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Abstract—Pre-trained models of code built on the transformer
architecture have performed well on software engineering (SE)
tasks such as predictive code generation, code summarization,
among others. However, whether the vector representations from
these pre-trained models comprehensively encode characteristics
of source code well enough to be applicable to a broad spectrum
of downstream tasks remains an open question.

One way to investigate this is with diagnostic tasks called
probes. In this paper, we construct four probing tasks (probing
for surface-level, syntactic, structural, and semantic information)
for pre-trained code models. We show how probes can be used to
identify whether models are deficient in (understanding) certain
code properties, characterize different model layers, and get
insight into the model sample-efficiency.

We probe four models that vary in their expected knowledge of
code properties: BERT (pre-trained on English), CodeBERT and
CodeBERTa (pre-trained on source code, and natural language
documentation), and GraphCodeBERT (pre-trained on source
code with dataflow). While GraphCodeBERT performs more
consistently overall, we find that BERT performs surprisingly
well on some code tasks, which calls for further investigation.

Index Terms—probing, source code models, transformers,
software engineering tasks

I. INTRODUCTION

The outstanding success of transformer-based [31] pre-
trained models in NLP such as BERT [14], has inspired the
creation of a number of similar pre-trained models for source
code [2], [12], [21], [27], [30], [34]. These pre-trained models
are first trained on a large corpus of code in a self-supervised
manner and then fine-tuned on downstream tasks.

The progress made with pre-trained source code models is
genuinely encouraging with applications in software security,
software maintenance, software development and deployment.
And although the pre-trained vector embeddings from the
transformer models have worked well on many tasks, it
remains unclear what exactly these models learn about code—
specifically what aspects of code structure, syntax, and se-
mantics are known to it. Thus, our work is motivated by the
need to assess the properties of code that are learned by pre-
trained embeddings, in order to build accurate, robust, and
generalizable models for code, beyond single-task models.

An emerging field of research addresses this objective by
means of probes. Probes are diagnostic tasks, in which a
simple classifier is trained to predict specific properties of its
input, based on the frozen vector embeddings of a pre-trained
model. The degree of success in the probing tasks indicates
whether the information probed for is present in the pre-trained

embeddings. Probing has been extensively used for natural
language models, and has already begun to pick up steam with
numerous probing tasks [1], [4], [8], [13], [24], [26], [28], [29]
investigating a diverse array of natural language properties.

In this work, we adapt the probing paradigm to pre-trained
source code models. We assess the hidden state embeddings of
multiple models, and determine their ability to capture elemen-
tal characteristics related to code, that may be suitable for use
in several downstream SE tasks. We evaluate CodeBERT [15],
CodeBERTa [34], and GraphCodeBERT [16], with BERT
[14] as our transformer baseline. As an initial study, we have
chosen to work with BERT and its code-trained descendants,
as it provides a ground for comparison among natural language
models, models trained jointly on natural language and code,
models trained just on code, and models trained on code with
additional structural information.

We construct four initial probing tasks for this purpose:
AST Node Tagging, Cyclomatic Complexity Prediction, Code
Length Prediction, and Invalid Type Detection. These four
tasks are meant to assess whether pre-trained models are able
to capture different aspects of code, specifically the syntactic,
structural, surface-level and semantic information respectively.
The tasks were chosen to cover the most commonly identifi-
able abstractions of code, although more tasks are needed to
thoroughly probe for each type of code abstraction.

This paper makes the following contributions:
• An introduction to probing for pre-trained code models.

We introduce four probing tasks each probing a particular
characteristic of code, and release the corresponding task
datasets publicly.

• A preliminary empirical study, based on probing tasks
and pre-trained code models, that highlights the potential
of probes as a pseudo-benchmark for pre-trained models.

• A discussion on the efficacy of pre-trained models. We
show to what extent different code properties are encoded
in pre-trained models.

Overall, our probes suggest that the models do encode the
syntactic and semantic properties, to varying degrees. While
we find that models that have more knowledge of source code
tend to perform better at the more code-specific probing tasks,
yet, the difference in performance between the baseline and
the source code models are smaller than expected. This calls
for further study of the phenomenon, and for increased effort
in designing pre-training procedures that better capture diverse
source code characteristics.
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II. BACKGROUND

A probe fundamentally consists of a probing task and a
probing classifier. A probing task is an auxiliary diagnostic
task that is constructed to determine whether a specific prop-
erty is encoded in the pre-trained model weights. Probing is
useful when assessing the raw predictive power of pre-trained
weights without any sort of fine-tuning with (downstream) task
data. Probing tasks are often simple in nature compared to
downstream tasks to minimize interpretability problems.

A probing classifier, on the other hand, is used to train on the
probing task where the input vectors of the training samples
are extracted from the frozen hidden layers of the pre-trained
model. Importantly, the probing classifier, which is usually a
linear classifier, is simple with no hidden layers of its own. If
a simple probing classifier can predict a given attribute from
the pre-trained embeddings, the original model most likely
encodes it in its hidden layers. Usually, the raw accuracies
from a probe are not the focus of the study; rather, the probe
is used to assesses whether a model encodes a characteristic
better than another, or compares several model layers.

Related work. Studies in NLP research have shown how
several pre-trained natural language models encode different
linguistic properties such as sentence length, and verb tense,
among other properties [13]. Studies such as [19] show that
BERT encodes phrase-level information in the lower layers,
and a hierarchy of linguistic information in the intermediate
layers, with surface features at the bottom, syntactic features
in the middle and semantic features at the top of a vector
space. Other studies focus on word morphology [8], or syntax
[26], to name a few. Studies of the BERT models alone have
spawned a subfield known as BERTology with over 150 studies
surveyed [25]. While probing is well established in NLP, it is
almost absent for source code models. The only example we
are aware of uses a single coarse task (programming language
identification)—and is not the focus of the paper [15].

III. PROBING SOURCE CODE

Probing Tasks. In order to determine whether the pre-
trained vector embeddings of source code transformer models
reflect code understanding in terms of syntactic, semantic,
structural, and surface-level characteristics, we have con-
structed four diverse probing tasks.

AST Node Tagging (AST) As Abstract Syntax Trees (ASTs)
are the basis of many structured source code representations
[5]–[7], [9], [17], [23], [32], [33], they emerge as a rational
choice to evaluate pre-trained source code models on syntactic
understanding. In order for a pre-trained code model to be
good at code tasks such as code completion, it must necessarily
learn and interpret the syntactic structure of a sequence of
code tokens and predict a syntactically valid next token. Thus,
identifying AST node tags often is a hidden prerequisite to
solving a given code task—making it a suitable contender
for probing any pre-trained source code model. We probe the
pre-trained models with this task to determine to what extent
syntactic information is encoded in the model layers.

Cyclomatic Complexity (CPX) To probe whether some sort
of code structure information is encoded in the hidden layers
of a pre-trained model, we construct the cyclomatic complexity
task. Since the complexity is an inherent characteristic of any
code snippet, the models should be able to predict it without
explicit fine-tuning. Furthermore, since the complexity of a
code snippet depends on the number of linearly independent
paths through the code snippet, predicting it based simply on
the sequence of tokens might be a challenge.

Code Length Prediction (LEN) We conjecture that the length
of a code snippet, especially when it is fed into the model
as a sequence of code tokens, should be easy to predict
for the transformer models. To determine whether the code
transformers encode such elementary surface information, we
probe the models with the code length prediction task.

Invalid Type Detection (TYP) To understand to what extent
pre-trained code models are aware of code semantics and are
able to distinguish between semantically valid snippets of code
from invalid ones—keeping both syntactically legitimate, we
construct an invalid type detection task. For this probing task,
the negative samples consist of code snippets where some
primitive data types are misspelled intentionally. The code
transformers are probed to determine if they are able to classify
code snippets based on invalid semantic information.

Probing data & labels. We gather our data from a subset
of the 50K-C dataset of compilable Java projects [22]. We
construct ASTs of method-level code snippets from several of
the largest projects and collect a diverse range of AST node
tags as labels: totaling 20 classes of node type labels. We
use the metrix++ tool to obtain the complexity labels (with
complexities ranging from 0 to 9). We tokenize our training
samples with ANTLR to gather the length labels in five class-
bins (0-50, 50-100, etc.). The labels for invalid types are
obtained by interchanging consecutive characters at random
indexes to resemble misspelled types. Our probing datasets
have 10k samples for each task and are class-balanced.

Pre-trained Models. We probe four state-of-the-art models:
BERT, CodeBERT, CodeBERTa, and GraphCodeBERT.
All the models are built upon the multi-layer bidirectional
transformer introduced by Vaswani et al. [31]. Other than
BERT, which is our baseline, pre-trained on a large corpus
of English data, all the other transformer models are pre-
trained on the CodeSearchNet dataset extracted from GitHub
[18], which includes 6.4 million methods across six program-
ming languages. While CodeBERT and CodeBERTa gain
knowledge of code by training on source code and natural
language documentation, GraphCodeBERT goes further, en-
coding even data-flow information extracted from the ASTs.

Probing Classifier. We train a simple linear classifier that
takes the input feature vectors from the hidden layers of a
pre-trained code transformer. This is done to determine which
of the code properties are linearly correlated with pre-trained
model embeddings. Since a linear classifier has a basic model
architecture with no hidden units, therefore it must heavily
rely on the pre-trained embeddings to do well in the tasks.



IV. EARLY RESULTS AND DISCUSSION

The results and observations from the probe analyses are
discussed below. It is important to note that our interest is
more on the difference between the models rather than the
general accuracy of the probes.

TABLE I
PROBING TASK ACCURACIES

LEN AST CPX TYP
Model surface syntactic structural semantic

Naive 20.00 05.00 10.00 50.00

BERT 76.05 89.90 42.65 86.85
CodeBERT 68.15 89.45 41.40 93.85
CodeBERTa 70.35 92.55 40.80 90.10
GraphCodeBERT 71.10 85.50 46.70 97.20

A. Model Analysis

Surface-level information. BERT performs the best with
76.05% accuracy for code length prediction. Considering the
amount of training data BERT has seen and given the task of
predicting the number of tokens from the input sequence, it is
not unexpected that BERT does well on this task.

Syntactic information. For AST node tagging, we find that
with enough training samples, all of the pre-trained models
are able to achieve classification accuracies beyond 85%,
reaching up to 92.55% for CodeBERTa [34]. This shows that
syntax-related information requisite for the node tagging task
is encoded in the model hidden layers.

Structural information. GraphCodeBERT, having been
trained with the most structured information, performs the best
with 46.70% accuracy for cyclomatic complexity prediction.
The standard BERT model also performs well with 42.65%
accuracy. This raises the question whether BERT encodes
structural information of code, or alternatively, whether the
pre-trained code models fail to encode it effectively.

Semantic information. GraphCodeBERT has the highest
accuracy (97.20%) for invalid type prediction. Although all
of the pre-trained code models exhibit prediction accuracies
beyond 90%, BERT is not far behind in terms of accuracy.
Note that since this task is a simple binary classification task,
a higher naive baseline accuracy is expected.

Overall observations. In all cases, the hidden-layer vector
embeddings of the pre-trained models seem to encode in-
formation that correlates with code characteristics to varying
degrees. The structure-based code task (CPX) is the most
challenging: implying that the pre-trained embeddings may not
have direct linear correlations with the probed code properties,
as linear classifiers are not able to extract it effectively.

While GraphCodeBERT has the most consistent perfor-
mance overall, it is surprising that BERT, pre-trained just
on English text, exhibits a similar competitive performance
against the other pre-trained code models—which should have
more knowledge of code. BERT does considerably well on
most tasks, even for the tasks which are more code-dependent,
which calls for an extended investigation on this topic.

B. Layer analysis

Alain & Bengio [4] compare probes to thermometers used to
measure the temperature (accuracies) simultaneously at several
different locations (layers). Figure 1 shows the accuracies of
the pre-trained source code models across all its layers.

All of the models have 12 layers, except CodeBERTa
which has only 6. The accuracies are based on the pre-trained
vector embeddings extracted from each of these hidden layers
ranging from 1-12. The encoding layer of each model is
represented by layer 0 which displays naive baseline accuracy.

The pre-trained code models appear to have heterogeneous
performance across the layers. We observe no single layer con-
sistently performs optimally for all tasks, which is expected,
indicating that the abstraction of the different learned code
properties are spread across multiple layers.

BERT shows similar behavior for English [19], but it does
not show this localization of performance for code—exhibiting
fairly homogeneous performance across the layers.

Fig. 1. Pre-trained model accuracies by layers.

C. Sample Size Analysis

Pre-trained models when fine-tuned on a downstream task,
need only a fraction of the data a model trained from scratch
needs to do well. Hence, when evaluating pre-trained models
with probes it is also essential to study the effects of training
data volume. Thus we evaluate how the probes perform when
data is scarce - with 10% and 1% of the dataset size.

We limit our training to a maximum of 10,000 samples with
the intuition that the general underlying syntactic, semantic,
structural rules can be learned in a sample-efficient way and
does not require memorization.

As expected, the overall model accuracies increase with the
increase in the number of samples from 100 to 1000 to 10,000
samples. However, it is interesting to note that the irregularity



Fig. 2. Model accuracies by sample sizes for Invalid Type Prediction

(uneven trend) in accuracies from layer to layer is flattened as
more samples are provided (Fig. 2). This applies to all tasks.

An intriguing observation is that GraphCodeBERT’s per-
formance with just 100 samples exceeds BERT’s performance
with 10,000 samples for the TYP task. We attribute this to
GraphCodeBERT being much more sample-efficient for this
task, as it can extract a lot of the signal from fewer samples.
For the other tasks, such as AST and CPX where pre-trained
code models improved upon the baseline, no such patterns
implying sample-efficiency were present.

D. Discussion

Code properties. Our findings suggest that while certain
code characteristics can be extracted from pre-trained code
transformers with linear classifiers, implying that they are
firmly encoded in the hidden layers, others, such as cyclomatic
complexity, cannot be extracted as effectively. We plan to
investigate whether these characteristics can be extracted with
non-linear classifers such as an MLP with its own hidden
layers [13]. In general, the results also point to the idea that
more effective pre-training procedures that can make these
characteristics more accessible should be explored.

Model performance. For all of the tasks BERT has shown
competitive performance against the other BERT-style code
transformers. It shows understanding of surface information
better than the others, while being the next best model for
syntax- and structure-based evaluations. CodeBERTa and
CodeBERT show promising results for syntax and seman-
tic understanding respectively, with an improvement on the
baseline BERT model. GraphCodeBERT struggles to reach
accuracies beyond 85% on AST Node Tagging task—we
hypothesize it is missing out on the data-flow context while
making predictions based on a single code token. Besides
that, it is the most consistent model with up to 10-12%
improvements in accuracies from the BERT baseline.

At first glance, the baseline results are surprising, since
BERT is supposed to have no specific knowledge of source
code. These concerns are somewhat alleviated by the lack of
localization of code properties in BERT layers. In addition,
tasks such as TYP show a clear advantage for all pre-trained
source code models, where they exhibit competitive accuracies
with fewer samples, particularly GraphCodeBERT.

We hypothesize that, rather than BERT possessing compet-
itive knowledge of source code, the most likely cause is that
the source code models were not substantially as effective
in encoding the probed code characteristics as was expected.
Further investigation on more tasks could confirm this; if
confirmed this would also suggest that more effective pre-
training procedures should be explored.

V. CONCLUSION & FUTURE WORK

As more pre-trained code models are introduced to the SE
community at a rapid pace, through IDE extensions, plugins,
and web engines, e.g. Tabnine, IntelliCode [27], TransCoder
[21], and more recently Github Copilot [11]—it becomes im-
perative for us to be aware of their capabilities and drawbacks.
In order to do so, we probe into four publicly-available pre-
trained source code models, surveying a diverse set of code
characteristics with relevant and representative probing tasks.

We show how probes help us to gauge the strengths and
weaknesses of a model, to understand the role played by the
individual hidden layers in model performance, to verify the
linear extractability of properties, to get insight on a model’s
sample efficiency for a given task, and overall to peek into the
“black boxes” that are large-scale pre-trained models.

With our initial probes, we were surprised to notice the
slim margin of difference in performance between models
that should have no knowledge of code and models that do.
This clearly needs to be investigated further, and, if confirmed,
would suggest that there is room for research in more advanced
pre-training techniques for source code models, so that they
can effectively leverage their knowledge of source code.

As future work, we plan to construct further probing tasks
evaluating additional source code characteristics, while adding
more tasks based on structure, syntax and semantics. Fur-
thermore, we intend to report a benchmark-style comparison
study of additional pre-trained models such as CuBERT [20],
C-BERT [10], PLBART [3], and Codex [11].

We plan to further extend our suite of probes to more com-
prehensive source code properties, including context-based
probes for applications such as code search and summariza-
tion, and extend it to several languages, in order to support a
broader array of pre-trained code models. In the long run,
a suite of probing tasks could be used to evaluate novel
pre-trained source code models, thereby forming a pseudo-
benchmark during the development phase, making sure that
these models do encode important source code characteristics.

Reproducibility. All code, datasets, and experimental results
are made available online for replication purposes on github1.

1https://github.com/giganticode/probes
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