
18

Changes as First-Class Citizens: A Research Perspective
on Modern Software Tooling

QUINTEN DAVID SOETENS, Dept. of Mathematics and Computer Science, University of Antwerp
ROMAIN ROBBES, Computer Science Department (DCC), University of Chile
SERGE DEMEYER, Dept. of Mathematics and Computer Science, University of Antwerp

Software must evolve to keep up with an ever-changing context, the real world. We discuss an emergent trend
in software evolution research revolving around the central notion that drives evolution: Change. By reifying
change, and by modelling it as a first-class entity, researchers can now analyse the complex phenomenon
known as software evolution with an unprecedented degree of accuracy. We present a Systematic Mapping
Study of 86 articles to give an overview on the state of the art in this area of research and present a roadmap
with open issues and future directions.

CCS Concepts: � Software and its engineering → Software configuration management and version
control systems; Software development techniques; Software maintenance tools; Software libraries
and repositories;

Additional Key Words and Phrases: Systematic mapping study, fine-grained changes, change recording,
change distilling, atomic change operations, fine-grained edit operations

ACM Reference Format:
Quinten David Soetens, Romain Robbes, and Serge Demeyer. 2017. Changes as first-class citizens: A research
perspective on modern software tooling. ACM Comput. Surv. 50, 2, Article 18 (April 2017), 38 pages.
DOI: http://dx.doi.org/10.1145/3038926

1. INTRODUCTION

Software is vital to our society and, consequently, the software engineering community
is investigating means to produce reliable software. For a long time, reliable software
was seen as software “without bugs.” Today, however, reliable software has come to
mean “easy to adapt” because of the constant pressure to change. With the use of
continuous integration, for instance, it is possible to shorten the release cycle from a
couple of months to a few weeks, which implies that bugs get fixed faster as well [Khomh
et al. 2015]. Continuous delivery takes the concept of rapid release cycles to the extreme:
Updates get pushed to the customer multiple times per day. Facebook, for example,
pushes new updates to production twice a day; within Amazon, it happens on average
every 11.6s [Jenkins 2011].

This work is partially supported by FONDECYT (Chile) Project No. 1151195 and partially sponsored by the
Institute for the Promotion of Innovation through Science and Technology in Flanders (Belgium) through a
project entitled “Change-centric Quality Assurance” (CHAQ) with number 120028.
Authors’ addresses: Q. D. Soetens (current address), OM Partners nv, Koralenhoeve 23, 2160 Wommel-
gem (Antwerpen), Belgium; email: qsoetens@ompartners.com; S. Demeyer, Dept. of Mathematics and Com-
puter Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium; email: serge.demeyer@
uantwerpen.be; R. Robbes (current address), Free University of Bozen-Bolzano, Faculty of Computer Science,
Piazza Domenicani 3, 39100 Bolzano (BZ), Italy; email: romain.robbes@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0360-0300/2017/04-ART18 $15.00
DOI: http://dx.doi.org/10.1145/3038926

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dx.doi.org/10.1145/3038926
http://dx.doi.org/10.1145/3038926

18:2 Q. D. Soetens et al.

Indeed, software evolution is inevitable [Lehman and Belady 1985]: In the software
industry, the cost of maintaining and changing software greatly outweighs the initial
cost of development. As a consequence, organisations producing software must seek for
a delicate balance between two opposing forces: striving for reliability as well as for
agility. In the former, organisations optimise for perfection; in the latter, they optimise
for development speed.

While the tension between reliability and agility is an essential ingredient of modern
software development, part of the balancing act can be alleviated with proper tooling.
Since the mid-2000s, there has been a trend towards devising software engineering
tools in which the act of changing software is represented as a first-class entity. As
such, a change becomes tangible in the form of an object that can be directly analysed
or manipulated. This idea can be traced back to the mid 1990s to operation-based
versioning systems [Lippe and van Oosterom 1992], which is now experiencing a re-
vival. Moreover, with the adoption of distributed version control systems like git and
hosting services like GitHub and BitBucket, the granularity of tracking changes has
fundamentally shifted. The yearly Eclipse Community Survey Report, for instance,
shows a growing trend in the adoption of subversion (SVN) and git, with git rapidly
surpassing SVN [Skerrett 2013]. As such, these change-based approaches have spread
beyond mere versioning and have proven useful in a variety of contexts, including, but
not limited to, collaboration and awareness, recommendation systems, change impact
analysis, regression testing, reverse engineering, and many more.

In this article, we summarise the research contributions that are based on a first-
class representation of changes to software systems and highlight future applications.
We report on a Systematic Mapping Study that we performed in order to provide an
overview on the state of the art in reified source-code changes. A Systematic Mapping
Study is designed to provide a wide overview of an area of research in order to establish
if there exists evidence on a particular topic and provide an indication of the quantity
of said evidence [Budgen et al. 2008; Kitchenham and Charters 2007; Petersen et al.
2015, 2008]. It can also identify areas where more primary research is needed or areas
that are ripe for a more in-depth literature review. As our goal is to present an overview
on the state of the art in change reification as well as to present a roadmap for future
research directions, a Systematic Mapping Study is an ideal approach.

An overall research question (RQ) to summarise our goal can thus be formulated:

RQ: To what purposes has change reification been used, what is the evidence for
the success of approaches employing it, and what directions of further research are
considered important?

The rest of this article is structured as follows. In Section 2 we give a short intro-
duction into the basics of change reification. Section 3 explains in detail the process of
a Systematic Mapping Study and explains how we selected our primary studies. We
continue with the classification of the articles and answer each of the research ques-
tions (posed in Section 3) in Sections 4, 5, 6, and 7. We wrap up the article with the
conclusions and our vision for the future in software development in Section 8.

2. THE BASICS OF CHANGE REIFICATION

The key concept behind change reification approaches is that changes are represented
as first-class entities, objects that are directly manipulable by programs and humans.
As such, we define a first-class change as a tangible object that represents an action
that changes a software system. They describe meaningful operations on the data
they act on, which is computer programs. This is in contrast with other models of the
evolution of software systems, in which a change is the implicit difference between two
versions. For instance, the change representation found in most versioning systems

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:3

is still the text-based δ between the versions [Robbes and Lanza 2005]. The entities
affected by first-class changes instead are actual program entities: packages, classes,
methods, and even statements.

A further characteristic shared by a number of change reification approaches is that
these changes are recorded through the Integrated Development Environment (IDE),
while developers program. This retains the precision of the change sequence that orig-
inated from the developers themselves, instead of having to reconstruct it from the
limited data in source-code management systems. The gathered change information
can be leveraged by analyses, which benefit from the accuracy of the recorded infor-
mation. The kinds of changes, and types of analyses supported, depends on the model
chosen.

There are three ways of obtaining changes while software engineers are working:
change-oriented programming, change recording, and change recovery.

Change-Oriented Programming (or ChOP) is a programming style that cen-
tralises change [Ebraert et al. 2007a]. To create a piece of software in ChOP, a pro-
grammer does not need to write large chunks of source code but rather uses the IDE
to explicitly apply changes to the source code. This approach is already quite common
for very specific cases in most mainstream IDEs. For instance, Eclipse provides the
possibility of adding new classes or creating getter and setter methods by the click of a
button and interacting with the IDE through dialogs. Additionally, many tools support
the automatic execution of refactorings, which can be considered composite changes
consisting of several atomic changes. In the end, it is the IDE (or the refactoring tool)
that produces the source code and inserts this code in the specified location. In pure
ChOP, the entire system is built by having the IDE execute changes. This approach,
however, is unrealistic, as programmers cannot be expected to respond to a dialog for
every fine-grained change that they want to perform.

Change Recording (or Change Logging) silently records the activities of the pro-
grammers while they are working, and infers the changes that they produce [Robbes
and Lanza 2007a]. For instance, if the programmer changes a method, a differencing
algorithm will infer which statements were added, changed, and removed. Additionally,
the change recorder can maintain dependencies between the changes. This approach
can also be mixed with the first one by recording the activity of the code wizards and
refactoring engines.

Change Recovery (or Change Distilling) recreates changes after they were per-
formed by analysing two subsequent versions of a system [Fluri et al. 2007b]. This
approach finds the shortest sequence of changes to transform version “a” into version
“b.”

The difference between these three approaches to change reification is in how close
the inferred changes lie to the actual changes a developer performed. Change recovery
tries to reconstruct changes from the limited information in source-code repositories,
whereas change recording obtains changes that show what actually happened. Pure
ChOP would be the best approach, since the changes obtained are exactly those changes
the developer performed.

Taxonomy of Changes. Lehnert et al. have reviewed different types of changes and
their effect on change impact analysis and regression testing [Lehnert et al. 2012].
Based on their review, they proposed a taxonomy of changes (see Figure 1). They
identify four classification criteria: the Abstraction Level, the Composition Type, the
Type of Operation, and the Scope of Change.

—In the abstraction level, they distinguish between Generic and Concrete changes. A
generic change needs to be instantiated to become a concrete one; for instance, a

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:4 Q. D. Soetens et al.

Fig. 1. Taxonomy of Changes (taken from Lehnert et al. 2012).

refactoring can be defined in a generic way, which allows it to be used in several
concrete instances.

—A change can be either atomic or composite. A composite change can be decomposed
into smaller changes that together represent a meaningful operation. Atomic changes
are then the basic changes that cannot be further decomposed.

—The third criterion (type of operation) directly reflects the composition type and says
that there are three atomic operations (Add, Delete, and Property_update) and the
others (Move, Merge, Split, Replace or Swap) are examples of composite changes.

—The scope of change is used to associate a change to the type of artefact the change
can be applied to like source code, architectural models, or even text documents.

In this article, we limit ourselves to atomic and composite changes (both generic and
concrete) that act on source code (see the grayed out parts in Figure 1). We did find
that some articles straddled the boundaries, such as articles operating on models in
the Unified Modelling Language (UML) extracted from source code. We kept these
articles on the rationale that the original material is the actual source code, not the
UML models.

Scope of Change—Models. Note that there is a large body of research on change
reification in modelling languages as well. It is beyond the scope of this mapping study
to incorporate this body of work. However, we provide some recent examples to demon-
strate the breadth of the field. Just like with source code, change-based approaches
for models have proven useful in a variety of contexts. Taentzer et al., for instance,
demonstrated that by representing model structures and their changes over time, it
is possible to construct a richer version control system for models [Taentzer et al.
2014]. Johann et al. showed that explicit changes allow for incremental model trans-
formations, which avoids the costly matching operations on those parts of the model
that cannot be affected [Johann and Egyed 2004]. Blanc et al.argued that detection
and resolution of structural inconsistencies becomes much easier when models are
represented by sequences of elementary construction operations [Blanc et al. 2008].
Bennaceur et al. discuss challenges when developing mechanisms to support runtime
software adaptation [Bennaceur et al. 2014]. Dávid et al. integrated incremental model
queries, complex event processing, and reactive transformation techniques to manip-
ulate models that are only available as a stream of data and hence cannot be fully
materialised [Dávid et al. 2016].

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:5

Fig. 2. Systematic Mapping Study process.

3. SYSTEMATIC MAPPING STUDY SETUP

In this section, we present the process that we followed while performing our systematic
mapping study. We begin by quoting some definitions for Systematic Mapping Studies:

Systematic Mapping Studies (also known as Scoping Studies) are designed to pro-
vide a wide overview of a research area, to establish if research evidence exists on
a topic and provide an indication of the quantity of the evidence. The results of a
mapping study can identify areas suitable for conducting Systematic Literature Re-
views and also areas where a primary study is more appropriate. [Kitchenham and
Charters 2007]

A systematic mapping study provides a structure of the type of research reports
and results that have been published by categorizing them. It often gives a visual
summary, the map, of its results. It requires less effort [than a systematic literature
review] while providing a more coarse-grained overview. [Petersen et al. 2008]

We interpret this as follows. A Systematic Literature Review is an in-depth study of
the complete corpus of research performed in a particular field, whereas a Systematic
Mapping Study is a more shallow study meant to provide an overview of a particular
field.

In our case, we will apply this technique in the area of change reification. We fol-
lowed the updated guidelines for conducting and reporting systematic mapping studies
[Petersen et al. 2015]. We start by conducting a search for relevant articles and filter
them according to pre-defined inclusion and exclusion criteria. We then proceed to
classify the articles and extract data in order to answer our research questions. In
Section 3.1, we describe in detail the process that we used as well as motivate some of
the decisions we made. We end by giving an overview of some threats to the validity of
our process and outcome and how we alleviate these threats in Section 3.2.

3.1. Process

The essential steps in our process are depicted in Figure 2. These are as follows:
the definition of our research questions; conducting the search for possible relevant
articles; manually filtering these candidates using inclusion/exclusion criteria; and,
finally, extracting the data we need to classify the primary studies.

Definition of Research Questions. We start by establishing the research questions
that we pose when performing this Systematic Mapping Study.

RQ1: Where and when have studies that use reified source-code changes been pub-
lished? This is a standard research question in a Systematic Mapping Study
and serves to assess whether there is gaining popularity in the topic.

RQ2: What are the commonalities and differences in the change models adopted by
the primary studies? Can we extract a unified model for changes? Since the

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:6 Q. D. Soetens et al.

change model forms the basis for each approach, it is important to investigate
the different representations and their limitations.

RQ3: What are the applications in which reified source-code changes are used in the
primary studies? With this research question, we want to provide an overview
of areas where analysis of reified source-code changes has already proven to be
useful. By looking at the number of studies reported in a particular application,
we can identify areas where more primary studies are needed or areas in which
a more in-depth literature review is needed.

RQ4: What is the future work indicated by the primary studies? Contrary to RQ3, here
we want to summarise the vision that researchers in this domain put forward
and in which as-yet unexplored areas they propose change reification might
prove beneficial. Additionally, we would like to see if there is any consensus
regarding future work among the studies analysed.

All of these research questions will, each in part, solve our overall research question.

RQ: To what purposes has change reification been used, what is the evidence for the
success of approaches employing it, and what directions of further research are
considered important?

Conducting the Search. Our search strategy is composed of two steps: First, we
query the ACM Digital Library1 and the IEEE Xplore Digital Library,2 and, second,
we use the possibly relevant articles from those queries as a starting point for forward
snowballing (i.e., recursively check the references of the relevant articles for other pos-
sibly relevant articles) [Wohlin 2014]. In the first step, we chose to only query the ACM
Digital Library and IEEE Xplore, ignoring other publishers, like Springer, Elsevier, or
Wiley, and other query engines, like Google Scholar, Sciencedirect, or Scopus.

We find that the ACM Digital Library and IEEE Xplore provide a sufficient set of
articles to serve as a starting point for the snowballing process. Moreover, the ACM
Digital Library also contains articles from other publishers (like IEEE or Springer).
The snowballing process allowed us to include more articles from other publishers.

This is sufficient for our purposes as a mapping study, where we present an overview
of the research topics in this domain and a roadmap for future work. Yet a more in-
depth literature review should also query the other publishers and enhance it with at
least one query engine like Google Scholar.

We performed the first query on the IEEE Xplore Digital Library using only Metadata
(i.e., not searching the full text); this includes, among others, the titles and abstracts
of the articles. Note that in the IEEE Xplore Digital Library we can perform queries
using the wildcard “*” to search for similar words. For instance, “logg*” matches both
“logged” and “logging.” What we searched for are articles about software engineering
or software evolution where fine-grained (atomic) changes (edit operations) are either
distilled (recovered) or logged (recorded). This is then translated into the following
query:

(change OR "edit operation") AND (distil* OR record* OR logg* OR
recover* OR "fine grained" OR atomic) AND (software)

The IEEE Xplore Digital Library returned 1,839 results when running this query.
Performing the same query on the ACM Digital Library returned over 90,000 results.

This is because, for this database, we have to manually indicate the metadata that need

1http://dl.acm.org.
2http://ieeexplore.ieee.org.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dl.acm.org
http://ieeexplore.ieee.org

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:7

Table I. Inclusion and Exclusion Criteria Used While Filtering for Relevant Articles

Inclusion Criteria
IC1 Materials that are articles (including journal articles, conference articles,

workshop articles, tool demonstration articles, or short articles at conferences)
that use an explicit (first-class) representation for source-code changes.

Exclusion Criteria
EC1 Materials that are from a different domain (i.e., not about software

engineering).
EC2 Materials that are books, Ph.D. theses, doctoral symposium articles, technical

reports, abstracts for keynotes, presentations, posters, white papers, or blog
posts.

EC3 Materials that are shorter than four pages.
EC4 Materials that use explicit representation for changes to things other than

source code (e.g., changes in structured text documents).
EC5 Materials that use implicit representation for changes (i.e., the changes

themselves are not modelled but rather different versions of the data is used)
EC6 Where studies were published multiple times (e.g., first as a conference article

and then as a journal article) only the most recent publication was included.

to be queried, otherwise it will also search the full text. As such, we needed to transform
the query into the following form:

(Abstract:change OR Abstract:"edit operation" OR Title:change OR
Title:"edit operation") AND (Abstract:distilled OR Abstract:recorded
OR Abstract:logged OR Abstract:recovered OR Abstract:"fine grained" OR
Abstract:atomic OR Title:distilled OR Title:recorded OR Title:logged OR
Title:recovered OR Title:"fine grained" OR Title:atomic) AND software

The ACM Digital Library returned 1,003 results when running this query.
After conducting these queries, we did a preliminary filtering based on titles and

abstracts to find a smaller set of possibly relevant articles (mostly based on exclusion
criterium EC1). This resulted in a set of 110 articles. With this smaller set of articles,
we proceeded to use forward snowball sampling (i.e., we looked at the reference list in
each article to find possibly relevant work that is not yet in our set) to increase our set
of possibly relevant articles. This was done repeatedly until no more articles could be
added, giving us a total of 169 articles.

During the process, we repeatedly validated the working set of articles against a
reference set of articles we expected to be included based on our prior work in the
field. This reference set consisted of 37 articles drawn from workshops like Mining
Software Repositories (MSR), conferences like International Conference on Software
Engineering (ICSE), and journals like IEEE Transactions on Software Engineering
(TSE). As a result, after the snowballing step, we added three articles that we were
aware of but that were not found by the search queries: De Roover et al. [2014], Ebraert
et al. [2011], and Soetens et al. [2013b]. These papers’ reference lists were also checked
for any missing works.

Manual Filtering. Table I shows the inclusion criterium and each of the exclusion
criteria that we used. Both the first and second authors of this article then individually
classified the remaining articles into “Relevant,” “Out of Scope,” “Not Relevant” and
“Unsure” based on the remaining exclusion criteria (EC2, EC3, EC4, and EC5). Ex-
clusion criteria EC1 and EC5 are cause to label an article as Not Relevant. Exclusion
criteria EC2, EC3, EC4, and EC6 are cause to label an article Out of Scope. When
it is not 100% certain into which category a article should be classified, we label it
as Unsure. An Unsure article was automatically scheduled for discussion between the
authors to determine its final status.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:8 Q. D. Soetens et al.

Fig. 3. Article selection process.

For 110 of 169 (65%) articles, we had the same classification: 75 Relevant, 19 Not
Relevant, 13 Out of Scope, and 3 Unsure. For 27 articles (16%), we agreed on the
fact that the article did not belong in the category Relevant; however, there was a
disagreement on which of the other three categories the article belonged to. When one
was Unsure, it was discussed; in the other cases, the article was not included in the
final set of primary articles.

For the remaining 32 articles, we discussed the reasons for excluding or including the
article and came to a consensus by approving 11 more articles for inclusion in the set
articles. The whole search process is summarised in Figure 3 and ultimately resulted
in a set of primary studies counting 86 relevant articles.

Data Extraction. For each of the research questions, we extracted the required
information from each of the articles. For RQ1, we extracted the year in which it was
published, the venue at which it was published, and also what kind of publication it
was (a journal article, conference article, workshop article, tool demonstration article,
or short article). For RQ2, we were interested in learning about the change model
that was employed. For this, we only looked at those articles that either introduce a
new change model or that modify/extend a previous change model. Other articles that
merely use a previously introduced change model are not considered for this research
question. For RQ3, we looked at the applications for which the changes are used. To
this end, we analysed the Abstract, Introduction, and Conclusions for each article to
identify keywords for the applications that the article presents. We then proceeded
with a card-sorting strategy to classify the identified keywords into categories. For
RQ4, we extracted all sections and paragraphs of future work from each of the articles
by performing a search in the articles for the words “future” (as in “future work”),
“plan” (as in “ we plan to . . .”), or “will” (as in “we will . . .”). Again from each of these
future work paragraphs, we extracted keywords to get an idea of popular or interesting
lines of future work.

3.2. Threats to Validity

We now identify factors that may jeopardise the validity of our results and the actions
we took to alleviate the risk. Consistent with the updated guidelines for reporting

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:9

systematic mapping studies, we organise the identified threats into five categories as
follows [Petersen et al. 2015]:

Descriptive Validity – To what extent are the observations described accurately and
objectively? For each research question, it is known beforehand what data need to be
extracted from the article. For RQ1, this is straightforward metadata from the article:
publication venue, publication type, and year of publication. For the other research
questions, the process is more intricate: We derived keywords on the applications
and future works from particular sections or paragraphs in the article that we then
classified. As such, we rely on the clarity of the articles themselves. For instance, to
identify future work, we mined the article for the words “future” (as in “future work”),
“plan” (as in “we plan to”), or “will” (as in “we will”). However, if they present their
future work in a different manner (e.g., “As a follow-up study, we intend to”), we would
not find it. Using this strategy, we were able to identify future work in all but 13
articles; in these cases, we did a more thorough scan of the article to make sure there
was indeed no future work explicitly mentioned.

Theoretical Validity – Do we capture what we intend to capture? When looking at
the process steps, there are factors that influence the theoretical validity in each of the
last three steps:

Conducting Search. First, the set of primary studies that we used for our anal-
ysis might not be complete. There are several factors that influence this, including
the manual filtering step, which will be discussed next. Yet even before the manual
filtering, some relevant articles could be missing after conducting the search in the
first place. In the first place, the query itself could influence the results. To minimise
this threat, we had a certain number of studies that we were aware of at the beginning,
which we used as a reference set of articles in order to assess the performance of the
queries. Second, we only queried two digital libraries (ACM DL and IEEE Xplore), and
hence important articles that have been published elsewhere (Springer, Elsevier, etc.)
could be missing from the base set of articles. To reduce this threat, we extended our
initially filtered set of articles through snowball sampling; that is, we searched the
references of the sampled articles for studies that were missing from our set. We could
have further extended the search with other types of sampling: backwards snowball
sampling (looking for articles that have a reference to one of the articles in our set) or
checking the publication lists on the webpages of key authors. Of our initial set, and
after conducting snowball sampling, only three articles were not encountered, which
gives us confidence on the coverage of our study; we added these three manually for
the sake of completeness.

An additional issue concerns recent articles. Since all articles take time to be cited,
the odds of adding recent articles through snowball sampling are slim at best; as such,
we think we likely missed several recent articles. We can observe this with the statistics
from 2015, which exhibit a sharp drop in the number of articles published. Note that
the drop is also attributable to the fact that we conducted the search halfway through
2015 and also to the additional delay that conference and workshop articles take to
appear in digital libraries.

Manual Filtering. During manual filtering, there is a threat of researcher bias
appearing. In order to lessen this threat, the first two authors separately performed
the manual filtering by classifying the articles as “Relevant,” “Out of Scope,” “Not
Relevant,” and “Unsure.” Articles where there was disagreement were scheduled for
discussion in order to come to a consensus.

Data Extraction. In this phase, researcher bias is also a threat. To alleviate this
threat, the first author did the data extraction and classification, which was later
reviewed by the second and third authors.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:10 Q. D. Soetens et al.

Fig. 4. Number of articles per year.

Generalizability – To what extent is it possible to generalise the findings? In this
article, we focus on reified changes in the scope of source code. However, the findings
with regards to the change models used, as well as the future work identified, could
also be applicable to changes in other scopes (e.g., architecture models, structured
documents, etc.).

Interpretive Validity – Are the conclusions drawn reasonable given the data? A threat
to the interpretation of the data is researcher bias. Indeed, all three of the authors have
authored or co-authored articles in the set of primary studies. The experience with the
topic, however, can help in extracting and interpreting the data. Indeed, the guidelines
by Petersen et al. suggest using an expert’s opinion to evaluate the search and the data
extraction [Petersen et al. 2015].

Repeatability – Is the research process reported in sufficient detail? The repeatability
of our mapping study is achieved by accurately describing the followed process in
Section 3.1, as well as by elaborating on possible threats to the validity and the actions
taken to reduce them in this very section.

4. TOPIC POPULARITY

In this first section on the results of our mapping study, we provide an answer for RQ1
(Where and when have studies that use reified source-code changes been published?)
in order to provide some insight into the popularity and relevance of this topic within
the software engineering research community. Note that for this analysis, we not only
looked at the final set of primary studies but also included the articles that were
excluded by criteria EC6 (i.e., articles that are superseded by one of the articles in
the final set of primary studies). This is done to get a more precise trend of the topics
popularity over time.

4.1. Frequency of Publication

In Figure 4, we show the number of articles, including articles that are superseded,
that we found for each year. The oldest articles date back to 2001 [Ryder and Tip

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:11

Table II. Number of Articles and Authors of Several Literature Studies

Study Articles Authors
This study 86 111
This study (excluding superseded works) 65 111
Kagdi et al. [2007] 79 142
Ståhl and Bosch [2014] 49 110
Fabry et al. [2015] 36 109

2001] and 2003 [Xing and Stroulia 2003], although both of these were superseded.
The first articles from our primary set are from 2004 [Ebraert et al. 2004; Ren et al.
2004]. Ebraert et al. [2004] first introduced the idea of recording development ac-
tivities in the IDE, whereas Ren et al. [2004] was the first to introduce a way of
calculating the difference (in terms of changes) between two versions of a system. After
that, the interest in this topic steadily increased to 13 articles in 2007 and 2008 with
an average of 8 articles per year from that point onwards. Note that, for 2015, there are
only 3 articles; this can be explained in two ways: First, as the data extraction for this
article was performed in June 2015, there was still half a year in which articles could
be published. Moreover, it often takes months for a published conference or workshop
article to actually appear in digital libraries, further reducing the amount of discov-
erable articles as of June 2015. Second, the most recent articles are most likely not
yet cited in any other articles, and therefore they cannot be included in our set during
the snowballing step of our search process; they have to be immediately found by the
search query or otherwise be missing from this study entirely.

We also counted the number of authors of the articles, as an indicator of the size of
the community: In our primary studies, we found 111 unique authors. This number
shows that there is a significantly large community of people interested in this topic.
Furthermore, in order to provide a frame of reference, we also provide the same metrics
(number of articles and number of authors) for three literature studies in adjacent
topics, as shown in Table II.

The survey by Kagdi et al. [2007] is the closest work to ours, as it is a survey of the
early field of MSR—as we will see later, a significant portion of the work concerning
first-class changes happens in the context of MSR. The survey, published in the Journal
of Software Maintenance and Evolution in 2007, identified 79 articles as relevant, with
142 authors. We also include two recent studies. The survey by Ståhl and Bosch [2014]
concerns the topic of continuous integration and the industry practices there. It was
published in the Journal of Systems and Software in 2014 and features 49 articles
from 110 authors. Finally, the survey by Fabry et al. [2015] was recently published (in
2015) in ACM Computing Surveys and concerns the topic of Domain-Specific Aspect
Languages. This work surveyed 36 articles with 109 authors.

We can see that these four works are in the same range in terms of both number of
studies and number of unique authors, with the Kagdi study being relatively larger in
terms of authors. We note that our study tends to include more articles, for a similar
number of authors, and assume this was due to the presence of superseded studies.
Removing those yields the same amount of unique authors but brings the number of
articles down to 65, putting this study further inline with the others.

Finally, we wish to mention that the Kagdi study mentions the need for MSR ap-
proaches on finer-grained entities as one of the open issues of the field at the time.
Kagdi et al. state that “[They] feel that a finer-grained understanding of the source-code
changes is needed to address these types of questions.” In that view, we can see the
work on change reification addresses that problem in a direct fashion. Kagdi et al. even

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:12 Q. D. Soetens et al.

Fig. 5. Number of articles per publication types.

mention one of our primary studies—Fluri’s work [Fluri et al. 2005]—as a work in that
direction.

4.2. Venues of Publication

In this study, we only considered peer-reviewed venues (including journals as well
as peer-reviewed conferences and workshops). The articles published at workshops
or conferences also include tool demonstration articles and short articles (maximum
of four pages). Figure 5 shows the distribution of the articles (including superseded
articles) according to its type of publication. We can see that the most popular venues
for publishing in this topic have been conferences with few workshop articles and even
fewer journal articles. This is a common trend for articles in software engineering or,
more generally, in computer science [Meyer et al. 2009]. When looking at the actual
venue where the articles in our primary set have been published (see Figure 6), we can
clearly identify the top most popular venues. The two most popular venues (with 14
articles each) are the ICSE and the International Conference on Software Maintenance
and Evolution (ICSME) (including all the articles published under the conference’s
previous name: International Conference on Software Maintenance). The next most
popular venue is the International Conference on Software Analysis, Evolution, and
Reengineering (SANER), but we have to note that this venue includes all articles
published at both the European Conference on Software Maintenance and Evolution
and the Working Conference on Reverse Engineering, as these two conferences merged
as SANER. The next conference, with 5 articles, is the Working Conference on MSR
with another 3 articles at MSR from when it was still a workshop (making 8 in total).

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:13

Fig. 6. Number of articles per venue.

We note that an important proportion of the works were published in strong, highly
regarded software engineering venues, such as ICSE, TSE or the international con-
ference on Automated Software Engineering (ASE). This gives evidence that work on
change reification has been perceived as relevant, high-quality work by the reviewers
for these venues.

5. CHANGE MODELS USED

In this section, we deal with RQ2 (What are the commonalities and differences in the
change models adopted by the primary studies? Can we extract a unified model for
changes?). Each approach that uses reified changes has, at its core, a representation
for changes. It is therefore important to look at the different representations and
investigate their strong points and limitations.

We classified the tools or approaches presented in the primary studies according to
two discrete dimensions: the granularity of the changes (either fine-grained changes
or composite changes) and the way of obtaining these changes (either through record-
ing them from the IDE or by recovering them from the difference between two ver-
sions). The composite changes in practise boil down to the recording and recovering of
refactorings. As such, we identified four categories of studies using change reification:
Recording of Fine-Grained Changes, Recording of Refactorings, Change Distilling, and
Refactoring Reconstruction. The tools and approaches presented in the primary studies

3According to the CORE rankings; http://portal.core.edu.au/conf-ranks/.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://portal.core.edu.au/conf-ranks/

18:14 Q. D. Soetens et al.

Table III. Classification of Tools and Approaches

Atomic Changes
(Fine Grained)

Composite Changes
(Refactorings)

Recording Changes
(Logging)

ChangeBoxes
ChEOPS
ChEOPSJ
CodingTracker
Epicea
Fluorite
GumTree
MolhadoRef
OperationRecorder (&Replayer)
Spyware
Syde

CatchUp!
ChangeBoxes
CodingSpectator
MolhadoRef
Spyware

Recovering Changes
(Distilling)

Celadon
ChangeDistiller
ChEOPSJ
Chianti
Diff/TS
FaultTracer
LSDiff
UMLDiff

ChEOPSJ
Diff/TS
LibReDe
RefactoringCrawler
RefFinder
UMLDiff

are then classified into these categories (see Table III). Note that a tool can be in more
than one category. For instance, MolhadoRef [Dig et al. 2008] is capable of recording
both source-code changes and refactoring operations. ChEOPSJ [Soetens and Demeyer
2012] is another example, as it is capable of both recovering changes from a Software
Configuration Management (SCM) system, as well as record them from the IDE, and
then use the recorded changes to reconstruct refactoring operations.

In the next sections, we will have a closer look at the models used for recording or
recovering fine-grained changes (in Section 5.1) and the refactorings that are supported
by tools that record or recover those (in Section 5.2).

5.1. Atomic Changes

We first looked at all articles that detail the model they use for recording or recovering
fine-grained changes. For each article that defines such a model, we looked at several
things:

—What are the basic change operations defined?
—What kind of source-code entities do the changes act on?
—Which programming languages are supported?
—How do they deal with modifying or updating an existing source-code entity?

We present an overview of some basic details in Tables IV and V that answer some
of these questions for all of the approaches in the left column (Atomic Changes) of
Table III.

Representation of Source Code. Table IV summarises which model is used to
represent source-code entities for all tools investigated.

One third (6 of 18) of these approaches use the Abstract Syntax Tree (AST) as a way
to represent source-code changes. Changes are then modelled as operations that act
on the AST nodes [Negara et al. 2012; Falleri et al. 2014; Robbes and Lanza 2008c;
Hattori and Lanza 2010; Fluri et al. 2007b; Hashimoto and Mori 2008].

Another third (6 of 18) of these approaches use an ad hoc representation for source
code, meaning that they do not use a formal model for representing source-code enti-
ties; rather, they only represent a certain number of (high level) source-code entities.
For instance, FaulTracer only supports changes on fields and methods [Zhang et al.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:15

Table IV. Tools Supporting Atomic Source Code Changes

Approach Source-Code Representation
Language Supported Model Used Entities Supported

ChangeBoxes Smalltalk Ad hoc Class, Field & Method
ChEOPS Smalltalk FAMIX any FAMIX Entity
ChEOPSJ Java FAMIX any FAMIX Entity
CodingTracker Java AST any AST node
Epicea Smalltalk Ad hoc Package, Class, Field & Method
Fluorite Java Source Code Text
GumTree Java AST any AST node
MolhadoRef Java Ad hoc Package, Class, Field & Method
OperationRecorder Java Source Code Text
Spyware Smalltalk AST any AST node
Syde Java AST any AST node
Celadon AspectJ Ad hoc Aspects
ChangeDistiller Java AST any AST node
Chianti Java Ad hoc Class, Field, & Method
Diff/TS Python, C, C++, Java AST any AST node
FaultTracer Java Ad hoc (Chianti-Like) Method, Field
LSDiff Java Tyruba Logic Facts Package, Class, Field & Method
UMLDiff Java UML Package, Class, Field & Method

Table V. Tools Supporting Atomic Source Code Changes

Approach Type of Operations
Add & Delete Property Update Composite Changes

ChangeBoxes � Rename
ChEOPS � Modify = Delete + Add
ChEOPSJ �
CodingTracker � �
Epicea � �
Fluorite �
GumTree � � Move
MolhadoRef � code edits
OperationRecorder �
Spyware � �
Syde � �
Celadon �
ChangeDistiller � � Move
Chianti �
Diff/TS � �(Relabel) Move
FaultTracer �
LSDiff �
UMLDiff �

2011], whereas ChangeBoxes and Chianti also support changes on classes [Denker
et al. 2007; Ren et al. 2004]. Epicea and MolhadoRef additionally support changes on
packages [Dias et al. 2013; Dig et al. 2008]. Similarly, Logical Structural Diff (LSDiff)
and UMLDiff model changes on packages, classes, fields, and methods, yet for UMLDiff
these are modelled using the UML meta-model and in LSDiff they are stored as facts
in a factbase [Xing and Stroulia 2007b; Kim and Notkin 2009]. Celadon is tool that
extends the change model of Chianti to also support the aspect-oriented programming

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:16 Q. D. Soetens et al.

language AspectJ [Zhang et al. 2008b]. To that extent, they support changes on entities
like aspects, advice, or pointcuts.

ChEOPS and its Java brother, ChEOPSJ, used the FAMOOS Information Exchange
Model (FAMIX) to represent source-code entities, as this is not a language-specific
model and can thus be used for any object-oriented programming language [Ebraert
et al. 2007a; Soetens and Demeyer 2012].

It is feasible that all of the applications for which the above tools have been used can
be translated to a tool that models the source code using the more fine-grained AST
representation—with maybe the exception of Celadon, which works on aspects.

There are two more tools that do not model changes that act on the AST: Fluo-
rite [Yoon and Myers 2011] and OperationRecorder [Omori and Maruyama 2009]. In
fact, these tools record changes at an even finer levels of granularity. They record tex-
tual changes made to the source code itself. From these textual changes, they can later
infer AST changes [Kitsu et al. 2013].

Type of Operations. All approaches agree on using add (or insert, create, or in-
troduce) and delete (or remove) as basic change operations. Spyware has two types of
additions and two types of deletions to take into account whether the location of the
source-code entity is relevant (i.e., just add or add at location x) [Robbes and Lanza
2008c].

Dealing with modifications or updates of existing source-code entities is more tricky.
Some approaches have only modelled the source code down to the level of methods, in
which case changes in the method body are either ignored [Denker et al. 2007; Xing
and Stroulia 2007b] or considered as a single “method body change” [Ren et al. 2004;
Kim and Notkin 2009]. In ChEOPS, a method body change is considered a composite
change, consisting of a remove method and an add method [Ebraert et al. 2007a].

Most other approaches agree on representing modifications as a “property up-
date” [Negara et al. 2012; Dias et al. 2013; Falleri et al. 2014; Hattori and Lanza
2010; Fluri et al. 2007b]. The first approach to do so was Robbes and Lanza’s Spy-
ware [Robbes and Lanza 2008c]. To achieve this, a property update needs to contain
(at least) the three following values: (i) the identifier of the property being updated,
(ii) the old value of the property, and (iii) the new value of the property.

Additionally, some approaches also explicitly model the dependencies between
changes (i.e., a change can only be applied if the changes it depends on have been
applied first) [Ren et al. 2004; Ebraert et al. 2007a; Soetens and Demeyer 2012]. As an
example of this, one can only add a method to a class if the class itself was added before.
However, one could argue that this dependency information is already represented in
the source-code model itself (e.g., a method belongsTo a class).

Unified Model of Fine-Grained Changes. Overall, from all these approaches, we
can derive a common model for first-class changes: We define a Subject as an object
representing a source-code entity (or a relationship between source-code entities). This
representation can be done in several ways: Either we directly use the AST-nodes or we
use a more-abstract and higher-level source-code representation, like FAMIX or UML.

We can then define three “atomic” change operations that act on these subjects:

—Add is an object representing the creation and addition of a Subject.
—Delete is an object representing the removal and deletion of a Subject.
—Update is an object that represents a change in one of the properties of a Subject.

One can then devise means of modelling composite changes (like refactorings) as a
combination of any of these three atomic changes. In order to support the applications
investigated with Chianti, ChEOPS, and ChEOPSJ, our common model also supports

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:17

Fig. 7. Core model for first-class changes.

dependencies between changes. As such, our common model for first-class source-code
changes is shown in Figure 7.

5.2. Composite Changes

In this section, we summarise the tools and approaches that deal with the record-
ing or recovering of composite changes. As it stands, most approaches only deal with
refactorings as composite changes. Therefore, in this section, we will be discussing the
recovering and reconstruction of refactorings rather than composite changes.

Several approaches that we mentioned in Section 5.1 have built-in support for
smaller refactorings like MOVE or RENAME [Fluri et al. 2007b; Dig et al. 2008; Robbes
and Lanza 2008c; Hattori and Lanza 2010; Negara et al. 2012; Falleri et al. 2014]. This
means that they are represented in their own first-class change operation. A RENAME,
for instance, can be considered as either a composition of a delete change and an add
change or as an update in which the source-code identifier is a property being updated
(though it depends on the source-code model used and on which the entity is being
updated). In the FAMIX model, for instance, the method identifier is a property of
a method object, but if the source code is represented using the Java AST from the
Eclipse JDT, any identifier is in fact its own AST node (SimpleName), so in that case the
update will not act on the MethodDeclaration but on the SimpleName. A MOVE can also
be considered as a composition of a delete and an add.

As we can see in Table III, there are also several approaches specifically targeted
at the recording or reconstruction of refactoring operations. We start by listing those
approaches that record refactoring operations that are performed in an IDE.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:18 Q. D. Soetens et al.

CatchUp! was the first tool that proposed recording refactoring operations straight
from the IDE [Henkel and Diwan 2005]. This tool prototype was implemented as
an Eclipse plugin. The basic idea was to allow library developers more flexibility in
software libraries’ evolving application programming interfaces (API’s), and client de-
velopers would more easily port their application to a newer version of the library by
simply replaying the recorded refactorings.

This idea was then later adopted by the Eclipse team and has found its way into
the main release and is now standardly available in the Eclipse IDE [Dig et al. 2007,
2008]. Eclipse allows a developer to create a “Refactoring Script” that keeps track
of the recorded refactorings that can later be replayed on dependent projects. This
refactoring script contains refactoring descriptor objects formatted in the Extensible
Markup Language (XML).

CodingSpectator uses these refactoring descriptors and enhances it with other
recorded data (timestamp of refactoring, any problems reported, the time spent us-
ing the wizards, etc.) [Vakilian et al. 2012].

MolhadoRef only mentions the theoretical possibility of its refactoring recording
capabilities [Dig et al. 2008]. More specifically this approach is also implemented as an
Eclipse plugin and as such also has access to the log of refactorings performed. One of
the things they mention is that even if such a log of refactorings were not present, one
could reconstruct refactorings using one of the other approaches.

In order to recover refactorings, we summarise five approaches as follows.
Both LibReDe and RefactoringCrawler are very similar approaches, in that they

both apply a signature-based analysis [Weißgerber and Diehl 2006b; Dig et al. 2006].
LibReDe starts by looking for refactoring candidates based on added, changed, or re-
moved entities using a signature-based analysis [Weißgerber and Diehl 2006b]. It then
uses a similarity metric as a means to filter out bad candidates. In contrast, Refactor-
ingCrawler uses a combination of syntactical and semantical analysis [Dig et al. 2006].
The difference lies in the order in which the signature-based analysis and the similar-
ity measure is done. Further, RefactoringCrawler uses shingles, a form of hashing, as a
similarity metric. RefactoringCrawler first identifies refactoring candidates using the
Shingles similarity metric and then uses the signature-based analysis to filter out the
bad candidates.

RefFinder, an Eclipse plugin by Kim et al., is to date the most comprehensive refac-
toring reconstruction tool as it supports 63 different types of refactorings [Kim et al.
2010]. They use the technique proposed by Prete et al., which is stronger than all previ-
ous techniques because they not only detect primitive refactorings (which all previous
techniques do to some extent) but also “complex refactorings” (i.e., refactorings that
are combinations of primitive refactorings) [Prete et al. 2010]. To do this they rely on
a fact base with a strong query engine (Tyruba logic). They describe the structural
constraints before and after applying a refactoring in terms of template logic queries.
RefFinder takes two versions of a system as input from the Eclipse workspace and re-
covers changes as logic facts about the systems’ syntactic structure using LSDiff. These
are then stored in a factbase, which can be queried to identify program differences that
match the constraints of each refactoring type under focus.

Xing and Stroulia have developed an algorithm that compares two subsequent ver-
sions of a system at the design level [Xing and Stroulia 2007b]. Their UMLDiff al-
gorithm is capable of detecting some basic structural changes in the system, such as
the addition, removal, renaming, or moving of UML entities. More complex structural
changes can be found using a suit of queries that try to find a composition of elementary
changes.

ChEOPSJ is a tool that records fine-grained change operations and dependencies
between these changes from the Eclipse IDE [Soetens et al. 2012]. Changes are as such

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:19

represented as a graph with changes as nodes and dependencies between changes as
edges. It is then capable of mining the change graph (representing the evolution of a
software system) for fixed patterns of changes representing refactorings. Soetens et al.
demonstrated that their use of recorded changes improves on approaches that use
recovered changes, since in this way they do not suffer from the fact that refactorings
become obfuscated by other changes in the same commit [Soetens et al. 2013b].

Diff/TS has a similar approach, in that it first distills fine-grained changes between
two versions of a system, using a tree-differencing algorithm [Hashimoto and Mori
2008]. These fine-grained changes can subsequently be mined for source-code change
patterns, including some simple refactorings like LOCAL VARIABLE EXTRACTION or LOCAL

VARIABLE RENAME [Hashimoto et al. 2015]. Interestingly, this is the only approach that
also mentions the reconstruction of other composite changes by mining the change
history for bug fixing patterns and by mining the Linux kernel source code for the
“BKL (Big Kernel Lock) pushdown.”

6. OVERVIEW OF APPLICATIONS

In order to answer RQ3 (What are the applications in which reified source-code changes
are used in the primary studies?), we list and briefly explain the applications for which
the primary studies used change reification. Figure 8 shows an overview, in which,
for each identified application, the number of articles dealing with that application is
counted. We used a card-sorting strategy to classify the applications into one of three
categories: Software Development, Reverse Engineering, and Software Evolution. Each
of these categories has achieved a similar number (±30) of studies. Note that an article
can sometimes mention more than one application for which they use reified changes.

6.1. Applications in Software Development

Applications in software development often boil down to recommendations systems to
aid developers in their development tasks. Even in the 1980s the Programmer’s Appren-
tice project strived to provide each developer with an “apprentice” to assist them with
the mundane tasks of software development [Rich and Waters 1990]. The apprentice
would be an intelligent computer program that actively participates in the software
engineering process and acts as a recommendation system to the programmer. Since
then, many recommendation systems for software developers have been created [Zeller
2007; Robillard et al. 2010]. Most of the existing approaches base their suggestions on
data obtained from source code, software repositories, bug reports, or mailing lists.
Recorded changes offer unique opportunities here, as the data that are recorded are
much more fine grained than the one recovered from source-code repositories. In par-
ticular, the change data can be exploited as soon as the developer processes it, instead
of waiting for a developer to commit to a software repository.

In the category of software development, we found that, in our primary studies, the
most popular application that uses reified changes is change impact analysis with a
particular emphasis on predicting or suggesting future changes and test selection.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:20 Q. D. Soetens et al.

Fig. 8. Applications mentioned in the primary studies.

Change Impact Analysis. One of the most obvious applications of modelling
changes as explicit entities is change impact analysis—that is, to identify the potential
consequences of a change or to estimate what needs to be changed for a particular
task. Files that have in the past changed together are likely to be related. Thus, when
in the future we change one file, we can expect that the other must also be changed.
This is what is called change coupling or logical coupling. Fluri et al. and Robbes et al.
have investigated the notion of change coupling in terms of fine-grained source-code
changes [Fluri et al. 2005; Robbes et al. 2008]. In doing so, they demonstrated that a sig-
nificant amount of change couplings are in fact not caused by source-code changes [Fluri
et al. 2005]. The study by Robbes et al. found that fine-grained change coupling was a

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:21

good early predictor of later coarse-grained change coupling, showing that fine-grained
change data is a more accurate metric.

The next two applications use change impact analysis in their foundation. Predicting
changes, on the one hand, uses historic information to estimate what needs to be
changed in the future. Test selection, on the other hand, tries to find sets of tests that
are impacted by selected changes.

Predicting or Suggesting Future Changes. Code completion is one of the most
used recommenders in practice [Murphy et al. 2006], yet it can be largely improved.
The change data recorded by Spyware has been used to design and evaluate a variety
of code completion algorithms [Robbes and Lanza 2010] that go beyond the default al-
phabetical sorting that is used by the state-of-the-practice IDEs. Algorithms based on
recent change information were found to be more than 5 times as accurate as the default
algorithm in Pharo, an open-source Smalltalk IDE. Later, a tool that implemented one
of the algorithms was released for Pharo and was approved by the developer commu-
nity [Robbes and Lanza 2010]; it was subsequently adopted as the default completion
tool in Pharo and is now in daily use.

In the same vein as code completion, several change prediction algorithms, aimed
at easing navigation towards the code entity that a developer wishes to change, were
evaluated [Robbes et al. 2010]. Surprisingly, of the extensive array of algorithms tested,
the simplest one (recommending recent changes) was found to be among the most
effective. Likewise, a simple recommender tool for the Pharo IDE was developed.

Fluri et al. developed a tool called ChangeCommander, which suggests changes when
a developer introduces a new method invocation into the system based on patterns of
changes obtained by analysing the history stored in a software repository [Fluri et al.
2008b].

Finally, Romano and Pinzger, as well as Giger et al., used correlations of changes
to other metrics as a way to rank source-code files according to their proneness to be
changed [Romano and Pinzger 2011; Giger et al. 2012b].

Test Selection. Chianti is another approach to change prediction in the context of
impact analysis. It works at the granularity of two versions, using change recovery
and static analysis to pinpoint the changes that caused a behavioural change in a test
suite (inferred via dynamic analysis of the versions) in the potentially large sequence of
edits between the versions [Ren et al. 2004]. Chesley et al. used the data obtained from
Chianti as a means to identify failure-inducing changes [Chesley et al. 2005]. When
after a long editing session a test unexpectedly fails, it is often difficult to identify
which change(s) are the cause of the failing test. The approach by Chesley et al. allows a
programmer to select those changes that affect the failing test and apply these changes
to the original (unmodified) system. This allows a programmer to focus only on those
changes that affect the failing test. In this way, a programmer can iteratively select,
apply, and undo individual (or sets of) changes in order to find the failure-inducing
change(s). Stoerzer et al. have extended this approach by classifying the changes a
programmer can select as Red (high likelihood of being failure-inducing changes),
Yellow (possibly problematic changes), or Green (changes correlated with successful
tests) [Stoerzer et al. 2006].

In most software systems, the tests grow to become a considerable part of the source
code: Tests can in some cases make up to 50% of a system’s source code. Running all
tests whenever a software developer adapts a small part of the code can introduce an
unacceptable overhead. By analysing the dependencies between the change objects of
the program code and those of the test code, one can discover what the relevant tests
are for each change. These tests can be suggested to the developer so he or she does
not have to run all the tests [Soetens and Demeyer 2012; Soetens et al. 2013a].

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:22 Q. D. Soetens et al.

Other applications. It has long been believed that files or source-code modules that
are changed often are more likely to contain bugs. Giger et al. have used fine-grained
source-code changes and correlated metrics thereof with the number of bugs in source-
code files. In doing so, they were capable of training a prediction model to indicate
bug-prone parts of a system [Giger et al. 2011, 2012a]. Giger et al. showed that their
approach of using fine-grained source-code changes outperforms previous approaches
(e.g., Nagappan and Ball [2005]) that leverage code churn.

Ebraert proposed to model features as sets of changes that have to be applied to a
software system in order to add the corresponding functionality to the system. Con-
cretely, this approach enables bottom-up feature-oriented programming and consists of
three phases. First, the change operations are captured as first-class entities. Second,
these operations are classified into separate sets that each implement one functionality.
Finally, those modules are recomposed in order to generate software variations that
provide different functionalities. The fine-grained information of the change objects
can also contribute to the verification of the validity of compositions and in revealing
composition conflicts [Ebraert 2008; Ebraert et al. 2011].

Most systems undergo changes even after the actual development phase, when they
are in production. While the addition of new features can usually wait until the next
release of a system, changes like bug fixes may need to be integrated into the running
system as soon as possible. However, the modification of a running system is barely
possible. Müller and Villegas state that in order to achieve this, one needs to outfit
highly dynamic software systems with self-adaptation mechanisms. Thus the system
itself is capable of monitoring selected requirements and environment conditions to
assess whether it needs to change [Müller and Villegas 2014].

Denker et al. proposed Changeboxes as a general-purpose solution for encapsulat-
ing change as first-class entities in a running software system [Denker et al. 2007].
ChangeBoxes supports first-class changes and allows one to apply them to a running
system to support runtime evolution. Further, ChangeBoxes supports change scoping,
that is, applying changes only in part of a system, allowing several versions of the
system to coexist at the same time. This allows one, for instance, to gradually deploy
changes in a running application so they affect initially only selected users and, if
successful, to deploy them more broadly to reach all users.

Zhang et al. have developed Celadon, a tool that infers fine-grained changes of a
system that is built using aspect-oriented programming [Zhang et al. 2008b]. They then
used this tool for the purpose of change impact analysis in AspectJ code. Qian et al. used
this same tool to mine for frequently occurring change patterns in AspectJ code [Qian
et al. 2008].

6.2. Applications in Reverse Engineering

Reverse engineering is the process of analysing a software system and extracting a
higher level view of its design. The goal is to improve understanding of how a system
works and how it is structured. One way of achieving this is by studying how a system
evolved or by analysing patterns or metrics of a system. Thus, in reverse engineering,
the top three applications are to replay changes, correlate changes to other metrics, and
discover patterns of changes.

Replaying Changes. This can be interpreted in two ways: (1) recording changes
made to a particular software system and then replaying them in order to better
understand the evolution of that system or (2) recording changes in order to replay them
on other (related) systems. Replaying changes on a single system to better understand
the system’s evolution was done by Hattori et al. [2010, 2013], as well as by Robbes
et al. [2010], Robbes and Lanza [2010], and Omori and Maruyama [2009, 2011].

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:23

Maruyama et al. argued that replaying all changes in chronological order is not
always necessary [Maruyama et al. 2012]. When a developer wants to investigate how
a particular entity in the system evolved, he or she often need to skip several unrelated
changes. To this end, Maruyama et al. introduced the concept of change slicing. A
change slice contains all changes related to a particular source-code entity. Hence,
when investigating the evolution of that entity, a developer only has to replay the
changes in the slice, thus reducing program comprehension effort.

The second interpretation of this applications (re-executing on other systems) has to
date only been done in the context of API evolution. Dig et al., as well as Henkel and
Diwan, developed ways to record refactoring operations applied on a system in order
to replay these refactorings on other dependant systems [Dig et al. 2008; Henkel and
Diwan 2005].

Correlate Changes to Other Metrics. As mentioned before, Giger et al. have cor-
related changes to the bug proneness of source code and used this to create prediction
models that can be used to predict which source-code modules will more likely contain
bugs [Giger et al. 2011, 2012a]. Moreover, they also correlated changes to traditional
object-oriented metrics and to measures from social network analysis [Giger et al.
2012b], thus creating prediction models of which source-code files are more prone to be
changed.

Romano et al. did a similar study, using anti-patterns. Given the notion that classes
affected by anti-patterns are more likely to be changed, they provided deeper insight
into which anti-patterns lead to which types of changes [Romano et al. 2012].

Stoerzer et al. correlated changes to test failures, thus creating models that classify
changes into the likelihood that they are failure inducing [Stoerzer et al. 2006].

Weißgerber and Diehl correlated reconstructed refactorings to bug reports, thus
analysing whether refactorings are more likely to introduce failures than non-
refactoring changes [Weissgerber and Diehl 2006a].

Discover Patterns of Changes. Given the fine-grained notion of reified changes,
several researchers set out to find as-yet-unknown patterns of changes [Fluri et al.
2008a, 2008b; Hashimoto et al. 2015; Negara et al. 2014; Qian et al. 2008; Xing and
Stroulia 2005a]. Fluri et al. and Negara et al. succeeded in identifying several pat-
terns [Fluri et al. 2008a; Negara et al. 2014]. Fluri et al. discovered that such patterns
often capture the semantics of a particular development activity. For instance, the pat-
terns SWAP CONTROL FLOW ORDER or MERGING CONTROL FLOW affect the control flow inside
a method, whereas REMOVE SUPERFLUOUS PARAMETER affects the API [Fluri et al. 2008a].
Negara et al. identified 10 frequently occurring patterns of changes, which they then
presented to 420 participants in a survey [Negara et al. 2014]. Eight of their patterns
were deemed relevant by more than half of the participants. Some of the patterns they
found include ADD PRECONDITION CHECK FOR A PARAMETER, WRAP CODE WITH TIMER, or
COPY FIELD INITIALIZER.

Other applications. Reifying changes that were recorded from the programmer’s
activity in the IDE allows one to manipulate them further. Robbes and Lanza defined
a semi-automatic, tool-supported process to convert a concrete sequence of recorded
changes to a generic higher-order change [Robbes and Lanza 2008a]. The higher-order
change accepts parameters (e.g., classes, methods, source-code selections) and acts as
a change generator whose output is determined by these very parameters. Executing
the generated changes on the system’s AST effectively applies the higher-order change
to the system. A further benefit is the possibility of including metadata that “tags”
the changes as having been issued from the higher-order change. This allows a full

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:24 Q. D. Soetens et al.

integration of the higher-order changes in the evolution, allowing them to be tracked
over time and possibly reworked when the higher-order change evolves.

Hayashi et al. proposed a method of rewriting (or restructuring) the recorded edit
history. An added benefit is that this allows us, for instance, to compose large refac-
torings from primitive refactorings or to define bad smells in the change sequence.
Such bad smells could then automatically be detected before committing to the reposi-
tory [Hayashi et al. 2012].

Kawrykow and Robillard argue that techniques that recover changes from software
repositories might be influenced by “non-essential changes,” such as local variable
refactorings or textual differences induced as part of a rename refactoring [Kawrykow
and Robillard 2011]. They developed a way of identifying such non-essential changes
in a revision of a software system, thus gaining insights into the distribution of non-
essential changes in a system’s evolution.

6.3. Applications in Software Evolution

In xoftware evolution, most work has been done in order to better understand system
evolution, which can also be considered part of reverse engineering. Apart from that,
the software evolution applications are centred around improved versioning systems,
as well as increased awareness of multiple developers working on the same system.

Understand System Evolution. At a lower level, reviewing the sequence of changes
recorded during the implementation of a functionality can assist the program compre-
hension effort. Since the actual sequence of changes is recorded, one can review the
changes in order. Thus replaying changes (as mentioned in Section 6.1) is an important
tool to better understand how a system evolved.

Hattori et al. take the comprehension of development sessions to a collaborative
perspective with Syde by allowing developers to explore and watch past development
sessions of any team member [Hattori et al. 2010]. Hence, a developer can also be as-
sisted in understanding the past work of others. The possibility to replay past changes
of any team member has proven to be efficient and effective to answer common ques-
tions raised by developers related to the evolution of a system.

The approach by Omori and Maruyama also supports operation replay and allows
the definition of fine-grained visualisation of the changes in order to identify specific
patterns of activity, such as programmer inactivity, commenting out source code, de-
bugging activities, and so on [Omori and Maruyama 2008, 2011].

Versioning. A system’s reified changes represent its entire evolution. This allows
for more accurate software evolution analysis. Traditionally, such analysis is based on
the limited amount of information contained in a software repository (such as SVN, git
or the Concurrent Versions System (CVS). Such repositories are line-based tools that
suffer from two essential problems: (1) The textual edits contain no semantic or even
syntactic meaning, whereas changes explicitly operate on AST entities, and (2) they
do not contain every intermediate version of a system but only snapshots taken when
a developer committed source code into the repository [Robbes and Lanza 2005]. This
leads to another problem when several developers are working together on the same
project. Merge conflicts can occur when two developers commit changes to the same
part of a system.

Change reification and the relations between changes can provide better conflict
detection and better support for resolving these conflicts. Indeed, one of the first ap-
proaches to achieve this was taken by Lippe and van Oosterom, who introduced the
concept of Operation-based Merging [Lippe and van Oosterom 1992]. Their technique

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:25

also lies at the core of MolhadoRef, the refactoring-aware source-code management sys-
tem by Dig et al. [2008]. The issue addressed by this work is that refactorings (such as
consistently renaming an entity) result in large changes in the code base: One renam-
ing refactoring changes all the files that reference the renamed entity. This can break
the source code or cause conflicts if someone changes one of these files concurrently.
MolhadoRef treats refactorings as change operations that are recorded and replayed
when a merge is necessary, effectively removing conflicts due to refactorings. Further-
more, modelling recording refactorings as logical operations instead of large physical
changes helps one to better understand a system’s evolution.

Another problem with source-code repositories is that when developers commit their
changes, they often have changed several things. While in the process of fixing a
bug, a developer might have performed a few refactorings and fixed a typographical
error they found in one of the comments. When all of these changes are committed
to the repository in a single commit, we speak of tangled commits. Dias et al. and
Hayashi et al. have proposed techniques to avoid this problem by untangling a set
of changes before committing to the repository and then committing the changes for
the different activities in their own separate commit [Dias et al. 2015; Hayashi and
Saeki 2010; Hayashi et al. 2012]. Hayashi et al. take it one step further and give the
reins back to the developer, who can then “refactor” their change history; by merging or
splitting changes and reordering them, a developer is given control over which changes
are part of which task [Hayashi et al. 2015].

Collaboration and Awareness. Awareness is defined as the understanding of the
changes of others that can impact one’s work. Recent work has investigated how to
break the workspace isolation introduced by SCM systems by providing developers
with real-time notifications of the activity of the team (e.g., who is changing which parts
of the system) [Sarma et al. 2008]. Most awareness approaches treat the system as a
collection of files; instead, Syde uses change reification to record every change made by
every developer within a team and provides them with real-time information [Hattori
and Lanza 2009b, 2010]. With this information, Syde enriches the Eclipse IDE with
visual cues that show which parts of the system are under change or have recently
changed and by whom.

One kind of information that is particularly useful for developers is to know when
they are performing concurrent modifications and thus when and where potential
merge conflicts emerge. Hattori and Lanza have proposed an operation-based conflict
detection algorithm that notifies developers in real time when merge conflicts might be
emerging, thus preempting the conflict detection of SCM systems [Hattori and Lanza
2010].

When multiple developers are working on the same system, there is also the notion of
code ownership, that is, which developer is most responsible for which part of the code.
When changes are recorded from the IDE, we can generate a much more fine-grained
image of code ownership [Hattori and Lanza 2009b, 2010].

Other applications. Fluri et al. have investigated the co-evolution between source
code and comments [Fluri et al. 2007a]. They found that most of the comment changes
are done at the same time as the associated source-code change. However, they rarely
co-evolve, newly introduced code is barely commented, and, when it is, it is mostly high
level to document the intent of a class or method declaration.

Marsavina et al. looked into the fine-grained co-evolution of production code and test
code [Marsavina et al. 2014]. Thus they were able to identify patterns of co-evolution
and thus provide a better understanding of how test code evolves.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:26 Q. D. Soetens et al.

7. ROADMAP FOR FUTURE RESEARCH

In order to answer RQ4 (What is the future work indicated by the primary studies?),
we extracted the future work from each primary study and identified keywords indi-
cating ways of improving the approaches and new applications. Figure 9 shows all the
future work keywords split into actual applications (top part) or improvements to the
approaches employing change reification (bottom part). In this figure, we have also
differentiated between recent future work (i.e., called for in the past 5 years) and older
future work. Interestingly enough, we find that most of the older future work is still
called for in more recent articles. In the remainder of this section, we list and briefly
explain the most frequent future work keywords as extracted from the primary studies.
We start by explaining the possible applications (in Section 7.1) and follow this up by
an overview of improvements of both the techniques employed as well as the ways of
validating the techniques (in Section 7.2).

7.1. Future Applications of Reified Changes

Detect Patterns of Changes. The most frequently called-for application in future
work is to detect patterns of changes. In the past 5 years, this has been suggested
by Hashimoto and Mori [2010], Hayashi et al. [2012], and Soetens et al. [2013b]. In Sec-
tion 6.2, we also mentioned that this is one of the most investigated applications. Most
recently, Hashimoto et al. and Negara et al. have done research on this topic [Negara
et al. 2014; Hashimoto et al. 2015]. Even though Negara et al. were capable of identi-
fying new patterns of changes, there could still emerge new unknown patterns when
replicating the experiment on other (commercial) cases. It is therefore worthwile to
continue this line of research.

Replaying Changes. The next-most-mentioned line of future work is replaying
changes. Again, this is also one of the most frequently investigated applications. How-
ever, only one interpretation of this application has to date been investigated in depth.
The other interpretation—replaying changes in a different context—has been called
for by Hashimoto and Mori [2010], Soetens and Demeyer [2012], and De Roover et al.
[2014]. Hashimoto et al. suggest to replay generic patches for linux drivers, whereas
Soetens et al. as well as De Roover et al. both suggest to use changes in order to replay
bug fixes on other related systems. For instance, a bug fix could be fixed on one branch
of a system, yet the bug might still exist in parallel branches, where replaying the
changes of the bug fix could be a useful operation.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:27

Fig. 9. Future work mentioned in the primary studies.

Change Composition. Higher-order composition of changes is an interesting line of
future work that has seen little research in the past. It has most recently been called
for by Falleri et al. [2014] and Hayashi et al. [2015]. We also see that this is closely
related to the previous two lines of future work, where a possible use case could be
as follows: Identify a frequently occurring pattern of changes, compose this pattern
into a single higher-order change, and, finally, replay the abstract higher-order change
pattern in different contexts. The higher-order composition of changes also includes
defining refactorings as compositions of smaller changes, which has, to some extent,
been done by Prete et al. [2010], Soetens et al. [2013b], and Hashimoto et al. [2015].

Understand System Evolution. This is by far the most investigated application in
the primary studies. Articles that called for future work in this line are all relatively

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:28 Q. D. Soetens et al.

old [Dig et al. 2006; Kim et al. 2007; Omori and Maruyama 2009; Robbes et al. 2007;
Xing and Stroulia 2006c], yet some of the future work they mentioned is still relevant
today. Omori et al. suggest that to efficiently understand software evolution one needs
to analyse a combination of fine-grained and coarse-grained change histories. However,
given the popularity of this application it is a prime target for a more in-depth literature
review and comparisons between different techniques.

Others. Although Dig et al. have developed an intelligent merging system [Dig et al.
2008], it is interesting to see if the explicit representation of fine-grained changes allows
for more intelligent merging algorithms. Change-based merging should be able to take
a system’s syntactical structure into account, rather than the traditional text-based
merge algorithms deployed by state-of-the-art SCM systems [Denker et al. 2007; Dig
et al. 2008; Hashimoto and Mori 2010].

Hattori et al. and Kitsu et al. argue that the sheer number of changes recorded from
development sessions impedes the program comprehension efforts needed [Hattori
et al. 2013; Kitsu et al. 2013]. Thus they suggest that methods of aggregating changes
into more manageable numbers are in order if one wants to provide a general overview
of the change history of a system. Kitsu et al. have already done this to some extent,
and yet their approach can still be improved by more advanced aggregation algo-
rithms [Kitsu et al. 2013].

In contrast to a linear history model, the change model allows the user to undo a
change other than the last one. The dependencies between the changes can be used to
achieve a cascading undo, in which all change operations that depend on the undone
change are also undone in a transitive way [Hayashi and Saeki 2010; Soetens and
Demeyer 2012].

Ebraert et al. as well as Romano and Pinzger suggest to apply this idea of change
reification on component-based systems [Ebraert et al. 2007a; Romano and Pinzger
2011]. Thus the meta-model of the Subjects should model component entities like com-
ponents, provided services, required services, ports to those services, and connectors to
connect the ports.

7.2. Improved Use and Validation of Reified Changes

Replication. The most called-for track of future work is to perform more case studies
(in total 32 articles) and some articles even call specifically for industrial cases (in
total 9 articles). Indeed, replication should be an important part of any reengineering
research, and replication experiments should be valued accordingly. Unfortunately,
that is rarely the case: To quote Tonella et al. when analysing the current state of the
art in reverse engineering research:

Replication is not supported, industrial cases are rare, [. . .]. In order to help the disci-
pline mature, we think that more systematic empirical evaluation is needed. [Tonella
et al. 2007]

Yet there is a downside to replicating approaches that record changes in an industrial
context, as this requires a change recording tool to be deployed at a company that
needs to run and collect changes for a fixed amount of time. In contrast to this, change
recovering tools can (almost) instantly work with the readily available data in SCM
systems.

General Tool Improvements. Apart from replication, many articles suggest future
work to improve their tooling infrastructure, meaning that in order for the tool or
application to become viable for use in industry, it needs to be made more efficient or
more performant. Giger et al. suggest to store changes in a database in order to improve

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:29

performance [Giger et al. 2012a]. Hattori and Lanza suggest that the collected changes
should be cleaned for “noise”—changes collected about a trial-and-error programming
style that are of no interest for the application [Hattori and Lanza 2009b].

Application Specific Improvements. Most articles mention some ideas of how to
improve on their specific application. For instance, Fluri et al. suggest that in order
to better understand how source code and comments co-evolve, one could improve the
way comments are identified by taking into account the scope of the comment or by
filtering out source code that is commented out [Fluri et al. 2007a]. Another example of
application-specific improvements is by Omori and Maruyama as well as Falleri et al.,
who want to take into account changes that happen across multiple files [Omori and
Maruyama 2009, 2011; Falleri et al. 2014].

Support for Different Development Environments. A specific kind of
tool/application improvement that is called for in many articles is to port the tool
to different IDE’s and/or programming languages. For instance, Giger et al. mention
that their results might be biased towards the Eclipse IDE and that it might be worth-
while to investigate if their conclusions hold when implementing their approach in
other development environments [Giger et al. 2011, 2012b]. Yoon and Myers also re-
port that it might be interesting to look at issues that cross IDE’s and programming
languages [Yoon and Myers 2011]. Other approaches were at the time of their writ-
ing only implemented in a Smalltalk environment [Ebraert et al. 2007a; Robbes and
Lanza 2008c]. Robbes et al. proposed to port Spyware to more popular programming
environments like Eclipse in order to isolate language- and environment-independent
concepts [Robbes et al. 2007]. By now Ebraert’s tool ChEOPS and Robbes’ Spyware
have been translated to Eclipse variants in the forms of Soetens’ ChEOPSJ and Hat-
tori’s Syde [Ebraert et al. 2007a; Robbes and Lanza 2008c; Hattori and Lanza 2010;
Soetens and Demeyer 2012]. Nevertheless, this highlights one of the downsides of
change reification approaches: They are highly programming language dependent and,
in the case of change recording approaches, IDE dependent; this necessitates extra
effort to broaden the applicability of this approach.

Others. As an extension to the previously mentioned industrial case studies, some
authors suggest to deploy change recording tools in a real development team [Hattori
and Lanza 2009b; Robbes 2007; Soetens et al. 2013b]. As such, we can perform studies
on changes recorded in the wild. Developers from industry can also be used user studies
to evaluate the useability of existing tools and applications [Soetens et al. 2010; Stoerzer
et al. 2006; Xing and Stroulia 2007a].

Soetens et al. and Yoon et al. suggest that fine-grained changes should be stored
alongside the code in the software repositories. This would allow several developers
to work simultaneously on the same change model [Soetens et al. 2013b; Yoon et al.
2013]. Yet one could argue that the change model itself represents a software system
as well as its entire evolution, and therefore it should be sufficient to merely store the
change model (without separately storing the source code).

Future Work in Literature Reviews. Apart from the future work extracted from
the primary studies, by doing this mapping study, we have also identified future work
with regards to literature reviews. There is a need for more in-depth and more complete
literature reviews and comparisons in the following applications and approaches:

—Approaches for recording of fine-grained changes.
—Approaches for recovering of fine-grained changes.
—Approaches for recording of refactorings.
—Approaches for recovering of refactorings.
—Understanding system evolution.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

18:30 Q. D. Soetens et al.

—Detecting “unknown” patterns of changes.
—Replaying changes on (i) a single system (i.e., replay a systems evolution) or on

(ii) multiple systems (i.e., replay abstract changes in different contexts).

Some of these systematic literature reviews have already been done, albeit in
Japanese, by Omori et al. and Choi et al. The first have published an article in Japanese
in which they present a survey on techniques that record changes from an IDE [Omori
et al. 2015]. Their study was limited to fine-grained code changes in the context of
software evolution. The other, by Choi et al., presented a survey on refactoring recon-
struction techniques based on change history analysis [Choi et al. 2015].

Lehnert et al. did a study to compare different change-based approaches and devised
a taxonomy of changes, which we summarised in Section 2 [Lehnert et al. 2012].

Kim and Notkin did a study in 2006 comparing different ways of matching pro-
gram elements across versions in order to track software entities that have been
changes [Kim and Notkin 2006]. As we have shown in this article, new techniques
have emerged to reconstruct changes from a source-code repository; therefore, this
comparison is due for an update.

Mens and Tourwé made an extensive overview of the existing research (in 2004)
in the field of software refactoring. They compared and discussed the works based on
the types of refactoring activities and the types of software artefacts being refactored,
specific techniques and formalisms to support these activities, as well as issues that
need to be taken into account when building refactoring tools [Mens and Tourwé 2004].

8. CONCLUSIONS

In this article, we performed a systematic mapping study in order to answer the fol-
lowing research question:

RQ: To what purposes has change reification been used, what is the evidence for
the success of approaches employing it, and what directions of further research are
considered important?

We have shown that the number of articles published on change reification has
seen a steady increase, followed by a period of stability. Furthermore, more than 100
authors have been involved in these works. This shows that the software engineering
research community found the topic worthy of sustained interest. Additionally, articles
on change reification have been published at strong conference venues (e.g., ICSE,
ASE) and in highly ranked journals (e.g., TSE). As such, we found convincing evidence
for the success of change reification.

We provided an overview of applications for which change reification has been used
in the past. Most prominently, there have been approaches for replaying changes,
predicting future changes, test selection, correlating changes to other metrics, change
impact analysis, discovering patterns of changes, and better understanding of software

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:31

evolution. There are also a variety of other approaches that have been developed,
showing that change reification is versatile and has a broad range of applications.

Finally, we have also provided an overview of the vision that researchers in this
domain put forth by listing the most popular future applications, which includes de-
tecting more patterns of changes, replaying changes on other systems, and higher-order
composition of changes. Moreover, we also find that future work is also called for to
improve the existing applications as well as their validation by replicating past studies
and comparing different approaches as well as new experiments using actual soft-
ware developers. Other applications envisioned in future work further show the broad
potential of change reification.

In recent years, there has been a resurgence followed by sustained interest for change
reification. Dig et al. have even received the most influential article award at ICSME
2015 [Dig and Johnson 2005]. We believe this trend is far from over. We envision a
future where IDEs will use first-class changes as a basic mechanism in their architec-
ture, broadcasting changes between IDEs, and using change data for highly accurate
recommendations to increase the modularity of highly complex systems, to dynamically
evolve them, and to definitively bridge the gap between programming and modelling.
Some of these applications already exist as prototypes (see, for instance, the Change-
Oriented Programming Environment4), and others are already in daily use.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

REFERENCES

Raihan Al-Ekram, Archana Adma, and Olga Baysal. 2005. DIFFX: an algorithm to detect changes in multi-
version XML documents. In Proc. of the Conf. of the Centre for Advanced Studies on Collaborative
Research (CASCON’05). IBM Press, 1–11.

Lars Bendix and Fabio Vitali. 1999. VTML for fine-grained change tracking in editing structured documents.
In Proc. of the 9th Int. Symposium on System Configuration Management (SCM-9). Springer-Verlag,
London, UK, 139–156.

Amel Bennaceur, Robert France, Giordano Tamburrelli, Thomas Vogel, Pieter J. Mosterman, Walter Cazzola,
Fabio M. Costa, Alfonso Pierantonio, Matthias Tichy, Mehmet Akşit, Pär Emmanuelson, Huang
Gang, Nikolaos Georgantas, and David Redlich. 2014. Mechanisms for Leveraging Models at Run-
time in Self-adaptive Software. Springer International Publishing, Cham, 19–46. DOI:http://dx.doi.org/
10.1007/978-3-319-08915-7_2

Xavier Blanc, Isabelle Mounier, Alix Mougenot, and Tom Mens. 2008. Detecting model inconsistency through
operation-based model construction. In Proceedings of the 30th International Conference on Software
Engineering (ICSE’08). ACM, New York, NY, 511–520. DOI:http://dx.doi.org/10.1145/1368088.1368158

David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham. 2008. Using mapping studies in
software engineering. In Proc. of the 20th Annual Meeting of the Pschology of Programming Interest
Group (PPIG’08). Lancaster University, 195–204.

Ophelia C. Chesley, Xiaoxia Ren, and Barbara G. Ryder. 2005. Crisp: A debugging tool for java programs. In
Proc. of the 21st IEEE Int. Conf. on Soft. Maintenance (ICSM’05). 401–410.

Eunjong Choi, Kenji Fujiwara, Norihiro Yoshida, and Shinpei Hayashi. 2015. A survey of refactoring detec-
tion techniques based on change history analysis (in Japanese). Comput. Soft. 32, 1 (Feb 2015), 47–59.

István Dávid, István Ráth, and Dániel Varró. 2016. Foundations for streaming model transformations by com-
plex event processing. Softw. Syst. Model. (2016), 1–28. DOI:http://dx.doi.org/10.1007/s10270-016-0533-1

Coen De Roover, Christophe Scholliers, Viviane Jonckers, Javier Pérez, Alessandro Murgia, and Serge De-
meyer. 2014. The implementation of the CHA-Q meta-model: A comprehensive, change-centric soft.
representation. In Proc. of the 8th Int. Workshop on Soft. Quality. ECEASST 65 (2014).

Marcus Denker, Marcus Denker, Oscar Nierstrasz, Lukas Renggli, and Pascal” Zumkehr. 2007. Encapsu-
lating and exploiting change with changeboxes. In Proc. of the 2007 Int. Conf. on Dynamic Languages
(ICDL’07). 25–49.

4http://cope.eecs.oregonstate.edu.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dx.doi.org/10.1007/978-3-319-08915-72
http://dx.doi.org/10.1007/978-3-319-08915-72
http://dx.doi.org/10.1145/1368088.1368158
http://dx.doi.org/10.1007/s10270-016-0533-1
http://cope.eecs.oregonstate.edu

18:32 Q. D. Soetens et al.

Martı́n Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. 2015. Untan-
gling fine-grained code changes. In Proc. of the 22nd IEEE Int. Conf. on Soft. Analysis, Evolution and
Reengineering (SANER’15). 341–350.

Martin Dias, Damien Cassou, and Stéphane Ducasse. 2013. Representing code history with development
environment events. In Proc. of the 5th Int. Workshop on Smalltalk Technologies (IWST’13). http://arxiv.
org/abs/1309.4334

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2006. Automated detection of refactor-
ings in evolving components. In Proc. of the 20th European Conf. on Object-Oriented Programming
(ECOOP’06). Springer-Verlag, Berlin, 404–428. http://dx.doi.org/10.1007/11785477_24

Danny Dig, Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson. 2005. Automatic detection
of refactorings for libraries and frameworks. In Proc. of the 6th ECOOP Workshop on Object-Oriented
Reengineering (WOOR’05).

Danny Dig and Ralph Johnson. 2005. The role of refactorings in API evolution. In Proc. of the 21st IEEE Int.
Conf. on Soft. Maintenance (ICSM’05). 389–398.

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. 2007. Refactoring-aware configuration
management for object-oriented programs. In Proc. of the 29th Int. Conf. on Soft. Eng. (ICSE’07). 427–
436.

Danny Dig, Kashif Manzoor, Ralph Johnson, and Tien N. Nguyen. 2008. Effective soft. merging in the
presence of object-oriented refactorings. IEEE Trans. Softw. Eng. 34, 3 (May 2008), 321–335.

Nicolas Dintzner, Arie Van Deursen, and Martin Pinzger. 2013. Extracting feature model changes
from the linux kernel using FMDiff. In Proc. of the 8th Int. Workshop on Variability Modelling
of Soft.-Intensive Systems (VaMoS’14). ACM, New York, NY, Article 22, 8 pages. http://doi.acm.org/
10.1145/2556624.2556631

Hannes Dohrn and Dirk Riehle. 2014. Fine-grained change detection in structured text documents. In Proc.
of the 2014 ACM Symposium on Document Eng. (DocEng’14). ACM, New York, NY, 87–96. http://doi.
acm.org/10.1145/2644866.2644880

Peter Ebraert. 2008. First-class change objects for feature-oriented programming. In Proc. of the 15th Working
Conf. on Reverse Eng. (WCRE’08). 319–322.

Peter Ebraert, Theo D’Hondt, and Tom Mens. 2004. Enabling dynamic soft. evolution through automatic
refactoring. In Proc. of the Int. Workshop on Soft. Evolution Transformations (SETra’04), Ying Zhou and
James R. Cordy (Eds.). 3–6.

Peter Ebraert, Quinten David Soetens, and Dirk Janssens. 2011. Change-based foda diagrams: bridg-
ing the gap between feature-oriented design and implementation. In Proc. of the 2011 ACM Sympo-
sium on Applied Computing (SAC’11). ACM, New York, NY, 1345–1352. http://doi.acm.org/10.1145/
1982185.1982478

Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paesschen, and Theo D’Hondt. 2007a. Change-
oriented soft. eng.. In Proc. of the 2007 Int. Conf. on Dynamic Languages: In Conjunction with the
15th Int. Smalltalk Joint Conf. 2007 (ICDL’07). ACM, New York, NY, 3–24. http://doi.acm.org/10.1145/
1352678.1352680

Peter Ebraert, Ellen Van Paesschen, and Theo D’Hondt. 2007b. Change-Oriented Round-Trip Eng.
Technical Report. Vrije Universiteit Brussel. Retrieved from ftp://prog.vub.ac.be/tech_report/2007/
vub-prog-tr-07-04.pdf.

Johan Fabry, Tom Dinkelaker, Jacques Noyé, and Éric Tanter. 2015. A taxonomy of domain-specific aspect
languages. ACM Comput. Surv. 47, 3 (2015), 3:1–3:44. DOI:http://dx.doi.org/10.1145/2685028

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Montperrus. 2014. Fine-
grained and accurate source code differencing. In Proc. of the 29th IEEE/ACM Int. Conf. on Automated
Soft. Eng. (ASE’14). ACM, New York, NY, 313–324. http://doi.acm.org/10.1145/2642937.2642982

Beat Fluri and Harald C. Gall. 2006. Classifying change types for qualifying change couplings. In Proc. of
the 14th IEEE Int. Conf. on Program Comprehension (ICPC’06). 35–45.

Beat Fluri, Harald C. Gall, and Martin Pinzger. 2005. Fine-grained analysis of change couplings. In Proc.
of the 5th IEEE Int. Workshop on Source Code Analysis and Manipulation (SCAM’05). IEEE Computer
Society, Washington, DC, 66–74. http://dx.doi.org/10.1109/SCAM.2005.14

Beat Fluri, Emanuel Giger, and Harald C. Gall. 2008a. Discovering patterns of change types. In Proc. of the
23rd IEEE/ACM Int. Conf. on Automated Soft. Eng. (ASE’08). 463–466.

Beat Fluri, Michael Wursch, and Harald C. Gall. 2007a. Do code and comments co-evolve? On the relation
between source code and comment changes. In Proc. of the 14th Working Conf. on Reverse Eng. (WCRE’07).
70–79.

Beat Fluri, Michael Wursch, Martin Pinzger, and Harald C. Gall. 2007b. Change distilling: Tree differencing
for fine-grained source code change extraction. IEEE Trans. Softw. Eng. 33, 11 (Nov 2007), 725–743.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://arxiv.org/abs/1309.4334
http://arxiv.org/abs/1309.4334
http://dx.doi.org/10.1007/11785477_24
http://doi.acm.org/10.1145/2556624.2556631
http://doi.acm.org/10.1145/2556624.2556631
http://doi.acm.org/10.1145/2644866.2644880
http://doi.acm.org/10.1145/2644866.2644880
http://doi.acm.org/10.1145/1982185.1982478
http://doi.acm.org/10.1145/1982185.1982478
http://doi.acm.org/10.1145/1352678.1352680
http://doi.acm.org/10.1145/1352678.1352680
ftp://prog.vub.ac.be/techreport/2007/vub-prog-tr-07-04.pdf
ftp://prog.vub.ac.be/techreport/2007/vub-prog-tr-07-04.pdf
http://dx.doi.org/10.1145/2685028
http://doi.acm.org/10.1145/2642937.2642982
http://dx.doi.org/10.1109/SCAM.2005.14

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:33

Beat Fluri, Jonas Zuberbühler, and Harald C. Gall. 2008b. Recommending method invocation context
changes. In Proc. of the 2008 Int. Workshop on Recommendation Systems for Soft. Eng. (RSSE’08).
ACM, New York, NY, 1–5. http://doi.acm.org/10.1145/1454247.1454249

Harald C. Gall, Beat Fluri, and Martin Pinzger. 2009. Change analysis with evolizer and ChangeDistiller.
IEEE Soft. 26, 1 (Jan 2009), 26–33.

Emanuel Giger, Marco D’Ambros, Martin Pinzger, and Harald C. Gall. 2012a. Method-level bug prediction. In
Proc. of the ACM-IEEE Int. Symposium on Empirical Soft. Eng. and Measurement (ESEM’12). 171–180.

Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2011. Comparing fine-grained source code changes
and code churn for bug prediction. In Proc. of the 8th IEEE Working Conf. on Mining Soft. Repositories
(MSR’11). ACM, New York, NY, 83–92. http://doi.acm.org/10.1145/1985441.1985456

Emanuel Giger, Martin Pinzger, and Harald C. Gall. 2012b. Can we predict types of code changes? An
empirical analysis. In Proc. of the 9th IEEE Working Conf. on Mining Soft. Repositories (MSR’12). IEEE
Press, Piscataway, NJ, 217–226.

Carsten Görg and Peter Weißgerber. 2005a. Detecting and visualizing refactorings from software archives.
In Proc. of the 13th Int. Workshop on Program Comprehension (IWPC’05). 205–214.

Carsten Görg and Peter Weißgerber. 2005b. Error detection by refactoring reconstruction. In Proc. of the
2nd Int. Workshop on Mining Soft. Repositories. SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1–5.
http://doi.acm.org/10.1145/1082983.1083148

Masatomo Hashimoto and Akira Mori. 2008. Diff/TS: A tool for fine-grained structural change analysis. In
Proc. of the 15th Working Conf. on Reverse Eng. (WCRE’08). 279–288.

Masatomo Hashimoto and Akira Mori. 2010. A method for analyzing code homology in genealogy of evolving
soft. In Fundamental Approaches to Soft. Eng., David S. Rosenblum and Gabriele Taentzer (Eds.).
Lecture Notes in Computer Science, Vol. 6013. Springer, Berlin, 91–106. http://dx.doi.org/10.1007/
978-3-642-12029-9_7

Masatomo Hashimoto and Akira Mori. 2012. Enhancing history-based concern mining with fine-grained
change analysis. In Proc. of the 16th European Conf. on Soft. Maintenance and Reengineering (CSMR’12).
75–84.

Masatomo Hashimoto, Akira Mori, and Tomonori Izumida. 2015. A comprehensive and scalable method
for analyzing fine-grained source code change patterns. In Proc. of the 22nd IEEE Int. Conf. on Soft.
Analysis, Evolution and Reengineering (SANER’15). 351–360.

Lile Hattori. 2010. Enhancing collaboration of multi-developer projects with synchronous changes. In Proc.
of the 32nd Int. Conf. on Soft. Eng. (ICSE’10), Vol. 2. 377–380.

Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea Lungu. 2011. Soft. evolution comprehension:
Replay to the rescue. In Proc. of the 19th Int. Conf. on Program Comprehension (ICPC’11). IEEE, 161–
170.

Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea Lungu. 2013. Answering soft. evolution questions.
Inf. Softw. Technol. 55, 4 (April 2013), 755–775. http://dx.doi.org/10.1016/j.infsof.2012.09.001

Lile Hattori and Michele Lanza. 2009a. An environment for synchronous software development. In Compan-
ion of the 31th Int. Conf. on Soft. Eng. (ICSE Companion’09). 223–226.

Lile Hattori and Michele Lanza. 2009b. Mining the history of synchronous changes to refine code ownership.
In Proc. of the 6th IEEE Int. Working Conf. on Mining Soft. Repositories (MSR’09). 141–150.

Lile Hattori and Michele Lanza. 2010. Syde: A tool for collaborative software development. In Proc. of the
32nd ACM/IEEE Int. Conf. on Soft. Eng. (ICSE’10), Vol. 2. 235–238.

Lile Hattori, Mircea Lungu, and Michele Lanza. 2010. Replaying past changes in multi-developer projects.
In Proc. of the Joint ERCIM Workshop on Soft. Evolution (EVOL) and Int. Workshop on Princi-
ples of Soft. Evolution (IWPSE) (IWPSE-EVOL’10). ACM, New York, NY, 13–22. http://doi.acm.org/
10.1145/1862372.1862379

Shinpei Hayashi, Daiki Hoshino, Jumpei Matsuda, Motoshi Saeki, Takayuki Omori, and Katsuhisa
Maruyama. 2015. Historef: A tool for edit history refactoring. In Proc. of the 22nd IEEE Int. Conf.
on Soft. Analysis, Evolution and Reengineering (SANER’15). 469–473.

Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo, Katsuhisa Maruyama, and Motoshi Saeki. 2012.
Refactoring edit history of source code. In Proc. of the 28th IEEE Int. Conf. on Soft. Maintenance
(ICSM’12). 617–620.

Shinpei Hayashi and Motoshi Saeki. 2010. Recording finer-grained soft. evolution with IDE: An annotation-
based approach. In Proc. of the Joint ERCIM Workshop on Soft. Evolution (EVOL) and Int. Work-
shop on Principles of Soft. Evolution (IWPSE) (IWPSE-EVOL’10). ACM, New York, NY, 8–12.
http://doi.acm.org/10.1145/1862372.1862378

Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and replaying refactorings to support API
evolution. In Proc. of the 27th Int. Conf. on Soft. Eng. (ICSE’05). 274–283.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://doi.acm.org/10.1145/1454247.1454249
http://doi.acm.org/10.1145/1985441.1985456
http://doi.acm.org/10.1145/1082983.1083148
http://dx.doi.org/10.1007/978-3-642-12029-97
http://dx.doi.org/10.1007/978-3-642-12029-97
http://dx.doi.org/10.1016/j.infsof.2012.09.001
http://doi.acm.org/10.1145/1862372.1862379
http://doi.acm.org/10.1145/1862372.1862379
http://doi.acm.org/10.1145/1862372.1862378

18:34 Q. D. Soetens et al.

Jon Jenkins. 2011. Velocity Culture. (2011). Keynote Address at the Velocity 2011 Conference.
Sven Johann and Alexander Egyed. 2004. Instant and incremental transformation of models. In Proceed-

ings of the 19th IEEE International Conference on Automated Software Engineering (ASE’04). IEEE
Computer Society, Washington, DC, 362–365. DOI:http://dx.doi.org/10.1109/ASE.2004.43

Huzefa H. Kagdi, Michael L. Collard, and Jonathan I. Maletic. 2007. A survey and taxonomy of approaches
for mining software repositories in the context of software evolution. J. Softw. Maint. 19, 2 (2007),
77–131. DOI:http://dx.doi.org/10.1002/smr.344

David Kawrykow and Martin P. Robillard. 2011. Non-essential changes in version histories. In Proc.
of the 33rd Int. Conf. on Soft. Eng. (ICSE’11). ACM, New York, NY, 351–360. http://doi.acm.org/
10.1145/1985793.1985842

Asad Masood Khattak, Khalid Latif, Manhyung Han, Sungyoung Lee, Young-Koo Lee, and Hyoung-Il Kim.
2009. Change tracer: Tracking changes in web ontologies. In Proc. of the 21st Int. Conf. on Tools with
Artificial Intelligence (ICTAI’09). 449–456.

Foutse Khomh, Bram Adams, Tejinder Dhaliwal, and Ying Zou. 2015. Understanding the impact of rapid
releases on software quality. Emp. Softw. Eng. 20, 2 (2015), 336–373. DOI:http://dx.doi.org/10.1007/
s10664-014-9308-x

Miryung Kim, Matthew Gee, Alex Loh, and Napol Rachatasumrit. 2010. Ref-finder: A refactoring re-
construction tool based on logic query templates. In Proc. of the 18th ACM SIGSOFT Int. Sympo-
sium on Foundations of Soft. Eng. (FSE’10). ACM, New York, NY 371–372. http://doi.acm.org/10.1145/
1882291.1882353

Miryung Kim and David Notkin. 2006. Program element matching for multi-version program analyses. In
Proc. of the 3rd Int. Workshop on Mining Soft. Repositories (MSR’06). ACM, New York, NY, 58–64.
http://doi.acm.org/10.1145/1137983.1137999

Miryung Kim and David Notkin. 2009. Discovering and representing systematic code changes. In Proc.
of the 31st Int. Conf. on Soft. Eng. (ICSE’09). IEEE Computer Society, Washington, DC, 309–319.
http://dx.doi.org/10.1109/ICSE.2009.5070531

Miryung Kim, David Notkin, and Dan Grossman. 2007. Automatic inference of structural changes for match-
ing across program versions. In Proc. of the 29th Int. Conf. on Soft. Eng. (ICSE’07). IEEE Computer
Society, Washington, DC, 333–343. http://dx.doi.org/10.1109/ICSE.2007.20

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in
soft. eng. (2007).

Eijiro Kitsu, Takayuki Omori, and Katsuhisa Maruyama. 2013. Detecting program changes from edit history
of source code. In Proc. of the 20th Asia-Pacific Soft. Eng. Conf. (APSEC’13), Vol. 1. 299–306.

Meir M. Lehman and Laszlo A. Belady. 1985. Program evolution: processes of software change. Academic
Press Professional, Inc., San Diego, CA.

Steffen Lehnert, Qurat-ul-ann Farooq, and Matthias Riebisch. 2012. A taxonomy of change types and its
application in soft. evolution. In Proc. of the 19th Int. Conf. and Workshops on Eng. of Computer Based
Systems (ECBS’12). 98–107.

You Liang and Lu Yansheng. 2012. The atomic change set of java programming language. In Proc. of the 7th
Int. Conf. on Computer Science Education (ICCSE’12). 1090–1092.

Zhongpeng Lin. 2013. Understanding and simulating software evolution. In Proc. of the 35th Int. Conf. on
Soft. Eng. (ICSE’13). 1411–1414.

Zhongpeng Lin and Jim Whitehead. 2014. Using fine-grained code change metrics to simulate soft. evolution.
In Proc. of the 5th Int. Workshop on Emerging Trends in Soft. Metrics (WETSoM’14). ACM, New York,
NY, 15–18. http://doi.acm.org/10.1145/2593868.2593871

Ernst Lippe and Norbert van Oosterom. 1992. Operation-based merging. SIGSOFT Softw. Eng. Notes 17, 5
(Nov. 1992), 78–87. http://doi.acm.org/10.1145/142882.143753

Alex Loh and Miryung Kim. 2010. LSdiff: A program differencing tool to identify systematic structural
differences. In Proc. of the 32nd ACM/IEEE Int. Conf. on Soft. Eng. (ICSE’10), Vol. 2. 263–266.

Cosmin Marsavina, Daniele Romano, and Andy Zaidman. 2014. Studying fine-grained co-evolution patterns
of production and test code. In Proc. of the 14th IEEE Int. Working Conf. on Source Code Analysis and
Manipulation (SCAM’14). 195–204.

Katsuhisa Maruyama, Eijiro Kitsu, Takayuki Omori, and Shinpei Hayashi. 2012. Slicing and replaying code
change history. In Proc. of the 27th IEEE/ACM Int. Conf. on Automated Soft. Eng. (ASE’12). ACM, New
York, NY, 246–249. http://doi.acm.org/10.1145/2351676.2351713

Tom Mens and Tom Tourwé. 2004. A survey of software refactoring. IEEE Trans. Softw. Eng. 30, 2 (Feb.
2004), 126–139. DOI:http://dx.doi.org/10.1109/TSE.2004.1265817

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dx.doi.org/10.1109/ASE.2004.43
http://dx.doi.org/10.1002/smr.344
http://doi.acm.org/10.1145/1985793.1985842
http://doi.acm.org/10.1145/1985793.1985842
http://dx.doi.org/10.1007/s10664-014-9308-x
http://dx.doi.org/10.1007/s10664-014-9308-x
http://doi.acm.org/10.1145/1882291.1882353
http://doi.acm.org/10.1145/1882291.1882353
http://doi.acm.org/10.1145/1137983.1137999
http://dx.doi.org/10.1109/ICSE.2009.5070531
http://dx.doi.org/10.1109/ICSE.2007.20
http://doi.acm.org/10.1145/2593868.2593871
http://doi.acm.org/10.1145/142882.143753
http://doi.acm.org/10.1145/2351676.2351713
http://dx.doi.org/10.1109/TSE.2004.1265817

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:35

Bertrand Meyer, Christine Choppy, Jørgen Staunstrup, and Jan van Leeuwen. 2009. Viewpoint: re-
search evaluation for computer science. Commun. ACM 52, 4 (Apr. 2009), 31–34. DOI:http://dx.doi.org/
10.1145/1498765.1498780

Hausi Müller and Norha Villegas. 2014. Runtime Evolution of Highly Dynamic Software. Springer, Berlin,
229–264. DOI:http://dx.doi.org/10.1007/978-3-642-45398-4_8

Gail C. Murphy, Mik Kersten, and Leah Findlater. 2006. How are java soft. developers using the eclipse ide?
IEEE Softw. 23, 4 (2006), 76–83.

Nachiappan Nagappan and Thomas Ball. 2005. Use of relative code churn measures to predict system defect
density. In Proceedings of the 27th International Conference on Software Engineering (ICSE’05). ACM,
New York, NY, 284–292. DOI:http://dx.doi.org/10.1145/1062455.1062514

Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2013. Mining continous code changes to
detect frequent program transformations. Technical Report. University of Illinois at Urbana-Champaign.
http://hdl.handle.net/2142/43889

Stas Negara, Mihai Codoban, Danny Dig, and Ralph E. Johnson. 2014. Mining fine-grained code changes
to detect unknown change patterns. In Proc. of the 36th Int. Conf. on Soft. Eng. (ICSE’14). ACM, New
York, NY, 803–813. http://doi.acm.org/10.1145/2568225.2568317

Stas Negara, Mohsen Vakilian, Nicholas Chen, Ralph E. Johnson, and Danny Dig. 2012. Is it danger-
ous to use version control histories to study source code evolution? In Proc. of the 26th European
Conf. on Object-Oriented Programming (ECOOP’12). Springer-Verlag, Berlin, 79–103. http://dx.doi.org/
10.1007/978-3-642-31057-7_5

Oscar Nierstrasz, Marcus Denker, Tudor Girba, and Adrian Lienhard. 2006. analyzing, capturing and taming
soft. change. In Proc. of the Workshop on Revival of Dynamic Languages (co-located with ECOOP’06)
(RDL’06). Nantes, France.

Dirk Ohst, Michael Welle, and Udo Kelter. 2003. Differences between versions of uml diagrams. SIGSOFT
Softw. Eng. Notes 28, 5 (Sept. 2003), 227–236. http://doi.acm.org/10.1145/949952.940102

Takayuki Omori, Shinpei Hayashi, and Katsuhisa Maruyama. 2015. A survey on methods of recording
fine-grained operations on integrated development environments and their applications (in japanese).
Computer Softw. 32, 1 (Feb. 2015), 60–80.

Takayuki Omori and Katsuhisa Maruyama. 2008. A change-aware development environment by recording
editing operations of source code. In Proc. of the 5th Int. Working Conf. on Mining Soft. Repositories
(MSR’08). ACM, New York, NY, 31–34. http://doi.acm.org/10.1145/1370750.1370758

Takayuki Omori and Katsuhisa Maruyama. 2009. Identifying stagnation periods in soft. evolution by re-
playing editing operations. In Proc. of the 16th Asia-Pacific Soft. Eng. Conf. (APSEC’09). 389–396.

Takayuki Omori and Katsuhisa Maruyama. 2010. Flexibly highlighting in replaying operation history. In
Proc. of the Int. Workshop on Empirical Soft. Eng. in Practice (IWESEP’10). 59–60.

Takayuki Omori and Katsuhisa Maruyama. 2011. An editing-operation replayer with highlights supporting
investigation of program modifications. In Proc. of the 12th Int. Workshop on Principles of Soft. Evolution
and the 7th Annual ERCIM Workshop on Soft. Evolution (IWPSE-EVOL’11). ACM, New York, NY, 101–
105. http://doi.acm.org/10.1145/2024445.2024464

Ali Ouni, Marouane Kessentini, and Houari Sahraoui. 2013. Search-based refactoring using recorded code
changes. In Proc. of the 17th European Conf. on Soft. Maintenance and Reengineering (CSMR’13). 221–
230.

Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic mapping studies in
soft. eng.. In Proc. of the 12th Int. Conf. on Evaluation and Assessment in Soft. Eng. (EASE’08). British
Computer Society, Swinton, UK, 68–77.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic map-
ping studies in software engineering: an update. Inf. Soft. Technol. 64, 0 (2015), 1–18.

Kyle Prete, Napol Rachatasumrit, Nikita Sudan, and Miryung Kim. 2010. Template-based reconstruction
of complex refactorings. In Proc. of the 26th IEEE Int. Conf. on Soft. Maintenance (ICSM’10). IEEE
Computer Society, Washington, DC, 1–10. http://dx.doi.org/10.1109/ICSM.2010.5609577

Yin Qian, Sai Zhang, and Zhengwei Qi. 2008. Mining change patterns in aspectj soft. evolution. In Proc. of
the 2008 Int. Conf. on Computer Science and Soft. Eng. (CSSE’08), Vol. 2. 108–111.

Napol Rachatasumrit and Miryung Kim. 2012. An empirical investigation into the impact of refactoring on
regression testing. In Proc. of the 28th IEEE Int. Conf. on Soft. Maintenance (ICSM’12). 357–366.

Md Saidur Rahman and Chanchal K. Roy. 2014. A change-type based empirical study on the stability of
cloned code. In Proc. of the 14th IEEE Int. Working Conf. on Source Code Analysis and Manipulation
(SCAM’14). 31–40.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dx.doi.org/10.1145/1498765.1498780
http://dx.doi.org/10.1145/1498765.1498780
http://dx.doi.org/10.1007/978-3-642-45398-4_8
http://dx.doi.org/10.1145/1062455.1062514
http://hdl.handle.net/2142/43889
http://doi.acm.org/10.1145/2568225.2568317
http://dx.doi.org/10.1007/978-3-642-31057-75
http://dx.doi.org/10.1007/978-3-642-31057-75
http://doi.acm.org/10.1145/949952.940102
http://doi.acm.org/10.1145/1370750.1370758
http://doi.acm.org/10.1145/2024445.2024464
http://dx.doi.org/10.1109/ICSM.2010.5609577

18:36 Q. D. Soetens et al.

Xiaoxia Ren, Barbara G. Ryder, Maximilian Stoerzer, and Frank Tip. 2005. Chianti: a change impact analysis
tool for java programs. In Proc. of the 27th Int. Conf. on Soft. Eng. (ICSE’05). ACM, New York, NY, 664–
665. http://doi.acm.org/10.1145/1062455.1062598

Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. 2004. Chianti: a tool for
change impact analysis of java programs. SIGPLAN Notices 39, 10 (Oct. 2004), 432–448. http://doi.
acm.org/10.1145/1035292.1029012

Charles Rich and Richard C. Waters. 1990. The Programmer’s Apprentice. ACM Press.
Romain Robbes. 2007. Mining a change-based soft. repository. In Proc. of the 4th Int. Workshop on Mining

Soft. Repositories (MSR’07). 15–15.
Romain Robbes and Michele Lanza. 2005. Versioning systems for evolution research. In Proc. of the 8th

Int. Workshop on Principles of Soft. Evolution (IWPSE’05). IEEE Computer Society, Washington, DC,
155–164. http://dx.doi.org/10.1109/IWPSE.2005.32

Romain Robbes and Michele Lanza. 2007a. A change-based approach to soft. evolution. Electronic
Notes in Theoretical Computer Science 166, 0 (2007), 93–109. http://www.sciencedirect.com/science/
article/pii/S1571066106005317 Proc. of the {ERCIM} Working Group on Soft. Evolution (2006).

Romain Robbes and Michele Lanza. 2007b. Characterizing and understanding development sessions. In
Proc. of the 15th IEEE Int. Conf. on Program Comprehension (ICPC’07). 155–166.

Romain Robbes and Michele Lanza. 2008a. Example-based program transformation. In Model Driven
Eng. Languages and Systems, Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and
Markus Völter (Eds.). Lecture Notes in Computer Science, Vol. 5301. Springer, Berlin, 174–188.
http://dx.doi.org/10.1007/978-3-540-87875-9_13

Romain Robbes and Michele Lanza. 2008b. How program history can improve code completion. In Proc. of
the 23rd IEEE/ACM Int. Conf. on Automated Soft. Eng. (ASE’08). IEEE Computer Society, Washington,
DC, 317–326. http://dx.doi.org/10.1109/ASE.2008.42

Romain Robbes and Michele Lanza. 2008c. Spyware: a change-aware development toolset. In Proc. of
the 30th Int. Conf. on Soft. Eng. (ICSE’08). ACM, New York, NY, USA, 847–850. http://doi.acm.org/
10.1145/1368088.1368219

Romain Robbes and Michele Lanza. 2010. Improving code completion with program history. Automated
Softw. Eng. 17, 2 (Jun. 2010), 181–212. http://dx.doi.org/10.1007/s10515-010-0064-x

Romain Robbes, Michele Lanza, and Mircea Lungu. 2007. An approach to soft. evolution based on semantic
change. In Proc. of the 10th Int. Conf. on Fundamental Approaches to Soft. Eng. (FASE’07). Springer-
Verlag, Berlin, 27–41.

Romain Robbes, Damien Pollet, and Michele Lanza. 2008. Logical coupling based on fine-grained change
information. In Proc. of the 15th Working Conf. on Reverse Eng. (WCRE’08). 42–46.

Romain Robbes, Damien Pollet, and Michele Lanza. 2010. Replaying ide interactions to evaluate and improve
change prediction approaches. In Proc. of the 7th IEEE Working Conf. on Mining Soft. Repositories
(MSR’10). 161–170.

Martin Robillard, Robert Walker, and Thomas Zimmermann. 2010. Recommendation systems for soft. eng.
IEEE Softw. 27 (2010), 80–86.

Daniele Romano and Martin Pinzger. 2011. Using source code metrics to predict change-prone java interfaces.
In Proc. of the 2011 27th IEEE Int. Conf. on Soft. Maintenance (ICSM’11). IEEE Computer Society,
Washington, DC, 303–312. http://dx.doi.org/10.1109/ICSM.2011.6080797

Daniele Romano and Martin Pinzger. 2012. Analyzing the evolution of web services using fine-grained
changes. In Proc. of the 19th Int. Conf. on Web Services (ICWS’12). 392–399.

Daniele Romano, Paulius Raila, Martin Pinzger, and Foutse Khomh. 2012. Analyzing the impact of antipat-
terns on change-proneness using fine-grained source code changes. In Proc. of the 19th Working Conf. on
Reverse Eng. (WCRE’12). 437–446.

Barbara G. Ryder and Frank Tip. 2001. Change impact analysis for object-oriented programs. In Proc. of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Soft. Tools and Eng. (PASTE’01).
ACM, New York, NY, 46–53. http://doi.acm.org/10.1145/379605.379661

Anita Sarma, David Redmiles, and André van der Hoek. 2008. Empirical evidence of the benefits of workspace
awareness in software configuration management. In Proc. of the 16th Int. Symposium on Foundations
of Soft. Eng. (FSE’08). ACM Press, 113–123.

Curtis Schofield, Brendan Tansey, Zhenchang Xing, and Eleni Stroulia. 2006. Digging the development dust
for refactorings. In Proc. of the 14th IEEE Int. Conf. on Program Comprehension (ICPC’06). 23–34.

Ian Skerrett. 2013. Eclipse Community Survey Results for 2013. Market analysis report. Eclipse Foundation.
Retrieved from http://www.eclipse.org/org/press-release/20130612_eclipsesurvey2013.php.

Quinten David Soetens and Serge Demeyer. 2012. Cheopsj: change-based test optimization. In Proc. of the
16th European Conf. on Soft. Maintenance and Reengineering (CSMR’12). 535–538.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://doi.acm.org/10.1145/1062455.1062598
http://doi.acm.org/10.1145/1035292.1029012
http://doi.acm.org/10.1145/1035292.1029012
http://dx.doi.org/10.1109/IWPSE.2005.32
http://www.sciencedirect.com/science/article/pii/S1571066106005317
http://www.sciencedirect.com/science/article/pii/S1571066106005317
http://dx.doi.org/10.1007/978-3-540-87875-9_13
http://dx.doi.org/10.1109/ASE.2008.42
http://doi.acm.org/10.1145/1368088.1368219
http://doi.acm.org/10.1145/1368088.1368219
http://dx.doi.org/10.1007/s10515-010-0064-x
http://dx.doi.org/10.1109/ICSM.2011.6080797
http://doi.acm.org/10.1145/379605.379661
http://www.eclipse.org/org/press-release/20130612_eclipsesurvey2013.php

Changes as First-Class Citizens: A Research Perspective on Modern Software Tooling 18:37

Quinten David Soetens, Serge Demeyer, and Andy Zaidman. 2013a. Change-based test selection in the
presence of developer tests. In Proc. of the 17th European Conf. on Soft. Maintenance and Reengineering
(CSMR’13). 101–110.

Quinten David Soetens, Peter Ebraert, and Serge Demeyer. 2010. Avoiding bugs pro-actively by change-
oriented programming. In Proc. of the 1st Workshop on Testing Object-Oriented Systems (ETOOS’10).
ACM, New York, NY, Article 7, 7 pages. http://doi.acm.org/10.1145/1890692.1890699

Quinten David Soetens, Javier Pérez, and Serge Demeyer. 2013b. An initial investigation into change-based
reconstruction of floss-refactorings. In Proc. of the 29th IEEE Int. Conf. on Soft. Maintenance (ICSM’13).
384–387.

Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice differences in industry software
development. J. Syst. Softw. 87 (2014), 48–59. DOI:http://dx.doi.org/10.1016/j.jss.2013.08.032

Reinhout Stevens and Coen De Roover. 2014. Querying the history of soft. projects using qwalkeko. In Proc.
of the IEEE Int. Conf. on Soft. Maintenance and Evolution (ICSME’14). 585–588.

Maximilian Stoerzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. 2006. Finding failure-inducing
changes in java programs using change classification. In Proc. of the 14th ACM SIGSOFT Int.
Symposium on Foundations of Soft. Eng. (SIGSOFT’06/FSE-14). ACM, New York, NY, 57–68.
http://doi.acm.org/10.1145/1181775.1181783

Gabriele Taentzer, Claudia Ermel, Philip Langer, and Manuel Wimmer. 2014. A fundamental approach to
model versioning based on graph modifications: from theory to implementation. Softw. Syst. Model. 13,
1 (2014), 239–272. DOI:http://dx.doi.org/10.1007/s10270-012-0248-x

Xiangchen Tan, Tie Feng, and Jiachen Zhang. 2007. Mapping soft. design changes to source code changes. In
Proc. of the 8th ACIS Int. Conf. on Soft. Eng., Artificial Intelligence, Networking, and Parallel/Distributed
Computing, 2007 (SNPD’07), Vol. 2. 650–655.

Paolo Tonella, Marco Torchiano, Bart Du Bois, and Tarja Systä. 2007. Empirical studies in reverse engineer-
ing: state of the art and future trends. Emp. Soft. Eng. 12, 5 (2007), 551–571.

Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P. Bailey, and Ralph E.
Johnson. 2012. Use, disuse, and misuse of automated refactorings. In Proc. of the 34th Int. Conf. on Soft.
Eng. (ICSE’12). IEEE Press, Piscataway, NJ, 233–243.

Peter Weißgerber and Stephan Diehl. 2006a. Are refactorings less error-prone than other changes? In
Proc. of the 3rd Int. Workshop on Mining Soft. Repositories (MSR’06). ACM, New York, NY, 112–118.
http://doi.acm.org/10.1145/1137983.1138011

Peter Weißgerber and Stephan Diehl. 2006b. Identifying refactorings from source-code changes. In Proc. of
the 21st IEEE/ACM Int. Conf. on Automated Soft. Eng. (ASE’06). 231–240.

Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software
engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in
Software Engineering (EASE’14). ACM, New York, NY, 38:1–38:10.

Zhenchang Xing. 2005. Design mentoring based on design evolution analysis. In Proc. of the 27th Int. Conf.
on Soft. Eng. (ICSE’05). ACM, New York, NY, 660–660.

Zhenchang Xing and Eleni Stroulia. 2003. Recognizing refactoring from change tree. In Proc. of the Int.
Workshop on REFactoring: Achievements, Challenges, Effects (REFACE’03). 41–44.

Zhenchang Xing and Eleni Stroulia. 2004a. Data-mining in support of detecting class co-evolution. In Proc.
of the 16th Int. Conf. on Soft. Eng. & Knowledge Eng. (SEKE’04). 123–128.

Zhenchang Xing and Eleni Stroulia. 2004b. Understanding class evolution in object-oriented software. In
Proc. of the 12th IEEE Int. Workshop on Program Comprehension (WPC’04). 34–43.

Zhenchang Xing and Eleni Stroulia. 2004c. Understanding phases and styles of object-oriented systems’
evolution. In Proc. of the 20th Int. Conf. on Soft. Maintenance (ICSM’04). 242–251.

Zhenchang Xing and Eleni Stroulia. 2005a. Analyzing the evolutionary history of the logical design of object-
oriented soft. IEEE Trans. Soft. Eng. 31, 10 (Oct. 2005), 850–868.

Zhenchang Xing and Eleni Stroulia. 2005b. Towards experience-based mentoring of evolutionary develop-
ment. In Proc. of the 21st IEEE Int. Conf. on Soft. Maintenance (ICSM’05). IEEE Computer Society,
Washington, DC, 621–624. http://dx.doi.org/10.1109/ICSM.2005.95

Zhenchang Xing and Eleni Stroulia. 2005c. Towards mentoring object-oriented evolutionary development.
In Proc. of the 21st Int. Conf. on Soft. Maintenance (ICSM’05). 621–624.

Zhenchang Xing and Eleni Stroulia. 2005d. Umldiff: an algorithm for object-oriented design differencing. In
Proc. of the 20th IEEE/ACM Int. Conf. on Automated Soft. Eng. (ASE’05). ACM, New York, NY, 54–65.
http://doi.acm.org/10.1145/1101908.1101919

Zhenchang Xing and Eleni Stroulia. 2006a. Refactoring detection based on umldiff change-facts queries. In
Proc. of the 13th Working Conf. on Reverse Eng. (WCRE’06). 263–274.

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://doi.acm.org/10.1145/1890692.1890699
http://dx.doi.org/10.1016/j.jss.2013.08.032
http://doi.acm.org/10.1145/1181775.1181783
http://dx.doi.org/10.1007/s10270-012-0248-x
http://doi.acm.org/10.1145/1137983.1138011
http://dx.doi.org/10.1109/ICSM.2005.95
http://doi.acm.org/10.1145/1101908.1101919

18:38 Q. D. Soetens et al.

Zhenchang Xing and Eleni Stroulia. 2006b. Refactoring practice: how it is and how it should be supported -
an eclipse case study. In Proc. of the 22nd IEEE Int. Conf. on Soft. Maintenance (ICSM’06). 458–468.

Zhenchang Xing and Eleni Stroulia. 2006c. Understanding the evolution and co-evolution of classes in
object-oriented systems. Int. J. Soft. Eng. Knowl. Eng. 16, 1 (2006), 23–51.

Zhenchang Xing and Eleni Stroulia. 2007a. Api-evolution support with diff-catchup. IEEE Trans. Soft. Eng.
33, 12 (Dec. 2007), 818–836. http://dx.doi.org/10.1109/TSE.2007.70747

Zhenchang Xing and Eleni Stroulia. 2007b. Differencing logical uml models. Automated Soft. Eng. 14, 2 (Jun.
2007), 215–259. http://dx.doi.org/10.1007/s10515-007-0007-3

YoungSeok Yoon and Brad A. Myers. 2011. Capturing and analyzing low-level events from the code editor.
In Proc. of the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages
and Tools (PLATEAU’11). ACM, New York, NY, 25–30. http://doi.acm.org/10.1145/2089155.2089163

YoungSeok Yoon, Brad A. Myers, and Sebon Koo. 2013. Visualization of fine-grained code change history.
In Proc. of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’13).
119–126.

Andreas Zeller. 2007. The future of programming environments: integration, synergy, and assistance. In
Proc. of the 2nd Conf. on The Future of Soft. Eng. (FOSE’07). IEEE Computer Society, Washington, DC,
316–325.

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2011. Localizing failure-inducing program edits
based on spectrum information. In Proc. of the 27th IEEE Int. Conf. on Soft. Maintenance (ICSM’11).
IEEE Computer Society, Washington, DC, 23–32. http://dx.doi.org/10.1109/ICSM.2011.6080769

Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. 2012. Faulttracer: a change impact and re-
gression fault analysis tool for evolving java programs. In Proc. of the ACM SIGSOFT 20th Int.
Symposium on the Foundations of Soft. Eng. (FSE’12). ACM, New York, NY, Article 40, 4 pages.
http://doi.acm.org/10.1145/2393596.2393642

Sai Zhang, Zhongxian Gu, Yu Lin, and Jianjun Zhao. 2008a. Celadon: a change impact analysis tool for
aspect-oriented programs. In Companion of the 30th Int. Conf. on Soft. Eng. (ICSE Companion’08).
ACM, New York, NY, 913–914. http://doi.acm.org/10.1145/1370175.1370184

Sai Zhang, Zhongxian Gu, Yu Lin, and Jianjun Zhao. 2008b. Change impact analysis for aspectj programs.
In Proc. of the 24th IEEE Int. Conf. on Soft. Maintenance (ICSM’08). 87–96.

Thomas Zimmermann, Andreas Zeller, Peter Weißgerber, and Stephan Diehl. 2005. Mining version histories
to guide software changes. IEEE Trans. Soft. Eng. 31, 6 (Jun. 2005), 429–445.

Received October 2015; revised December 2016; accepted January 2017

ACM Computing Surveys, Vol. 50, No. 2, Article 18, Publication date: April 2017.

http://dx.doi.org/10.1109/TSE.2007.70747
http://dx.doi.org/10.1007/s10515-007-0007-3
http://doi.acm.org/10.1145/2089155.2089163
http://dx.doi.org/10.1109/ICSM.2011.6080769
http://doi.acm.org/10.1145/2393596.2393642
http://doi.acm.org/10.1145/1370175.1370184

