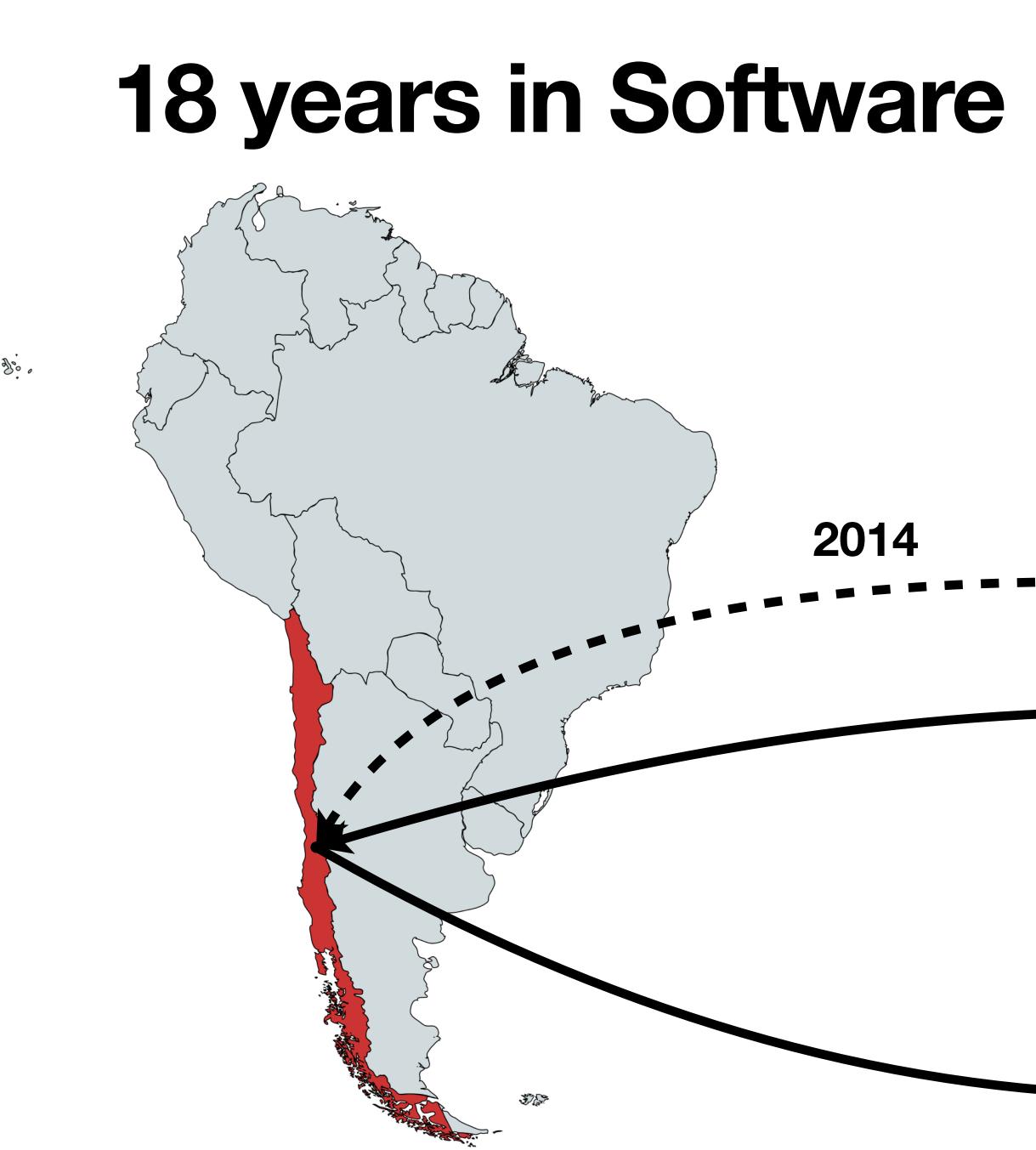
Machine Learning for Software Engineering with Scarce Data

Audition DR2 CNRS CRIStAL Lille (UMR 9189)

Romain Robbes, 30/03/2022



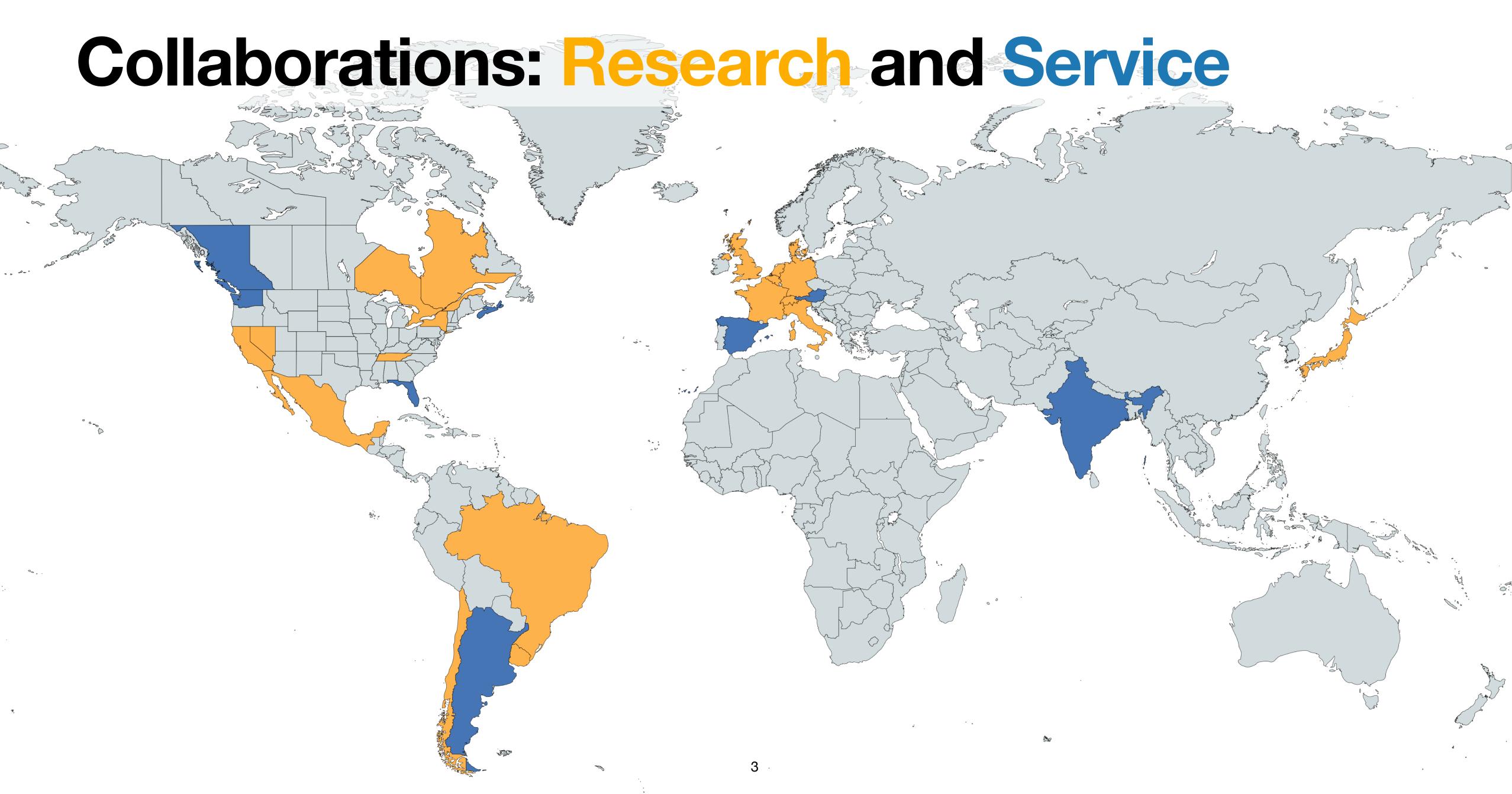
18 years in Software Engineering Research

- 2004 2008: PhD, Lugano, Switzerland
- 2010 2015: Tenure-track, Santiago, Chile
- (2014: Visiting, Hamburg, Germany)
- 2016 2017: Tenured, Santiago, Chile

55

2017 — now : Tenured, Bolzano, Italy

2010



Publications and service in quality venues

Full papers in top SE & PL venues: ICSE, FSE, ASE, ECOOP, OOPSLA 1 award short papers

Articles in top journals: EMSE, TSE, JSS, CSUR

Full papers in specialist venues: ICSME, MSR, ICPC, SANER/WCRE 4 awards

Track co-chair: ICSE * 2, OOPSLA

other journals

Editorial boards: EMSE, JSS

PC co-chair: MSR * 2, WCRE

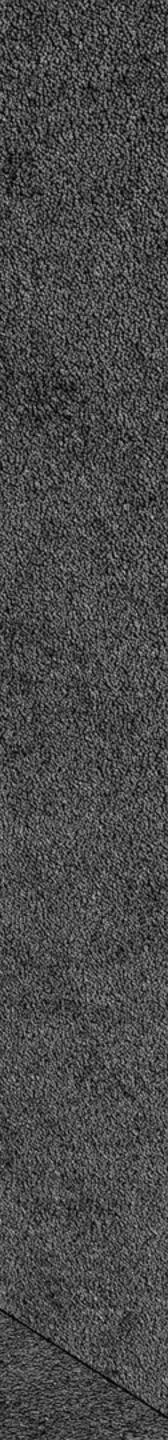
Software systems can be very complex .

... and still need to continually change

5



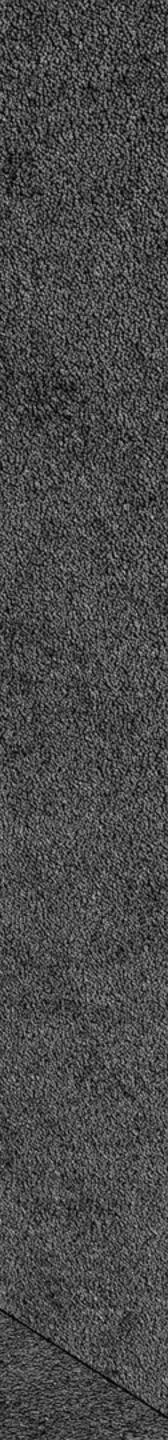
Software engineering is a complex topic



Human Studies

Machine Learning for Software Engineering (ML4SE)

Mining Software Repositories (MSR)



Major Research contributions

Mining Software **Repositories**

Human **Studies**

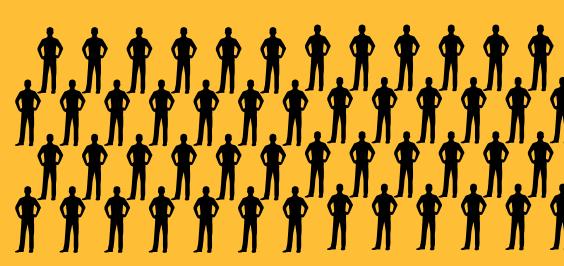
ML4SE

Bring back the human perspective:

- Do we ask the right questions?
- Do we have the right answers?

Machine Learning for Software Engineering can integrate these multiple perspectives

MSR brings multiple perspectives on Software Systems



SE artefacts mix structure and language

Hi Alice,

Can you help me figure out this bug?

// updating credentials
User u = DB.getUser(id)
u.setPassword(username)
DB.update(id, u)

Hope you can help, it's urgent. Thanks in advance!

Cheers, Bob Deep Learning learns vector representations of the meaning of words in context

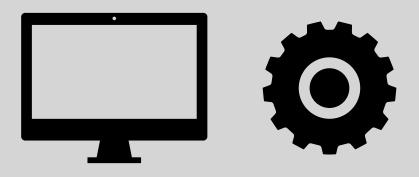
Bug	.8	.2	.7	.1	.9	.5	.7	.3	.1	.3	.4	.9
Defect	.9	.2	.8	.2	.8	.4	.6	.3	.3	.4	.4	.8

Homogeneous vector representations support multiple types of artefacts

Some models support structure such as trees or graphs

Code: machine and human perspectives

Program analysis ignores identifiers and code comments



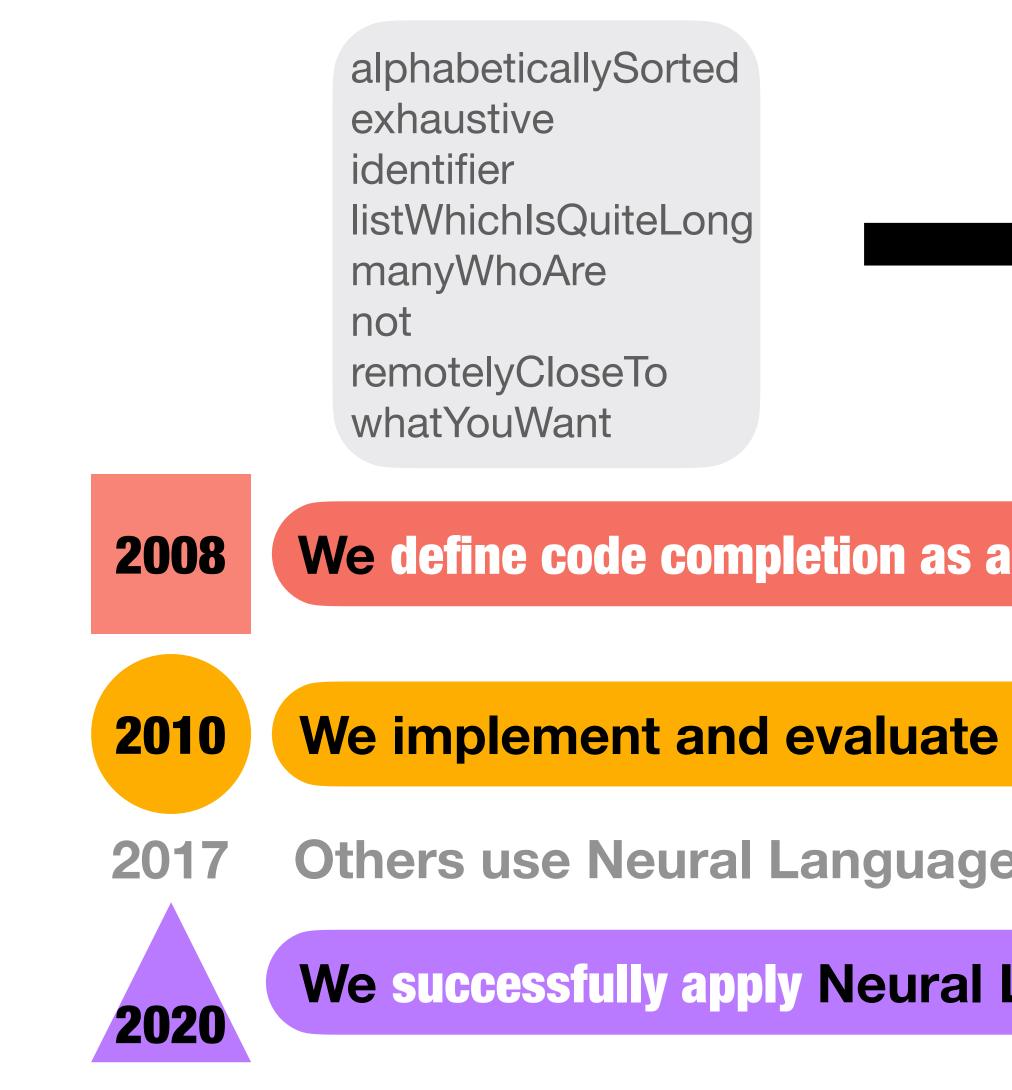
// i272.f428(i823);

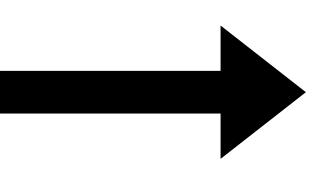
> Merging machine and human perspectives can detect new kinds of bugs (e.g., code-comment incoherence)

Identifiers and comments are critical for program understanding // updating credentials u.setPassword(username);

Example: Code Completion

Every programmer uses code completion





whatYouWant shortList

We define code completion as a task and develop optimized algorithms

We implement and evaluate a code completion tool, still used in practice

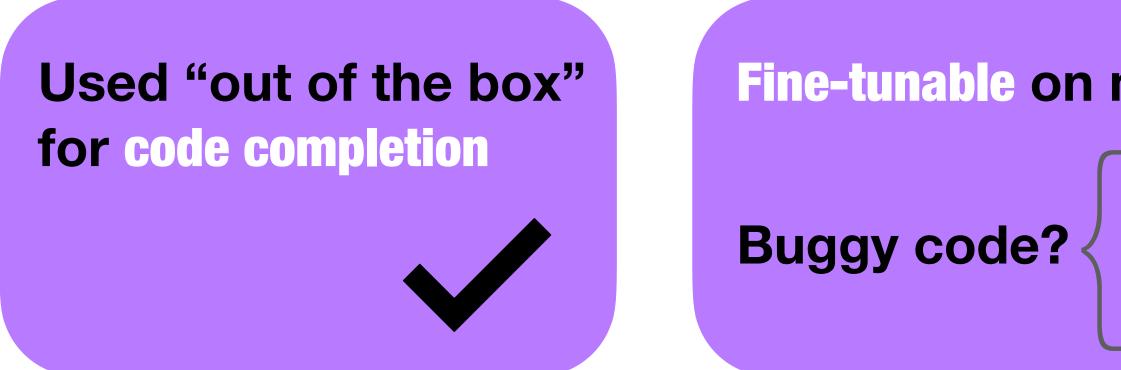
Others use Neural Language Models for code completion, but struggle

We successfully apply Neural Language Models to code completion

Source Code Neural Language Models (NLMs)

NLMs are pre-trained on source code by predicting tokens based on context

public static void String commandM String uncommor



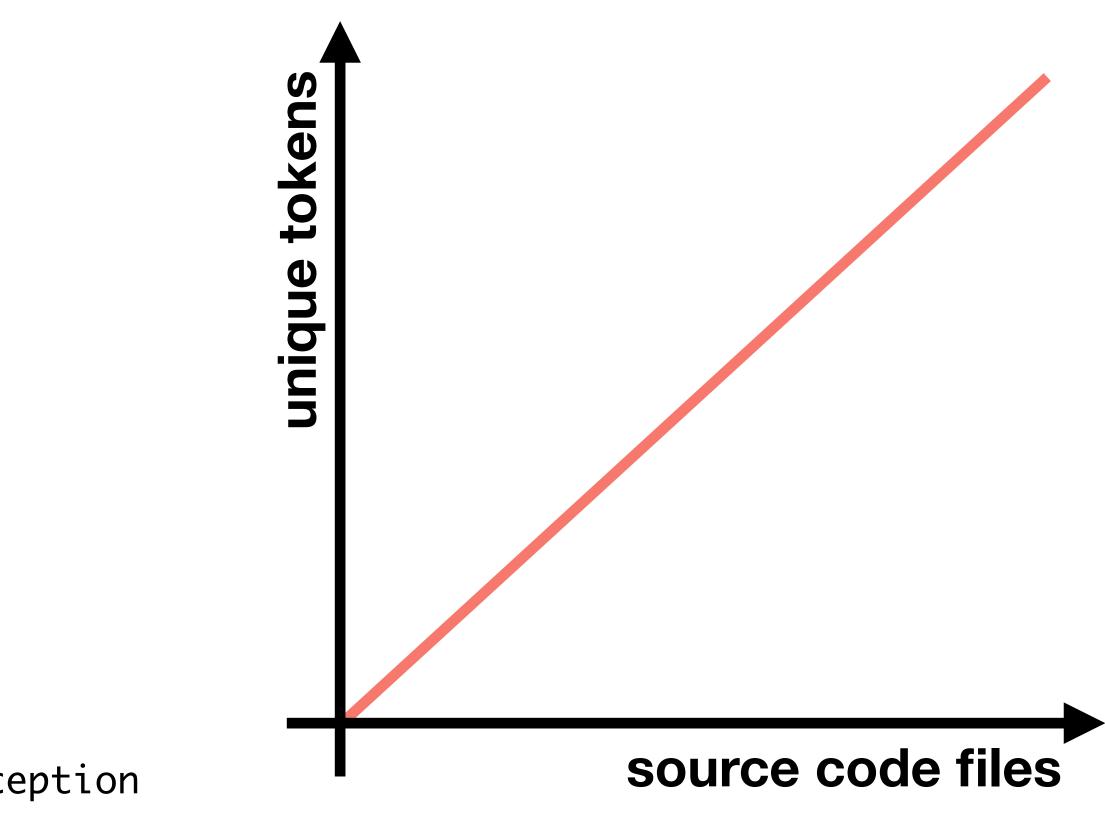
- public static void main(String [] args) {
 - String commandName = args [0] ;
 - String uncommonFlag = args [1] ;

Fine-tunable on many other tasks Buggy code? Yes: 0.02 No: 0.98

NLMs have a closed vocabulary of predefined tokens

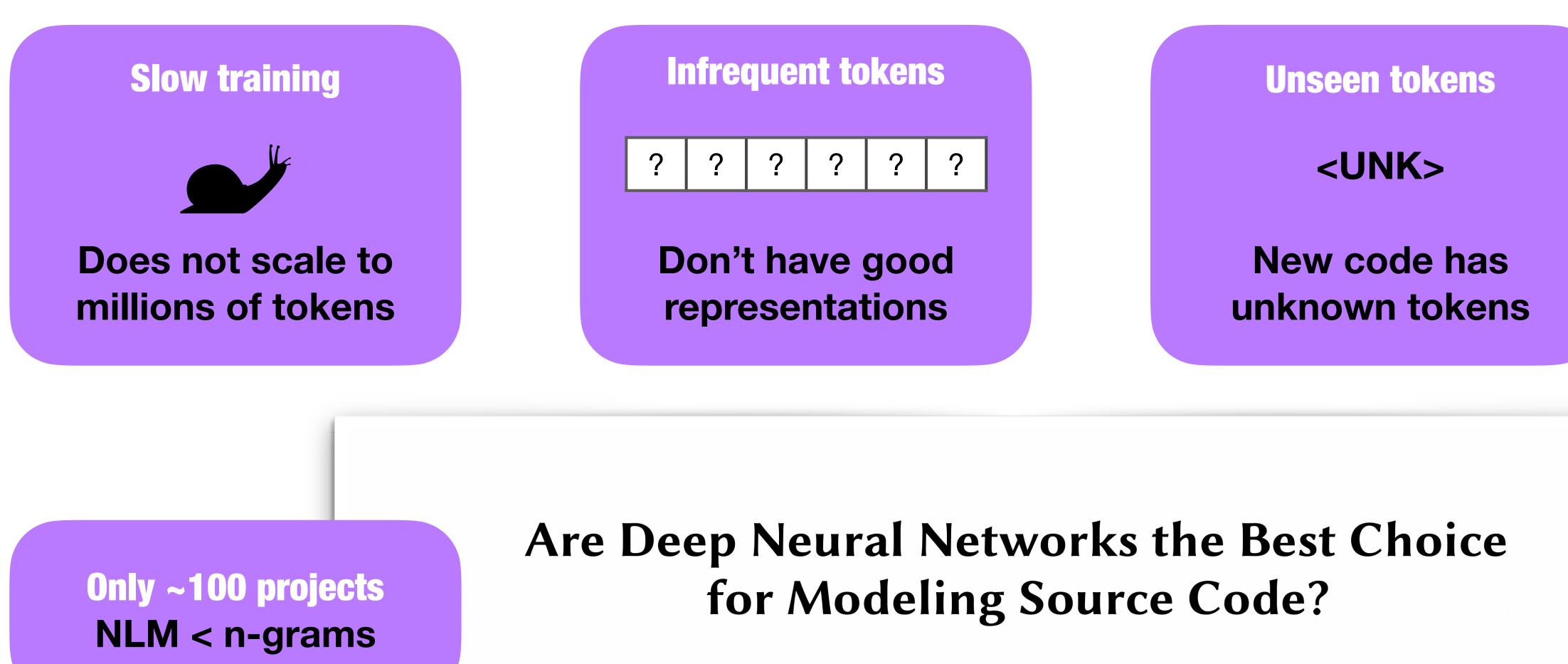
Developers create new identifiers at will

foo Foo Bar FooBar FOO_BAR a234 a282 a9095 my_taylor_is_rich MeinTaylorIstReich mon-tailleur-est-riche FooBarManagerController ArbitrarilyLongAndComplexIdentifierIsAllowed FooBarManagerControllerRuntimeInstantiationException



New code contains new tokens, leading to a Vocabulary Explosion

Large vocabulary leads to three issues



Vincent J. Hellendoorn Computer Science Dept., UC Davis

Premkumar Devanbu Computer Science Dept., UC Davis

We went back to pre-processing

Exhaustive preprocessing on 10,000 Java projects (also C, Python)

No preprocessing FooBarManagerController

Coding Conventions

Foo Bar Manager Controller

Best standard approach (Out of a dozen)

This works, but ... this is not enough

# Unique Tokens	Corpus Size	Frequency (%< 10)	OOV (% @ 75K)
11.6M	1.0		11111 79%
1.3M	1.6	81%	20%
0.5M	1.9	70%	9%
HUG vocabu		any rare tokens	Many OC tokens

We looked further

Exhaustive preprocessing on 10,000 Java projects (also C, Python)

No preprocessing FooBarManagerController Best standard approach (Out of a dozen)

Byte-Pair Encoding (BPE) was used in Translation, but not yet in NLMs

# Unique Tokens	Corpus Size	Frequency (%< 10)	OOV (% @ 75K)
11.6M	1.0	83%	79%
0.5M	1.9	 70%	9%

BPE learns an open vocabulary bottom-up, from common character sequences

BPE solves all the vocabulary issues

Exhaustive preprocessing on 10,000 Java projects (also C, Python)

No preprocessing FooBarManagerController Best standard approach (Out of a dozen)

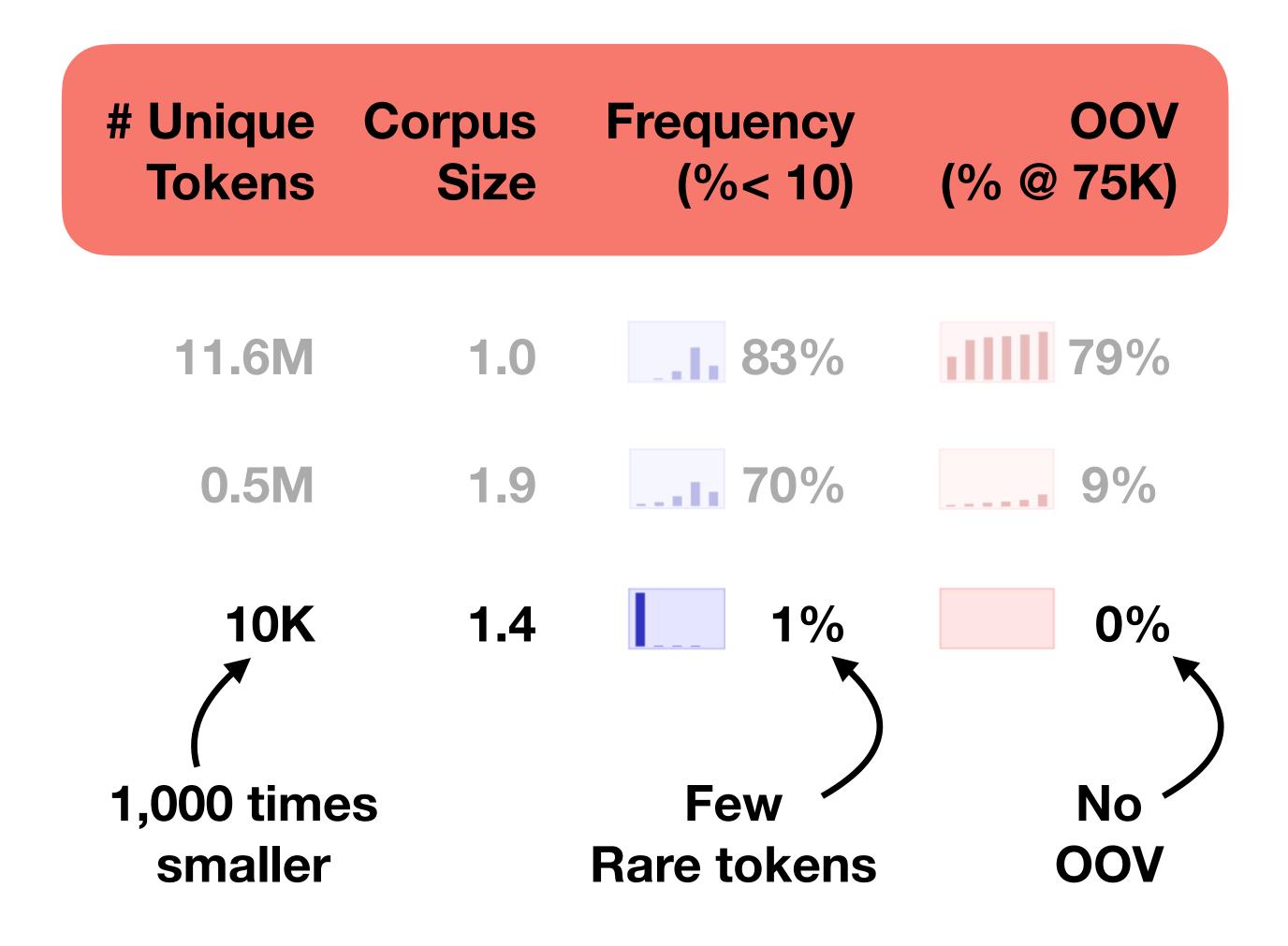
Byte-Pair Encoding (BPE) Foo Bar ManagerController

http client lib 🖡

Se hr Lan ge Que ll code Ken nun g

Performs well

– Degrades gracefully



Outcomes

It scales to 10,000+ software projects, 100 X more than previous work

A thorough evaluation shows large in

We built an open-vocabulary NLM (with additional code-specific extensions)

		-
	1en	

MODEL	Java							Java Identifiers			с				Python			
	Static Dynamic		amic	Maintenance		Bugs	Dynamic			Static		Dynamic		Static		Dynamic		
	Ent	MRR	Ent	MRR	Ent	MRR	% Ent ↓	R@1	R@10	MRR	Ent	MRR	Ent	MRR	Ent	MRR	Ent	MRF
Small Train																		
n-gram	6.25	53.16	5.54	56.21	5.30	58.32	1.81	17.24	34.66	22.26	6.51	55.20	4.14	57.34	5.30	43.63	4.81	47.39
Nested	-	-	3.65	66.66	2.94	71.43	-	37.46	56.85	43.87	-	-	3.61	62.25	-	-	4.05	54.03
Cache	-	-	3.43	69.09	3.32	70.23		40.13	59.52	46.57	-	-	2.19	75.09	-	-	3.22	62.2
Nested Cache	-	-	2.57	74.55	2.23	77.04	-	49.93	<u>70.09</u>	56.81	-	-	2.01	76.77	-	-	2.89	65.9
Closed NLM	4.30	62.28	3.07	71.01	-	-	1.81	30.96	49.93	37.20	4.51	60.45	3.20	72.66	3.96	81.73	3.34	84.03
Heuristic NLM	4.46	53.95	3.34	64.05	-	-	1.04	39.54	58.37	45.28	4.82	52.30	3.67	61.43	4.29	65.42	3.56	71.3
BPE NLM (512)	4.77	63.75	2.54	77.02	1.60	78.69	3.26	45.49	67.37	52.66	4.32	62.78	1.71	76.92	<u>3.91</u>	81.66	2.72	86.2
BPE NLM (512) + cache	-	-	-	77.42	-	-	-	50.49	68.16	56.30	-	-	-	-	-	-	-	
BPE NLM (2048)	4.77	64.27	2.08	77.30	-	-	3.60	48.22	69.79	55.37	4.22	64.50	1.59	78.27	3.66	81.71	2.69	86.6
BPE NLM (2048) + cache	-	-	-	78.29	-	-	-	52.44	70.12	58.30	-	-	-	-	-	-	-	
Large Train																		
Nested Cache	-	-	2.49	75.02	2.17	77.38	-	52.20	72.37	59.09	-	-	1.67	84.33	-	-	1.45	71.2
BPE NLM (512)	3.15	70.84	1.72	79.94	1.04	81.16	4.92	51.41	74.13	59.03	3.11	70.94	1.56	77.59	3.04	84.31	2.14	87.0
BPE NLM (512) + cache	-	-	-	80.29	-		-	55.68	74.30	61.94	-	-	-	-	-	-	-	
BPE NLM (2048)	2.40	75.81	1.23	82.41	-		5.98	57.54	72.18	62.91	2.38	80.17	1.36	83.24	2.09	86.17	<u>1.90</u>	87.5
BPE NLM (2048) + cache		-		83.27	-	-		60.74	73.76	65.49	-	-		-	-	-		

90+ citations in 2 years data, code, models available

Needed expertise in both ML & SE, willingness to revisit assumptions

Research Program: ML4SE in Scarce Data Scenarios

Source Code NLMs are getting ... larger

Ours (2020)

1.8 GB

OpenAl's Codex (2021) GitHub Copilot

Trained on 55 Million GitHub code repositories Runs only in the cloud Closed source

DeepMind's AlphaCode (2022)

715**GB**

Are there 55 million repositories of COBOL? MANTIS? NCL? 4D?

Legacy systems, in orphan languages

Complex code, many quality issues Missing documentation and tests

Almost no open source presence: Not enough data for out of the box ML approaches

Legacy Systems: old, but critical infrastructure for important institutions

Knowledge loss over decades Constant need for software evolution

Orphan Languages: decades-old proprietary languages with **little or no support**

Two challenges: scientific and practical

Learn with less data

For orphan languages

In practical settings

Relevant for legacy systems

Learn with less data, but with more ...

"Big data" - Small preprocessing

source code == natural text

Large but generic NLMs

"Small data" -> SE-specific preprocessing

source code != natural text

more structure

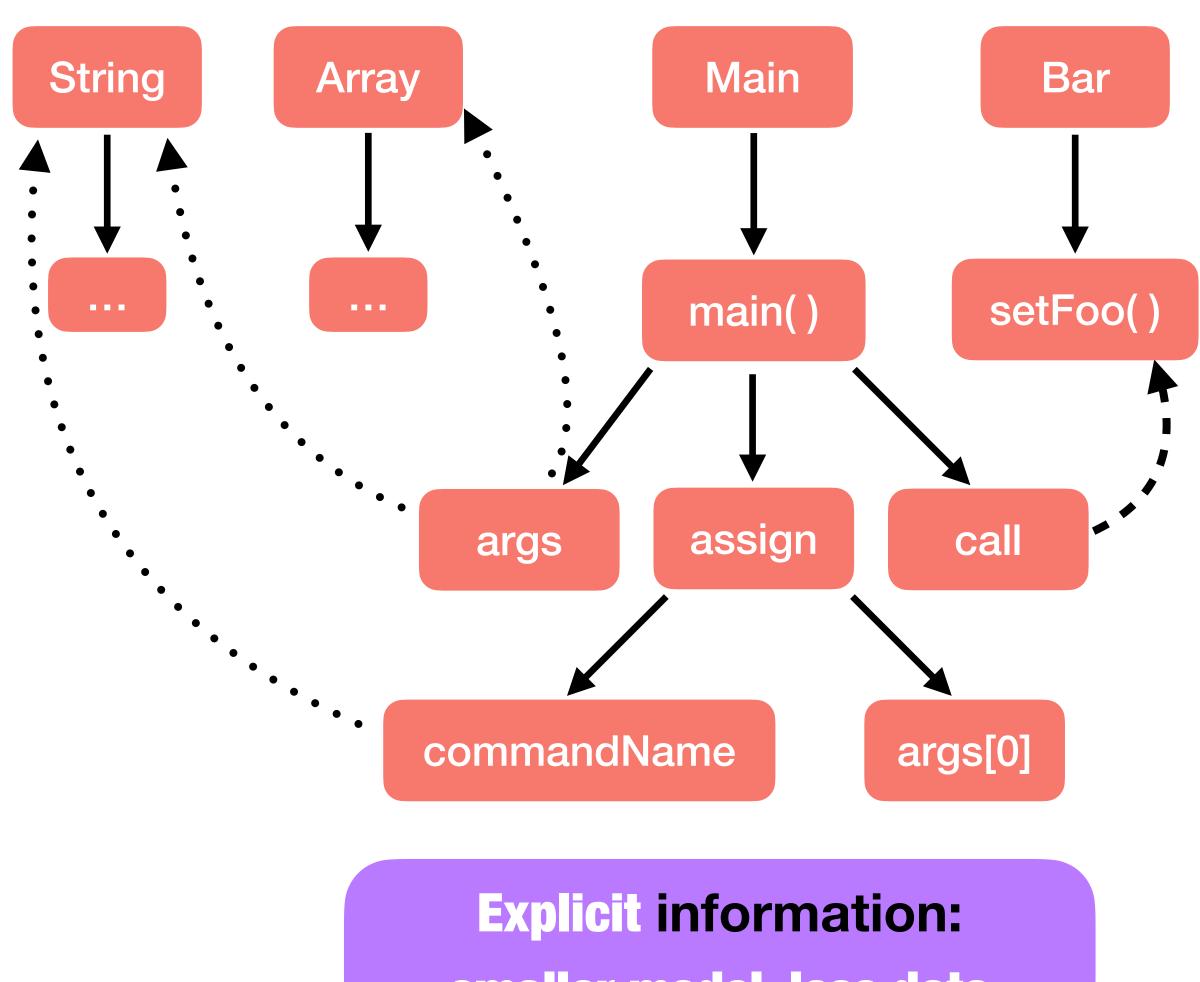
more information

better transfer

Learn from less with more structure

public static void main(String [] args) { String commandName = args [0] ; String uncommonFlag = args [1] ; myBar.setFoo(args[2])

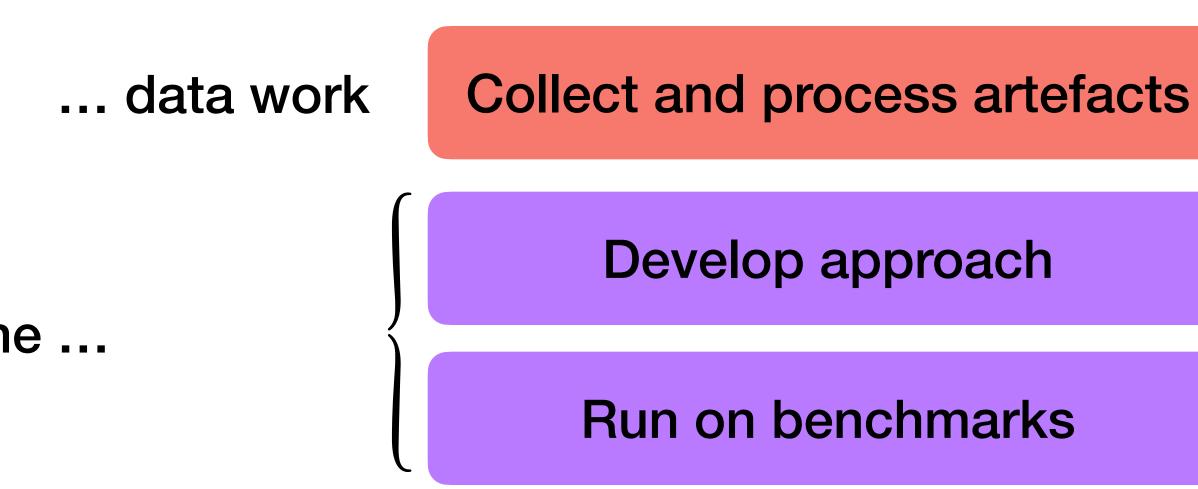
> **Learning implicit information** from scratch requires a large model & lots of data



smaller model, less data

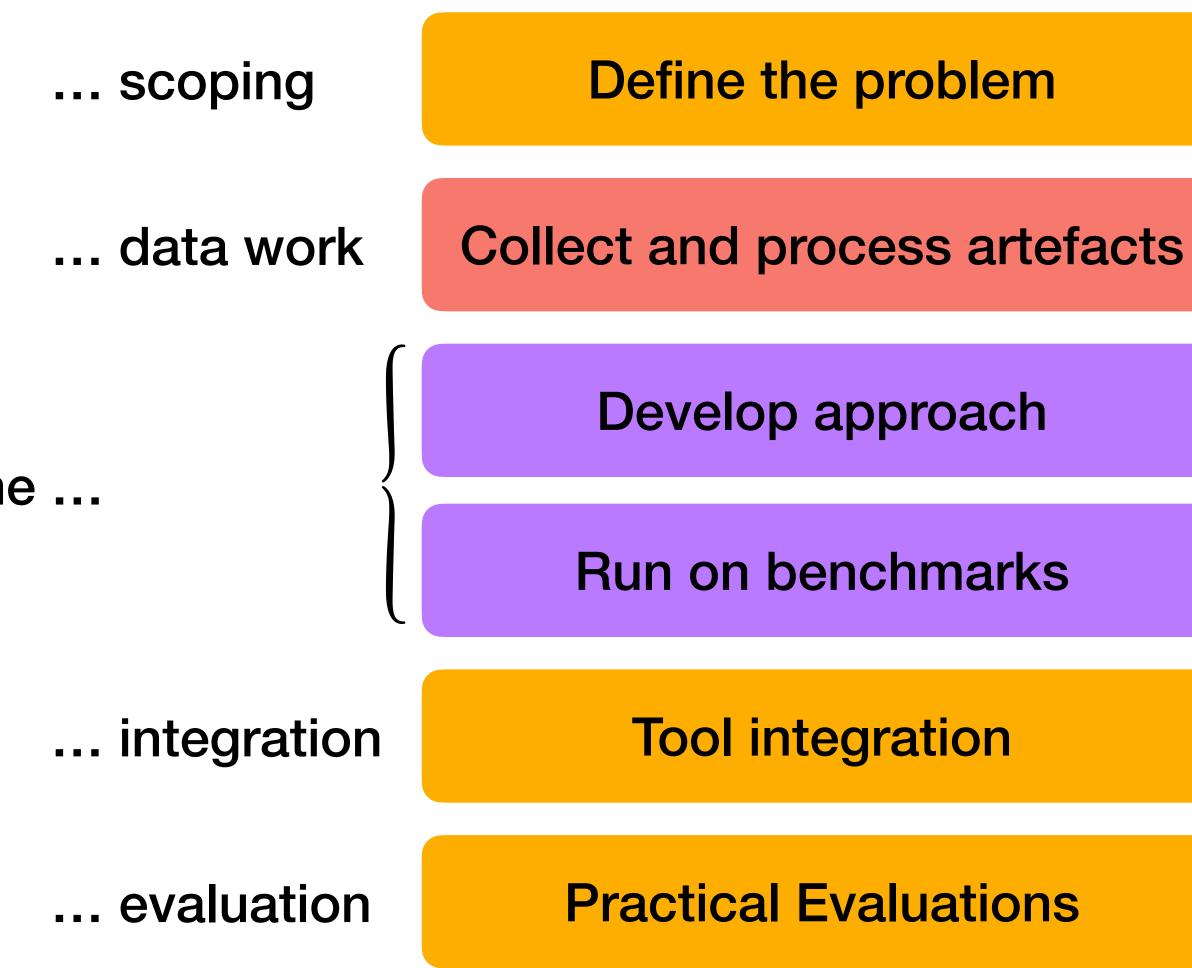
Most papers focus on the ML perspective

Everybody wants to do the model work, not the ...



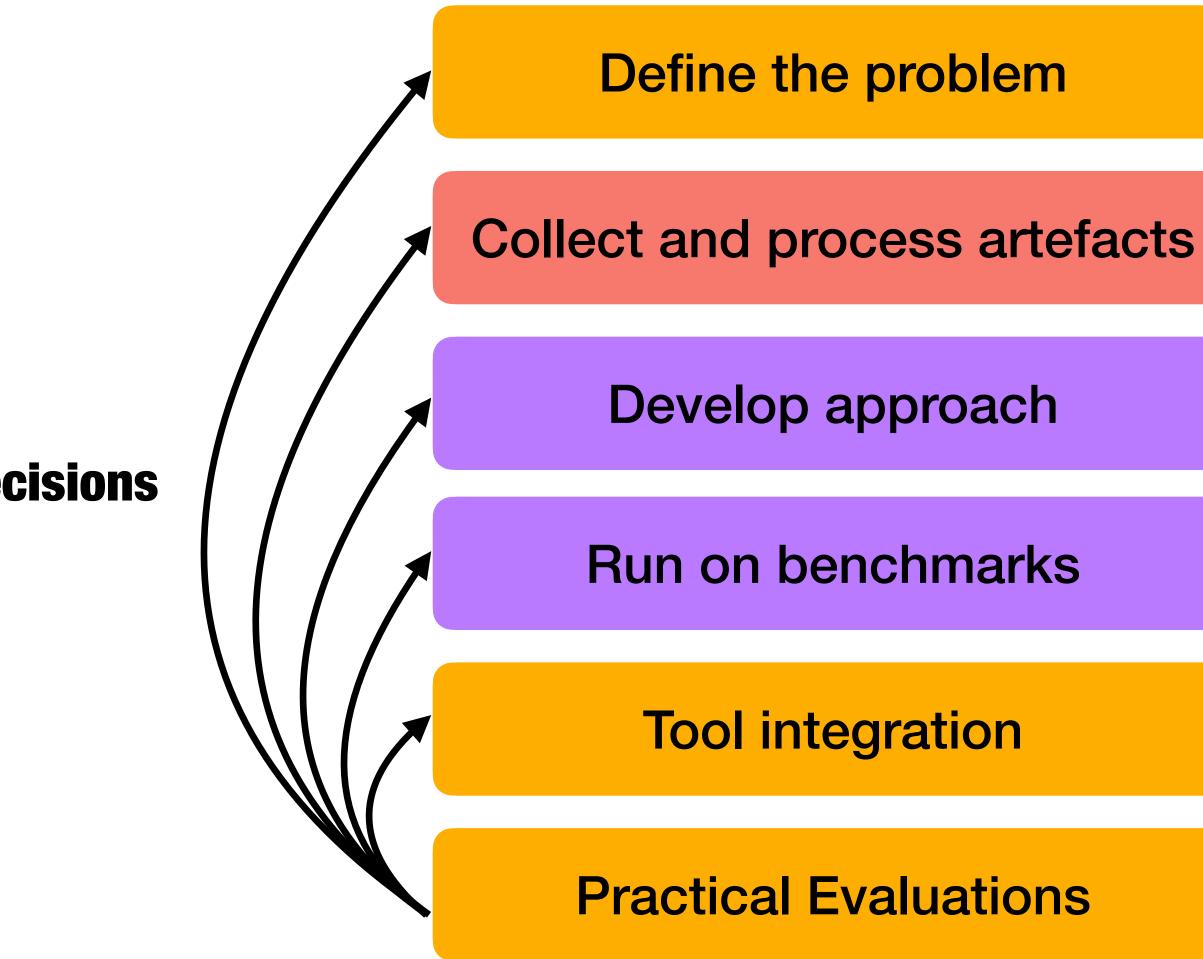
Practical scenarios require a holistic view

Everybody wants to do the model work, not the ...



Practical scenarios provide feedback...

... which may lead to revisiting decisions



The ideal team for this project is RMoD

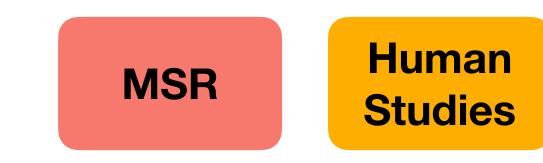
Practical problems include test generation, code migration, business rule extraction, bug triage, & many others

RMoD works with industrial partners to help them support their legacy systems

SIEMENS arolla Lifeware

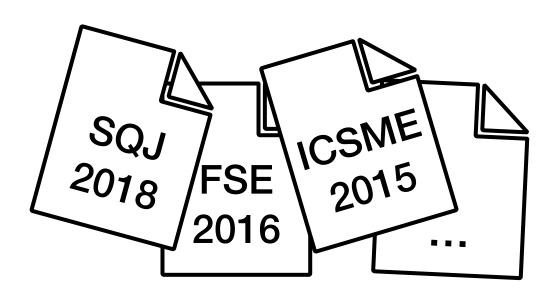
Integrating with RMoD

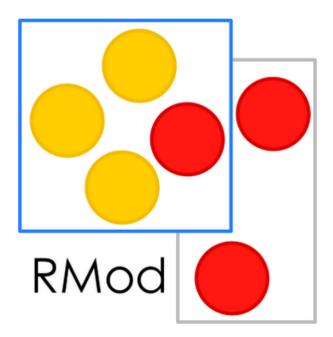
Reinforce RMoD in:



For me, a practical perspective:

RMod & I have extensive previous collaborations:





RMoD seeks:

SIEMENS arolla Lifeware

