Optimizing Search Engines Using Clickthrough Data

Juozas Gordevičius Tadas Makčinskas

December 5, 2007
Outline

Clickthrough data in search engines

A framework for learning of retrieval functions

An SVM Algorithm for Learning of Ranking Functions

Experiments

Discussion and Conclusions
Clickthrough data

- Clickthrough data in search engines can be thought of as triplets (q, r, c).
- Users do not click on links at random, but make a (somewhat) informed choice.
- Even though clickthrough data is typically noisy, the clicks are likely to convey some information.
Collecting clickthrough data

- No overhead for user
- Little overhead for the system
- Easy to collect data
Kind of Information Clickthrough Data Convey

- User is more likely to click on a link, if it is relevant to q
- User is less likely to click on a link low in the ranking, independent of how relevant it is
- It is necessary to consider and model the dependencies of c on q and r appropriately.
 - Click on particular link can’t be interpreted as an absolute relevance judgment.
 - User must have observed all $n - 1$ links before clicking on link n.
 - Clicked on links gets higher rank than not clicked ones, and keeps the order between themselves as in r.

Optimizing Search Engines Using Clickthrough Data

Clickthrough data in search engines
Algorithm 1. (Extracting Preference Feedback from Clickthrough)

For a ranking \((link_1, link_2, link_3, \ldots)\) and a set \(C\) containing the ranks of the clicked-on links, extract a preference example

\[
link_i <^{r*} link_j
\]

for all pairs \(1 \leq j < i\), with \(i \in C\) and \(j \notin C\).
Outline

Clickthrough data in search engines

A framework for learning of retrieval functions

An SVM Algorithm for Learning of Ranking Functions

Experiments

Discussion and Conclusions
Optimal retrieval function

Problem definition: For query q and document collection $D = \{d_1, \ldots, d_m\}$, optimal retrieval function should return a ranking r^* that ranks the documents in D according to their relevance to the query.

- r^* optimal ordering, $r_f(q)$ is ordering retrieved by operational retrieval function f.
- Both r^* and $r_f(q)$ are binary relations over $D \times D$.
- $r^* \subset D \times D, r_f(q) \subset D \times D$ are asymmetric, negatively transitive matrices.
- $\{r : (d_i, d_j) \in D \times D | d_i <_r d_j\}$ is a strict ordering.
Similarity measure

- **Average Precision**
 \[
 \text{AvgPrec}(r_{sys}, r_{rel}) = \frac{1}{R} \sum_{i=1}^{R} \frac{i}{p_i}
 \]

- **Kendall’s \(\tau \)**
 \[
 \tau(r_a, r_b) = \frac{P - Q}{P + Q} = 1 - \frac{2Q}{\begin{pmatrix} m \cr 2 \end{pmatrix}}
 \]

- The number of inversions \(Q \) gives a lower bound on Average Precision
Kendall’s τ example

\begin{align*}
&d_1 < r_a d_2 < r_a d_3 < r_a d_4 < r_a d_5 \\
&d_3 < r_b d_2 < r_b d_1 < r_b d_4 < r_b d_5
\end{align*}

Concordant pairs $P = 7$:
$(d_1, d_4), (d_1, d_5), (d_2, d_4), (d_2, d_5), (d_3, d_4), (d_3, d_5), (d_4, d_5)$.

Discordant pairs $Q = 3$:
$(d_2, d_3), (d_1, d_2), (d_1, d_3)$.

\[\tau(r_a, r_b) = \frac{P - Q}{P + Q} = \frac{7 - 3}{7 + 3} = 0.4\]
Outline

Clickthrough data in search engines

A framework for learning of retrieval functions

An SVM Algorithm for Learning of Ranking Functions

Experiments

Discussion and Conclusions
An SVM Algorithm for Learning of Ranking Functions

- Training sample S of size n
 - Independently and identically distributed
 - Contains queries with their target rankings
 $$(q_1, r_1^*), \ldots, (q_n, r_n^*)$$

- Learner L
 - Selects a ranking function $f \in F$ that maximizes the average τ.
 $$\tau_S(f) = \frac{1}{n} \sum_{i=1}^{n} \tau(r_{f(q_i)}, r_i^*).$$
Linear Ranking Functions

- Given a class of linear ranking functions

\[(d_i, d_j) \in f_{\vec{w}}(q) \iff \vec{w} \Phi(q, d_i) > \vec{w} \Phi(q, d_j)\]

- \(\vec{w}\) is a weight vector adjusted by learning
- \(\Phi(q, d_i)\) describe the match between the query \(q\) and document \(d_i\).
 - e.g. the number of words that query and document share.
- Just need to find the weight vector that maximizes the average \(\tau\).
The Weight Vector

- For any vector \vec{w}, the points are ordered by their projection onto \vec{w}.
- For each query we seek a vector that orders documents correctly.
- For the whole dataset we seek one vector that minimizes the number of discordant pairs.
Finding weight vector \vec{w} is NP-hard.

The solution can be approximated like in classification SVMs.

The learned retrieval function $f_{\vec{w}^*}$ is a linear combination of feature vectors.

$f_{\vec{w}^*}$ will be used for ranking the set of documents according to a new query.
Using Partial Feedback

- Clickthrough logs are the source of training data
- Target ranking r^* is not known
- A subset $r' \subseteq r^*$ can be inferred from the log.
- Thus the training set is
 $$(q_1, r'_1), \ldots, (q_n, r'_n)$$
- And the retrieval function is determined based on the partial feedback.
Outline

Clickthrough data in search engines

A framework for learning of retrieval functions

An SVM Algorithm for Learning of Ranking Functions

Experiments

Discussion and Conclusions
“Striver” a Meta-search Engine

- Meta-search combines results of several basic search engines
 - Easy to implement
 - Covers large document collection
 - Basic search engines provide basis for comparison

- “Striver”
 - Forward user query to Google and others
 - Extract top 100 from each search result
 - Rank the union of all documents according to learned function
 - Return top 50.
Blind Statistical Test

- How to compare the quality of different retrieval functions?
 - Present two rankings at the same time
- For two rankings A and B produce the combined one C, s.t.
 - for any l
 - The top l links of C contain top k_A and k_B of A and B respectively
 - $|k_A - k_B| \leq 1$
 - Such combined ranking always exists.
Example

- User clicked on links 1, 3, 7
- Therefore he saw the top 4 from each ranking
- All 3 clicked links were within top 4 of ranking A
- Only 1 clicked link was in ranking B

⇒ Ranking A is significantly better.
Offline Experiment

Does the Ranking SVM learn regularities using partial feedback from clickthrough data?

- Recorded 112 queries with non-empty set of clicks from “Striver”
- Constructed the feature mapping $\Phi(q, d)$ to learn the retrieval function. e.g.:
 - top1_X - ranked #1 in Google, MSN or any other
 - query_url_cosine - cosine between URL words and query
 - $\text{url_contains_tilde}$...
- Additional 50 constraints to stabilize the result
Offline Experiment

- x - number of training queries
- y - percentage of pairwise preference constraints that are not fullfilled
Interactive Online Experiment

- "Striver" made available for a group of 20
- Ranking SVM applied on collected 260 queries
- The learned function was implemented in "Striver" and used subsequently
- "Striver" vs Google
 - For 29 queries the learned function was preferred
 - For 13 queries Google result prevailed
 - For 27 + 19 queries equal number or no links clicked
- Therefore, the learned retrieval function is better than the one of Google with 95% confidence.
The Learned Function

<table>
<thead>
<tr>
<th>weight</th>
<th>feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.60</td>
<td>query.abstract.cosine</td>
</tr>
<tr>
<td>0.48</td>
<td>top10.google</td>
</tr>
<tr>
<td>0.24</td>
<td>query.url.cosine</td>
</tr>
<tr>
<td>0.24</td>
<td>top1count_1</td>
</tr>
<tr>
<td>0.24</td>
<td>top10.msnsearch</td>
</tr>
<tr>
<td>0.22</td>
<td>host.citeeseer</td>
</tr>
<tr>
<td>0.21</td>
<td>domain.nec</td>
</tr>
<tr>
<td>0.19</td>
<td>top10count_3</td>
</tr>
<tr>
<td>0.17</td>
<td>top1.google</td>
</tr>
<tr>
<td>0.17</td>
<td>country.de</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0.16</td>
<td>abstract.contains.home</td>
</tr>
<tr>
<td>0.16</td>
<td>top1.hotbot</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0.14</td>
<td>domain.name.in.query</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-0.13</td>
<td>domain.tu-bs</td>
</tr>
<tr>
<td>-0.15</td>
<td>country.fi</td>
</tr>
<tr>
<td>-0.16</td>
<td>top50count_4</td>
</tr>
<tr>
<td>-0.17</td>
<td>url.length</td>
</tr>
<tr>
<td>-0.32</td>
<td>top10count_0</td>
</tr>
<tr>
<td>-0.38</td>
<td>top1count_0</td>
</tr>
</tbody>
</table>

Table 3: Features with largest and smallest weights as learned from the training data in the online experiment.
Outline

Clickthrough data in search engines

A framework for learning of retrieval functions

An SVM Algorithm for Learning of Ranking Functions

Experiments

Discussion and Conclusions
Ranking SVM is Good

- Successfully learned retrieval function from clickthrough data
- Automatically adapted to the particular preferences of a group of about 20
- No manual parameter tuning

Therefore, ML techniques improve the retrieval by tailoring the retrieval function to small homogenous groups.
New Questions

- What is a good size of a user group and how can those be determined?
- Can we use clickthrough data to tailor search of particular topics?
- Is there an incremental online algorithm for learning?
- How sensitive is the approach to spamming?
The approach is not limited to meta-search engines.

Observing the channel surfing behaviour one could infer user’s favorite programmes.
End of presentation.