The Smalltalk corpus hence gives us an idea of how many third-party operation exten-
sions would occur in other programming languages, if programmers were given the
opportunity to take advantage of them. This allows language designers to make informed
decisions about the necessity to incorporate an extension mechanism in their languages as
well. As another data point, we contrast third-party operation extensions, available in few
languages such as Smalltalk, MultiJava and AspectJ, with third-party data extensions—i.e.,
subclassing a class from an existing hierarchy defined outside of the project—a mechanism
that exists in all object-oriented languages.

9.1 Frequency of Third-Party Extensions

To characterize the prevalence of third-party extensions, we first analyze how many commits
and projects actually encompass third-party extensions. Out of the 131,544 commits we ana-
lyzed, 8.81 % contain third-party operation extensions, 13.08 % third-party data extensions,
3.07 % both, 19.29 % either of the two, and 80.71 % no third-party extensions (see Fig. 20a).
If we remove initial commits, and large commits that add more than 50 classes and meth-
ods, and limit the analysis to the 118,396 remaining commits, we reveal that still 6.87 % of
the smaller commits contain third-party operation extensions, 7.73 % third-party data exten-
sions, 0.87 % both, 13.84 % either of the two, and 86.15 % no third-party extensions, as
illustrated in Fig. 20b.

If we compare this data to the one in Fig. 7, we note that the figures are in the same range
of frequency. However third-party extensions appear to be slightly more common than local
extensions. It appears more common to perform third-party data extensions, but the data
shows that large and inital commits do it much more often (hence the drop by half when

774 Empir Software Eng (2015) 20:745–782

Operation Data Both Either Neither

All commits
0

20
40

60
80

10
0

Operation Data Both Either Neither

Selected commits

0
20

40
60

80
10

0

Operation Data Both Either Neither

All projects

0
20

40
60

80
10

0

Operation Data Both Either Neither

Selected projects

0
20

40
60

80
10

0

a b

c d

Fig. 20 Percentages of commits featuring third-party operation and data extensions. a All commits; b
selected commits

they are filtered out). As such, we share the same conclusion: third party extensions are not
happening extremely frequently, but they are common enough that they can be considered
among the concepts that developers are bound to use at some point. This applies to third-
party operations in general, but also to the specific case of third-party operation extensions.

Another interesting fact is that there are much less overlap between the kind of
extensions: less than 1 % of the selected commits feature both of them.

We now analyze the frequency of third-party extensions in projects.11 Figure 20c shows
that out of all the projects, 45.96 % use third-party operation extensions, 85.40 % make use
of third-party data extensions, 42.66 % use both, and 88.69 % use either data or operation
extensions (11.31 % of all projects do not use any third-party extensions). When only taking
into account large projects, the percentages are even higher: Out of the remaining projects,
78.45 % use third-party operation extensions, and all projects use third-party data extensions
(see Fig. 20d).

Comparing the prevalence of third-party extensions to local extensions (Section 4), on
a project basis, we can see that third-party extensions are considerably more prevalent, as
85.40 % of all projects feature third-party extensions but only 41.2 % local extensions.

11Unlike earlier, we are not able to do the analysis at the level of hierarchies, as it is not always clear to which
hierarchy a third-party operation extension belongs. This issue is discussed in more details in Section 10.

Empir Software Eng (2015) 20:745–782 775

Hence we can conclude that third-party extensions are more prevalent than operation and
data extensions.

If we look at third-party operation extensions in particular, we can see that they are
extremely common, especially in larger projects. Third-party operation extensions may be
used in only 7 % of commits, but they end up in more than three out of four large projects.
We can conclude that Smalltalk programmers do use the possibility of extending library
classes when they need it, and tend to need it often.

9.2 Distribution of Third-Party Extensions

In order to characterize third-party extensions more accurately, we investigate beyond the
presence/absence of third-party extensions, and examine the size of these extensions. Sim-
ilarly to the previous sections, we weight the third-party extensions in terms of methods:
each third-party operation extension has a weight of 1, while each data extension has a
weight equal to the number of methods in the new class.

Extensions in Commits The box plots presented in Fig. 21a illustrate the distribution of
third-party operation and third-party data extensions per commit (commits not adding any
third-party extension are not included in the box plots). The median number of third-party
operation extensions per commit is 2 while there is a median number of 8 third-party data
extension per commit (considering the weighting). The first quartile of third-party operation
and third-party data extensions are at 1 and 3 extensions, while the third quartiles are at 5
and 23. This shows that when considering the size of the extensions, third-party data exten-
sions are much larger than third-party operation extensions. This finding is unsurprisingly
statistically significant, with a large effect size (Â12 = 0.73 in favor of data extensions).

Extensions in Projects For the distribution of third-party operation and third-party data
extensions per project, we see a similar picture in Fig. 21b (projects without any third-party

3rd−party operation 3rd−party data

0
10

20
30

40
50

Distribution per commit

3rd−party operation 3rd−party data

0
10

0
20

0
30

0
40

0

Distribution per projecta b

Fig. 21 Distribution of the number of third-party operation extensions and third-party data extensions per
commit (a) and project (c), and proportion of third-party extensions compared to the total number of methods
and classes added, (b) per commit and (d) per project

776 Empir Software Eng (2015) 20:745–782

extension omitted): Third-party operation extensions are considerably smaller than third-
party data extensions (median: 11 versus 47; first quartile: 3 versus 11; third quartile: 46.5
versus 165). As before, the difference is statistically significant, with a smaller, but still
consequent, effect size (Â12 = 0.69 in favor of weighted data extensions).

9.3 Summary

Considering the weight of third-party extensions somewhat dampens our previous result
about the comparable frequencies of third-party data and operation extensions. It seems that,
all in all, third-party data extensions are as common as third-party operation extensions, but
are overall much larger.

This leads us to conclude that, when given a language mechanism for defining third-
party operation extensions, programmers tend to use it: 78 % of selected projects use it,
and its use appears in 7 % of selected commits. Research providing ways to seamlessly
extend third-party library is hence justified by an actual need in practice. However, the
comparable frequency of third-party data extension (8 % of selected commits, 100 % of
selected projects), and their much larger size goes to show that the classical third-party
extension mechanisms—subclassing a framework—is alive and well: the bulk of the third-
party extensions are performed in this way. Of course, similar studies in other languages
supporting third-party extensions would be needed to confirm these findings.

10 Threats to Validity

In this section we report on the threats to validity of our study. We distinguish between (i)
construct validity, that is, threats due to how we operationalized the measures, (ii) internal
validity, that is, threats affecting the measured cause-effect relationship, and (iii) external
validity, which refers to threats concerning the generalization of the experiment results.

10.1 Construct Validity

By weighting each data extension with the number of methods added along with the new
class, we might not correctly represent the severity of a data extension. For instance, after
the initial addition of the class in a particular commit, the class might be extended with more
methods in subsequent commits, methods that should also be considered when weighting
this data extension.

The various thresholds we impose during data analysis (e.g. only class hierarchies with
more than two classes and that have been changed more than five times are studied), have an
influence on how many data and operation extensions we measure. However, we carefully
selected these thresholds empirically, that is, by analyzing the distribution of the variables
and experimenting with different threshold values. The currently selected thresholds are
most reasonable given the analyzed data. In the case of the threshold for large commits
(addition of more than 50 entities in a commit), we observed that some genuine opera-
tion extensions were actually above that threshold; for instance, a polymorphic method was
added on 61 classes of the same hierarchy in a single commit.

Our analysis focuses on the addition of methods, and therefore does not identify field
additions and other modifications that may occur as part of an extension. This means
for instance that the object composition approach to operation extensions described in

Empir Software Eng (2015) 20:745–782 777

Section 2.1 would not be detected. Consequently, we may be under-estimating the negative
impact of operation extensions in practice.

Since we do not analyze the source code inside methods, we do not account for methods
that perform an explicit dispatch based on the type of an object in a functional design manner
(e.g. anObject isFoo ifTrue: [...] ...). These methods are in fact operation
extensions in disguise, for which the developer did not adopt the object-oriented paradigm
in order to avoid having to add methods in scattered places. As such, we may under-estimate
the number of operation extensions that are performed.

While we study the prevalence of the class extension mechanism of Smalltalk in
Section 9, we are only able to consider third-party operation extensions individually. We
cannot relate the addition of several methods of the same name to different third-party
classes, because we cannot determine whether they belong to the same class hierarchy. In
particular, the repository we analyze does not allow us to determine the specific version of
an external library at the time it is extended.

10.2 Internal Validity

Squeaksource contains a considerable amount of code duplication, since projects are stored
several times in the repository, for instance once as an individual project and once embedded
in another project. In a recent study, we found that 10-15 % of the code in Squeaksource
is duplicated (Schwarz et al. 2012). This aligns with the code duplication rate found in the
literature (Kapser and Godfrey 2006; Mayrand et al. 1996). The effect of the presence of
code duplication on the results of our study is hard to predict. We assume that duplicated
projects do not stand out regarding data or operation extensions and hence expect the effect
of code duplication to be minimal.

If the same method is added to two unrelated siblings, we count this as an operation
extension, even if all other classes in the hierarchy do not either define or inherit the method.
Such a case may either be an incomplete operation extension, two unrelated single-method
extensions, a bug, or an incremental step towards a consistent extension. In a dynamically-
typed language, it is hard to tell whether this scenario corresponds to an operation extension
or not, unless we rely on human judgment. This is because object interfaces are totally
implicit in such languages. In a statically-typed language, object interfaces are explicit and
the type system ensures that an extension of the interface is consistently implemented.

The detection of renames of root classes in a hierarchy is not perfect and might not detect
some renames. In such a case we end up with having an old, obsolete hierarchy in our dataset
to which we cannot relate any subsequent changes and thus not detect operation or data
extensions affecting such a hierarchy. We however expect such cases to be rare and could
not find a single false-negative case while overviewing most of the very large hierarchies in
Squeaksource.

The visitor detection heuristic we implemented is also not perfect. However, we validated
each identified visitor manually and did not find any false-positives, thus the detection algo-
rithm yields a precision of 100 %. The recall is not assessable though, our algorithm might
not detect all visitors, thus we possibly underestimate the presence of visitors and visited
hierarchies. Since we search for variations in terminology (e.g. accept and visit for
visitor methods), we expect the recall to be fairly high.

In case of the extension analysis, it is not always clear if a class extending another class
from an external project should really be considered as a third-party data extension because
in Smalltalk also core packages are organized as packages external to a user-defined pack-
age (that is, subclassing classes such as TestCase or Exception leads to a third-party

778 Empir Software Eng (2015) 20:745–782

data extension). Hence we might over-estimate the number of third-party data extensions
as we only exclude Object as an external class of which user-defined subclasses are not
considered to be third-party data extensions.

We took dispositions against the ecological fallacy (Posnett et al. 2011)—incorrectly
assuming that observations holding at a level of abstraction holds at another level—by sys-
tematically verifying that findings we found at the level of class hierarchies and/or commits
also applied at the level of projects, when it was pertinent to do so.

10.3 External Validity

The generalization of our study is dependent on how representative the analyzed projects
are for object-oriented software projects in general. As Squeaksource is a very large reposi-
tory containing more than 2,500 projects to which more than 2,300 developers contributed,
we expect that very different programming styles and flavors have been applied in these
projects, making the analyzed projects quite representative of object-oriented software in
Smalltalk. We however cannot ascertain whether practices specific to the community of
Smalltalk users would bias the results towards that specific programming language. A
replication in another object-oriented language would clarify whether there is a bias.

Another possible bias is that our sample of project contains only open-source software
systems. Practices in the industry may differ and limit the generalization of our results.
However, access to a large sample of closed-source software systems is notoriously difficult.

Smalltalk is a dynamically-typed programming language. In a statically-typed language,
data and operation extensions might be employed differently, following different rules and
patterns. It is very hard to assess whether one or both type of extensions are more or less
frequent in a statically-typed languages than in its dynamic pendant. Also, we cannot claim
that the results we found for Smalltalk also hold for other dynamically-typed object-oriented
languages, although we expect to find similar patterns. It would be very interesting to repli-
cate our study for e.g. Java and Ruby, to assess the use of data and operation extensions in
other object-oriented languages.

Smalltalk is an object-oriented language. The extensibility challenge we studied is a
general problem that occurs with other abstraction mechanisms as well. We cannot claim
that the results related to the kinds of extensions that occur in Smalltalk projects also apply
to other mechanisms. Studying programs written in languages with different mechanisms
(e.g. ML, Haskell), including combinations of objects and others (e.g. Scala, Racket), would
be extremely interesting to shed more light on this topic.

11 Conclusions

Reconciling the two kinds of extensions to data types has been a subject of interest for
years, if not decades; we assessed the prevalence of this challenge with a large-scale empir-
ical study. Our empirical study of the Squeaksource ecosystem analyzed more than half a
billion lines of code, distributed over 2,505 projects and 131,544 commits. Thousands of
contributors performed these commits over the course of 8 years.

We found the following:

1. Extensions do occur: one out of eight commits introduces an operation or a data exten-
sion; large projects and large hierarchies are more prone to extensions. More than half
of the large class hierarchies have to be extended with new operations.

Empir Software Eng (2015) 20:745–782 779

2. Both kinds of extensions happen with roughly the same frequency. When the number of
methods in an extension is measured, data extensions take a small advantage. However,
the margin is very small, so the data-extension friendly mechanism of objects needs
supplementation for operation extensions.

3. Over time, projects and hierarchies tend to need more operation extensions, as the new
extensions were not envisioned by the initial design. These larger, older hierarchies
need better extensibility support all the more.

4. The Visitor pattern, the de-facto solution to modularly support operation extensions
in object-oriented software, is not applied frequently. Furthermore, classes involved in
the pattern still need operation extensions: in visited classes when the extensions do
not fit well the Visitor pattern, and in visitor classes to react to data extensions in the
visitees.

5. Although methods involved in data or operation extensions are slightly less change-
prone than normal methods, maintaining them can be difficult. In particular changes
to operation extensions often encompass a high entropy, that is, all implementors of an
operation extension have a similar likelihood to change. To make matters worse, the
entropy generally increases with the number of implementors of an operation exten-
sion and also with their change proneness, which renders the maintenance of operation
extensions difficult in many cases.

6. Finally, third-party data and operation extensions are nearly equally common in a lan-
guage that supports both. However, third-party data extensions are considerably larger
than third-party operation extensions. Both mechanisms are useful; however the famil-
iar object-oriented extension mechanism of subclassing an external class is still the
work horse for most systems, leaving method addition to external classes for more
focused extensions.

We see these findings as a call to the community to continue investigation on this topic,
and, perhaps more crucially, to propose solutions to practitioners. If the first can be done
with novel languages, perhaps tool support is best to assist practitioners working on exist-
ing systems. For instance, IDEs could provide programmers with a way to switch between
a data-centric view and an operation-centric view of the program. The seed of such tool
support already exists in the venerable Smalltalk class browser, which is able to display all
the implementors of a polymorphic method in a single, editable view. As for the extensibil-
ity problem stricto sensu, its presence in a majority of selected projects shows that practical
solutions will be used when available.

Acknowledgments We thank the ECOOP and EMSE reviewers for their thorough and helpful comments.
R. Robbes and É. Tanter are partially funded by FONDECYT Projects 11110463 and 1110051, respectively.

References

Arcuri A, Briand LC (2011) A practical guide for using statistical tests to assess randomized algorithms
in software engineering. In: Proceedings of the 33rd international conference on software engineering,
(ICSE 2011). pp 1–10

Aversano L, Canfora G, Cerulo L, Del Grosso C, Di Penta M (2007) An empirical study on the evolu-
tion of design patterns. In: Proceedings of the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT international symposium on foundations of software engineering
(ESEC/SIGSOFT FSE 2007). pp 385–394

780 Empir Software Eng (2015) 20:745–782

Baxter G, Frean MR, Noble J, Rickerby M, Smith H, Visser M, Melton H, Tempero ED (2006) Understanding
the shape of Java software. In: Proceedings of the 21st annual ACM SIGPLAN conference on object-
oriented programming, systems, languages, and applications (OOPSLA 2006). pp 397–412

Booch G (1994) Object-oriented analysis and design with applications, 2nd edn. Addison-Wesley, Reading
Callaú O, Robbes R, Tanter É, Roethlisberger D (2012) How (and why) developers use the dynamic features

of programming languages: the case of Smalltalk. Empirical Software Engineering. Available Online:
doi:10.1007/s10664-012-9203-2

Clifton C, Leavens GT, Chambers C, Millstein T (2000) MultiJava: modular open classes and symmetric
multiple dispatch in java. In: Proceedings of the 15th international conference on object-oriented pro-
gramming systems, languages and applications (OOPSLA 2000). ACM SIGPLAN notices, 35(11). ACM
Press, Minneapolis, pp 130–145

Cook WR (1990) Object-oriented programming versus abstract data types. In: Proceedings of the REX work-
shop/school on the foundations of object-oriented languages, volume 73 of Lecture Notes in Computer
Science. Springer

Cook WR (2009) On understanding data abstraction, revisited. ACM SIGPLAN Not 44(10):557–572
Erlikh L (2000) Leveraging legacy system dollars for e-business. IT Prof 2(3):17–23
Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented

software. Professional computing series. Addison-Wesley, Reading
Gı̂rba T, Lanza M, Ducasse S (2005) Characterizing the evolution of class hierarchies. In: Proceedings of the

9th European conference on software maintenance and reengineering (CSMR 2005). pp 2–11
Gorschek T, Tempero ED, Angelis L (2010) A large-scale empirical study of practitioners’ use of object-

oriented concepts. In: Proceedings of the 32nd ACM/IEEE international conference on software
engineering (ICSE 2010). pp 115–124

Grechanik M, McMillan C, DeFerrari L, Comi M, Crespi S, Poshyvanyk D, Fu C, Xie Q, Ghezzi C (2010)
An empirical investigation into a large-scale Java open source code repository. In: Proceedings of the 4th
international symposium on empirical software engineering and measurement (ESEM 2010). pp 11:1–
11:10

Hassan AE (2009) Predicting faults using the complexity of code changes. In: Proceedings of the 31st
international conference on software engineering. IEEE Computer Society, Washington DC, pp 78–88

Kapser CJ, Godfrey MW (2006) Supporting the analysis of clones in software systems: a case study. J Softw
Maint Evol Res Pract 18(2):61–82

Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold W (2001) An overview of AspectJ.
In: Knudsen JL (ed) Proceedings of the 15th European conference on object-oriented programming
(ECOOP 2001), number 2072 of Lecture Notes in Computer Science. Springer, Budapest, pp 327–353

Krishnamurthi S, Felleisen M, Friedman DP (1998) Synthesizing object-oriented and function design to
promote reuse. In: Jul E (ed) Proceedings of the 12th European conference on object-oriented pro-
gramming (ECOOP 98), volume 1445 of Lecture Notes in Computer Science. Springer, Brussels,
pp 91–113

Lehman M, Belady L (1985) Program evolution: processes of software change. London Academic Press,
London

Louridas P, Spinellis D, Vlachos V (2008) Power laws in software. ACM Trans Softw Eng Methodol 18(1).
Article No. 2

Mayrand J, Leblanc C, Merlo EM (1996) Experiment on the automatic detection of function clones in
a software system using metrics. In: Proceedings on the 1996 international conference on software
maintenance. pp 244 –253

Meyer B (2009) Software architecture: functional vs. object-oriented design. In: Spinellis D, Gousios G (eds)
Beautiful Architecture. OReilly, pp 315–348

Oliveira BCDS (2009) Modular visitor components: a practical solution to the expression families problem.
In: Drossopoulou S (ed) Proceedings of the 23rd European conference on object-oriented programming
(ECOOP 2009), number 5653 in Lecture Notes in Computer Science. Springer, Genova, pp 269–293

Parnin C, Bird C, Murphy-Hill E (2012) Adoption and use of java generics. Empir Softw Eng 18(6):1047–
1089. http://link.springer.com/article/10.1007%2Fs10664-012-9236-6

Posnett D, Filkov V, Devanbu P (2011) Ecological inference in empirical software engineering. In: Proceed-
ings of the 26th ACM/IEEE international conference on automated software engineering (ASE 2011).
pp 362–371

http://dx.doi.org/10.1007/s10664-012-9203-2
http://link.springer.com/article/10.1007%2Fs10664-012-9236-6

Empir Software Eng (2015) 20:745–782 781

Reynolds JC (1975) User-defined types and procedural data structures as complementary approaches to data
abstraction. In: Proceedings of the conference on new directions in algorithmic languages. Munich,
pp 157–168

Robbes R, Lanza M (2005) Versioning systems for evolution research. In: IWPSE 2005: proceedings of the
8th international workshop on principles of software evolution. pp 155–164

Robbes R, Lungu M (2011) A study of ripple effects in software ecosystems. In: Proceedings of the 33rd
ACM/IEEE international conference on software engineering (ICSE 2011), new ideas and emerging
results track. ACM Press, Honolulu, pp 904–907

Robbes R, Lungu M, Röthlisberger D (2012a) How do developers react to API deprecation? The case
of a Smalltalk ecosystem. In: FSE-20: proceedings of the symposium on the foundations of software
engineering. p 56

Robbes R, Röthlisberger D, Tanter É (2012b) Extensions during software evolution: do objects meet their
promise? In: Noble J (ed) Proceedings of the 26th European conference on object-oriented programming
(ECOOP 2012), volume 7313 of Lecture Notes in Computer Science. Springer, Beijing, pp 28–52

Schwarz N, Lungu M, Robbes R (2012) On how often code is cloned across repositories. In: Proceedings of
the 34th ACM/IEEE international conference on software engineering (ICSE 2012, NIER Track)

Shalloway A, Trott JR (2004) Design patterns explained: a new perspective on object-oriented design, 2nd
edn. Addison-Wesley, Reading

Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27
Tempero ED, Noble J, Melton H (2008) How do Java programs use inheritance? An empirical study of

inheritance in Java software. In: Proceedings of the 22nd European conference on object-oriented
programming (ECOOP 2008). pp 667–691

Torgersen M (2004) The expression problem revisited (four new solutions using generics). In: Odersky
M (ed) Proceedings of the 18th European conference on object-oriented programming (ECOOP 2004),
number 3086 in Lecture Notes in Computer Science. Springer, Oslo, pp 123–146

Van Rysselberghe F, Demeyer S (2007) Studying versioning information to understand inheritance hierarchy
changes. In: Proceedings of the 4th international workshop on mining software repositories (MSR 2007).
p 16

Vargha A, Delaney HD (2000) A critique and improvement of the CL common language effect size statistics
of McGraw and Wong. J Educ Behav Stat 25(2):101–132

Wadler P (1998) The expression problem. Mail to the java-genericity mailing list
Zenger M, Odersky M (2005) Independently extensible solutions to the expression problem. In: Workshop

on foundations of object-oriented languages (FOOL). Long Beach
Zimmermann T, Weißgerber P, Diehl S, Zeller A (2005) Mining version histories to guide software changes.

IEEE Trans Softw Eng 31(6):429–445

Romain Robbes is assistant professor at the University of Chile
(Computer Science Department), in the PLEIAD research lab, since
January 2010. He earned his PhD in 2008 from the University
of Lugano, Switzerland and received his Masters degree from the
University of Caen, France. His research interests lie in Empiri-
cal Software Engineering and Mining Software Repositories. He
authored more than 50 papers on these topics at top software engi-
neering venues (ICSE, FSE, ASE, EMSE, ECOOP, OOPSLA), and
received best paper awards at WCRE 2009 and MSR 2011. He was
program co-chair of IWPSE-EVOL 2011, IWPSE 2013, and WCRE
2013, is involved in the organisation of ICSE 2014, and the recipient
of a Microsoft SEIF award 2011.

782 Empir Software Eng (2015) 20:745–782

David Röthlisberger is an assistant professor at Universidad Diego
Portales, Santiago, Chile. He received his PhD degree in computer
science from the University of Bern, Switzerland, in 2010. His
research interests include software maintenance and visualization,
integrated development environments, empirical software engineer-
ing, and mining software repositories. He is a member of ACM and
IEEE.

Éric Tanter is an Associate Professor in the Computer Science
Department of the University of Chile, where he founded and co-leads
the PLEIAD laboratory. He received the PhD degree in Computer
Science from both the University of Nantes and the University of
Chile. His research interests cover programming languages and soft-
ware engineering, ranging from the theoretical underpinnings of
programming languages to the empirical study of the practice of
programming. He is a member of the ACM, the IEEE, and the SCCC.

	Empir Software Eng
	Abstract
	Introduction
	Why Study Smalltalk?
	Structure of the Paper

	Background and Related Work
	Extensibility in OOP
	Related Work

	Experimental Setup
	Data Collection
	Squeaksource
	Monticello
	Ecco

	Data Processing
	Extension Detection
	Extension Weighting
	Visitor Detection
	Aggregation
	Classification
	Filtering

	Basic Statistics in Squeaksource
	Distribution of Metrics
	Statistical Tests

	Are Extensions Prevalent?
	Frequency of Extensions in Commits
	Frequency of Extensions in Class Hierarchies and Projects
	Summary

	Comparing Data and Operation Extensions
	Frequency of Both Kinds of Events
	Quantifying the Difference Between Kinds of Extension
	Relationship with Size of Hierarchies
	Summary

	Extensions and Evolution
	Introducing Periods
	Evolution of the Ratio of Operation Extensions
	Summary

	Is the Visitor Pattern a Suitable Solution?
	Prevalence of the Visitor Pattern
	How are Visitors and Visitees Extended?
	Summary

	How Stable are Extensions?
	Data Processing for Extension Stability
	Change Proneness by Kinds of Extensions
	Entropy of Operation Extensions
	Change Proneness
	Number of Implementors

	Summary

	The Case of Third-Party Extensions
	Frequency of Third-Party Extensions
	Distribution of Third-Party Extensions
	Extensions in Commits
	Extensions in Projects

	Summary

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	Acknowledgments
	References

