
Part 13: Item-to-Item
Collaborative Filtering and

Matrix Factorization

Francesco Ricci

2

Content

! ! Item-to-item collaborative filtering

! ! Fast computing of predictions

! ! Comparison with non-personalized approaches

! ! Matrix factorization techniques

" ! Singular Value Decomposition

" ! Gradient descent

" ! Implicit feedback

" ! Temporal dynamics

3

Item-to-Item Collaborative Filtering

4

Items

Users

Similar items with cosine distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
,1 ,3 ,6 ,1 ,3 ,4 ,3 ,3 ,2 ,6 ,2 ,5 ,4 ,5 ,5 ,3 1 ,3 ,5 ,4 ,2 ,4 ,4 ,5

Similarity of item i with item 17

5

Item-to-item CF: the basic idea

! ! Can the ratings of the target user for similar items be
exploited for predicting an unknown rating?

! ! Yes but not all the similar items should be equally relevant.

Target user
?

5 4.5 5 4.5 5 5

p1 p5 p9
pi

p22 p23 p27

6

Item-to-Item Collaborative Filtering

! ! Rather matching user-to-user similarity, item-to-item
CF matches item purchased or rated by a target user
to similar items and combines those similar items in
a recommendation list

! ! It seems like a content-based filtering method (see
next lecture) as the match/similarity between items is
used

! ! In fact it can work (in a simplified way) much like
content-based methods will do:

" ! One item describe the current interests of the user
(user model) Ð the item you are looking at

" ! Other similar items are recommended.

[Linden et. al, 2003]

7

Item-to-Item Similarity

! ! Similarity can be computed in a number of ways:

" ! Using the user ratings

" ! Using product descriptions

" ! Using co-occurrence of the items in the user bags of
past purchased products

! ! Using the ratings: a collection of user ui, i=1, Én and

a collection of items pj, j=1, É, m

! ! A n ! m matrix of ratings ruj , with ruj = ? if user u did not

rate item j

cos(pi , pj) =

rui ruj
u! Uij

"

rui
2

u! Ui

" ruj
2

u! U j

"

8

Prediction Computation��

! ! Generating the prediction: look into the target
user Aûs ratings and use techniques to obtain
predictions based on the ratings of similar
products

! ! Weighted Sum of the ratings of the active user to
similar items

! ! The sum is over a subset Nu(i) (neighbor) of items
similar to the target i that the user u has rated Ð
wij is the similarity of i and j��

rui
* =

wij ruj
j ! Nu i()
"

|w ij |
j ! Nu i()
"

Example

! ! Suppose the prediction is made using two nearest-
neighbors, and that the items most similar to ÒTitanicÓ are
ÒForrest GumpÓ and ÒWall-EÓ

! ! wtitanic , forrest = 0.85

! ! wtitanic , wall-e = 0.75

! ! r* eric , titanic = (0.85*5 + 0.75*4)/(0.85 + 0.75) = 4.53

9

target neigh. neigh.

Mean-Centering

! ! As for user-based collaborative filtering we can
estimate the difference from the item average
rating rather than the rating of a user for an item

! ! Where ri is the average rating of item i, Nu(i) is a
neighbor of items similar to the item i that the user u
has rated, K is a normalization factor such that the
absolute values of wij sum to 1:

10

rui
* = ri +K wij (ruj ! rj)j " Nu(i)

#
A set of item neighbours of
i that have been rated by u

K = 1
wijj ! Nu(i)

"

11

Computing the Item-to-Item Similarity

! ! Build a product-to-product matrix of similarities
by iterating trough all possible pairs

" ! Inefficient because many pairs have no
common customers!

! ! A better approach for selecting pairs of items for
which the similarity can be computed is:

1. ! Scan the products, and for all the customers
that bought a product, identify the other
products bought by those customers

2. ! Then compute the similarity only for these
pairs

12

To compute the similarity of product 1 to the others

Discover that only g, m and x bought p1

Then take the union of the products bought by g, m and x

 (2 3 4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24)

13

Computing the Item-to-Item Similarity

We must have:

For each customer u, I u the list of items rated by
u (i.e. the indexes j of ruj such that ruj != ?)
For each item j, Uj the list of users who rated j
(i.e. the indexes u of ruj such that ruj != ?)

Have you
already seen
these kind of

indexes?

14

Item-to-Item Recommendations for a
User

! ! If the goal is to find the recommendations for a
user u, then

! ! For each item i in the profile of u (generally few)
" ! Find the top-n similar items to i Top-n(i)
" ! It is a heuristic – it finds good candidates and

avoid considering all the items whose rating
can be predicted for u

! ! For the union of the items in Top-n(i) compute
the rating predictions

" ! You use the similarities with the items in the
user's profile that you computed above.

15

Performance Implications��

! ! A user profile normally contains less ratings than a
product profile!

! ! User-based CF Ð similarity between users is
dynamic, pre-computing user neighborhood can lead
to poor predictions

" ! Because the similarity between users can change if
only a few ratings are changing (the overlap
between users Aû profiles is small)

! ! Item-based CF Ð similarity between items is more
static

! ! This enables pre-computing of item-item similarity
=> prediction process involves only a table lookup for
the similarity values & computation of the weighted
sum. ��

16

Example: Netflix Data Details

! ! Training data
" ! 100 million ratings (from 1 to 5 stars)

" ! 6 years (2000-2005)

" ! 480,000 users

" ! 17,770 Aþmovies Aÿ

" ! #users/#items ! 27 (hence one can expect
more ratings per item rather than per user)

! ! Test data
" ! Last few ratings of each user (2.8 million)

What is the situation when
you bootstrap a CF system?
More users or more items?

17

Ratings per Movie in Training Data

Avg #ratings/movie: 5627

18

Ratings per User in Training Data

Avg #ratings/user: 208

19

Comparing Item- vs. User-Based: The
Data Set��

! ! MovieLens Ð a web-based movies recommender
system with 43,000 users & over 3500 movies ��

! ! They used 100,000 ratings from the DB

" ! Only users who rated 20 or more movies: 943
rows (users)

" ! Items/movies Ð rated by at least one user:
1682 columns (items)

! ! Split data into train and test

" ! 80% of the data - training set

" ! 20% of the data - test set

[Sarwar et al., 2001]

! ! In adjusted cosine instead of
using the ratings ruj , they have
used (ruj Ð ru) Ð where ru is the
average rating of user u. ��

20

Effect of similarity Algorithms��

cos(i, j) =

rui ruj
u! Uij

"

rui
2

u! Ui

" ruj
2

u! U j

"

21

Quality Experiments��

! ! Item-to-item vs. user-to-user based at selected
neighborhood sizes

22

Item-to-item vs User-to-User ��

! ! item-item CF normally provides better predictions
than the user-user CF (in the popular data set
where there are more users than items!)

! ! Improvement is consistent over different
neighborhood sizes and train/test ratio

! ! Improvement is not significantly large

! ! Item neighborhood is fairly static, hence enables
pre-computation which improves online
performance. ��

23

Personalised vs Non-Personalised CF

! ! Collaborative-based recommendations are
personalized since the rating Aþprediction Aÿ differs
depending on the target user

" ! User-to-user: the ratings (for a given item)
expressed by users that are similar to the
active user

" ! Item-to-item: the weighted average of the
ratings of the active user for similar items

! ! A non-personalized collaborative-based rating
prediction can be generated, for instance, by
averaging the ratings of ALL the users for an item

" ! Then the rating prediction for an item is the
same for all the users - they receive the same
recommendations.

24

Personalised vs Non-Personalised CF

Data Set users items
Lower
Upper
rating

total
ratings

Av.
RatedIt density average stddev

MAE
Non
Pers

MAE

Pers

Jester 48483 100
-10 -
+10 3519449 72,59 0,725 0,816 4,40 0,220 0,152

MovieLens 6040 3952 1 - 5 1000209 165,59 0,041 3,580 0,934 0,233 0,179

EachMovie 74424 1649 0 Ð 1 2811718 37,77 0,022 0,607 0,223 0,223 0,151

[Berkowsky et al., 2006]

MAE(NP) =
|rui − ri |

u,i
!

#ratings ! rmax ! rmin()

rui is the rating of user u for
product i and r i is the average
rating for item i

Normalized
MAE from 23% to 30% improvement

Netflix RMSEs

Grand Prize: 0.8563; 10%
improvement

BellKor: 0.8693; 8.63% improvement

Cinematch: 0.9514; baseline

Movie average: 1.0533

User average: 1.0651

Global average: 1.1296

Inherent noise: ????

Personalization

erroneous

accurate

25

These two numbers
are incredibly close.
What is your
explanation?

33

Geared
towards
females

Geared
towards

males

serious

escapist

The Princess
Diaries

The Lion King

Braveheart

Lethal
Weapon

Independence
Day

Amadeus The Color
Purple

Dumb and
Dumber

OceanAûs 11

Sense and
Sensibility

Gus

Dave

Latent Factor Models

34

Basic Matrix Factorization Model

45531

312445

53432142

24542

522434

42331

users

.2 -.4 .1

.5 .6 -.5

.5 .3 -.2

.3 2.1 1.1

-2 2.1 -.7

.3 .7 -1

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1

~

~

users

items

items

A rank-3 approximation

12 items
6 users
max 72 entries

12 x 3 entries
6 x 3 entries
54 total entries

35

Estimate Unknown Ratings

45531

312445

53432142

24542

522434

42331

users

.2 -.4 .1

.5 .6 -.5

.5 .3 -.2

.3 2.1 1.1

-2 2.1 -.7

.3 .7 -1

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1

~

~

users

items

A rank-3 approximation

items

 ?

36

Estimate Unknown Ratings

45531

312445

53432142

24542

522434

42331

users

.2 -.4 .1

.5 .6 -.5

.5 .3 -.2

.3 2.1 1.1

-2 2.1 -.7

.3 .7 -1

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1

~

~

users

items

A rank-3 approximation

items

 ?

37

Estimate Unknown Ratings

45531

312445

53432142

24542

522434

42331

users

.2 -.4 .1

.5 .6 -.5

.5 .3 -.2

.3 2.1 1.1

-2 2.1 -.7

.3 .7 -1

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1

~

~

users

items

2.4

A rank-3 approximation

items -0.5*(-2) + 0.6*0.3 + 0.5*2.4 = 2.4

38

Matrix Factorization Model
! ! Each item i and user u is associated with a f-dimensional

real vector qi and pu
T

! ! The elements of qi = (q1i, ..., qfi) measure the extent to
which the item i possesses those factors, positive or
negative

! ! The elements of pu
T = (pu1, ..., puf) measure the extent of

interest u has in items that are high on the corresponding
factors, positive or negative

" ! r*ui = pu
T
 qi is the predicted userÕs overall

interest in the itemÕs characteristics

! ! Problem: how to compute qi and pu
T?

! ! Solution: try to determine qi and pu
T
 s.t. on known ratings

the prediction is correct
" ! Standard SVD (singular value decomposition) is

undefined when knowledge about the matrix is
incomplete (missing values in {rui} matrix)

" ! Carelessly addressing only the relatively few known
entries is highly prone to overfitting.

pu
Tqi = pujqji

j=1

f

!

Singular Value Decomposition

A =U! V T

M! M M! N V is N! N

For an M ! N matrix A of rank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows:

The columns of U are orthogonal eigenvectors of AAT.

The columns of V are orthogonal eigenvectors of ATA.

! i = " i

! = diag ! 1...! r() Singular values

Eigenvalues " 1 É " r of AAT are the eigenvalues of ATA.

Sec. 18.2

39

Singular Value Decomposition

! ! Illustration of SVD dimensions and sparseness

Sec. 18.2

!"#

The brown parts can be
discarded

SVD example

Let

!
!
!

"

#

$
$
$

%

& '

=

01

10

11

A

Thus M=3, N=2. Its SVD is

!

2/ 6 0 1/ 3

" 1/ 6 1/ 2 1/ 3

1/ 6 1/ 2 " 1/ 3

$

%
%
%

&

'

(
(
(

3 0

0 1

0 0

$

%
%
%

&

'

(
(
(

1/ 2 " 1/ 2

1/ 2 1/ 2

$
%

&

'
(

The singular values arranged in decreasing order.

Sec. 18.2

41

www.bluebit.gr/matrix-calculator/

! ! SVD can be used to compute optimal low-rank
approximations

! ! Approximation problem: Find Ak of rank k such
that

Ak and X are both m! n matrices.

We want k << r.

Low-rank Approximation
Sec. 18.3

42

Frobenius norm

A
F

= aij

2

j=1

n

!
i=1

m

!

Ak = argmin
X:rank(X)=k

A! X
F

! ! Solution via SVD

Low-rank Approximation

set smallest r-k
singular values to zero

Ak =U diag(! 1,...,! k,0,...,0)VT

column notation: sum
of rank 1 matrices

Ak = ! ii=1

k

! uivi
T

k

Sec. 18.3

43

! ! If we retain only k singular values, and set the
rest to 0, we don Aût need the matrix parts in
brown/blue

! ! Then " is k# k, U is M# k, VT is k# N, and Ak is
M# N

! ! This is referred to as the reduced SVD
! ! It is the convenient (space-saving) and usual

form for computational application.

Reduced SVD

k

Sec. 18.3

44

Approximation error

! ! How good (bad) is this approximation?

! ! It Aûs the best possible, measured by the Frobenius
norm of the error:

Where the #i are ordered such that #i $ #i+1 .

Frobenius error drops as k increased.

X:rank(X)=k
min A! X

F
= A! Ak F

=σ k+1

Sec. 18.3

!$#

46

Matrix factorization as a cost function

Minp* ,q*
rui ! pu

Tqi()
2
+ ! pu

2
+ qi

2"
#
$

%
&
'

(
)*

+
,-known rui

.

regularization - user-factors of u

 - item-factors of i

 - rating by u for i uir

iq
up

¥! Optimize by either stochastic gradient-descent or
alternating least squares

Why this?
What it is happening

if " is large?

Gradient of a Function

47
The gradient of the function f(x,y) = $(cos 2x + cos 2y) 2 depicted as a
vector field on the bottom plane

48

Stochastic Gradient Descent

Perform till convergence:

" ! For each training example rui :

! !Compute prediction error: eui = rui Ð pu
Tqi

! !Update item factor: qi # qi+ %(pu&eui- ' &qi)

! !Update user factor: pu # pu+ %(qi&eui- ' &pu)

! ! The parameters are modified by a magnitude
proportional to % in the opposite direction of the
gradient (of the function that we want to minimize)

! ! Two constants to tune: % (step size) and '
(regularization)

! ! The true goal is to find values that minimize
error on test set.

49

Adding Biases

! ! Much of the observed variation in rating values is due
to effects associated to either users or items
(individually)

! ! Example: certain users give higher ratings and certain
items are widely perceived as better

! ! First order approximation of the bias involved in rating rui
is:

" ! bui= µ + bu + bi

" ! Where µ is the overall average rating

! ! Example: If µ=3.7, if Titanic is a movie that tends to be
rated 0.5 better than an average movie, and Marius is a
critical user who tends to rate 0.3 stars lower than the
average

" ! bmarius , titanic = 3.7 -0.3 +0.5 = 3.9

50

Adding Biases

! ! The rating prediction function is now

" ! r* ui = µ + bu + b i + pu
T

 qi

! ! And the corresponding new error function that
we must minimize is:

! ! K is the set of indexes of the known ratings

min
p! ,q! ,b!

(rui " µ " bu" bi " pu
Tqi)

2 + ! (pu

2
+ qi

2
+bu

2

(u,i)# K

$ +bi
2)

51

Implicit Feedback and User Attributes

! ! Consider that the user u gave an implicit feedback to
the items in N(u), e.g., he bought them

! ! We can use an additional set of factor vectors, one vector
for each item i, x i Ð expressing how much a user that
showed an implicit feedback on i is loading the factors

! ! An additional component of the user model is then given
by

! ! If we have also some user attributes A(u) (Boolean) that
could be used to model the load of the different factors
we have another component

N(u)
! 0.5

xi
i" N(u)

Implicit feedback

ya
a! A(u)

" User attributes

52

Adding Implicit Feedback and Attributes

! ! The rating prediction function is now:

! ! Gradient descend can still be applied to
minimize the corresponding error function.

rui
* = µ +bi +bu +qi

T pu + N(u)
! 0.5

xi + ya
a" A(u)

#
i" N(u)

#
$

%
&
&

'

(
)
)

53

Temporal Dynamics and Confidence

! ! Ratings can change with time because users change
the way they rate or items change their relevance

! ! Some ratings can be more reliable than others
" ! E.g. you may infer that old ratings, or ratings

produced after a massive advertisement, are not
much reliable

! ! This can be easily incorporated in the prediction model:

rui
* (t) = µ +bi (t)+bu(t)+ pu

T(t)qi (t)

min
p! ,q! ,b!

cui (rui " µ " bu" bi " pu
Tqi)

2 + ! (pu

2
+ qi

2
+bu

2

(u,i)# K

$ +bi
2)

cui is the reliability of rating r ui

54

55

Collaborative-Based Filtering

! ! Pros: require minimal knowledge engineering efforts (knowledge
poor)

" ! Users and products are symbols without any internal
structure or characteristics

! ! Cons:
" ! Requires a large number of explicit and reliable Aþrates Aÿ to

bootstrap

" ! Requires products to be standardized (users should have
bought exactly the same product)

" ! Assumes that prior behavior determines current
behavior without taking into account Aþcontextual Aÿ knowledge
(session-level)

" ! Does not provide information about products or explanations
for the recommendations

" ! Does not support sequential decision making or
recommendation of Aþgood bundling Aÿ, e.g., a travel package.

56

Summary

! ! Introduced Item-to-item collaborative
recommendations (the method that is
really used now in MovieLens and
Amazon)

! !Discussed its advantages on user-to-user
collaborative filtering

! !Presented the more recent approaches
based on factor models.

57

Questions

! ! Why item-to-item collaborative filtering is preferred to
user-to-user collaborative filtering?

! ! What are the methods used for computing the
similarity of products?

! ! Could you imagine other similarity methods for
products?

! ! What is the user model in a item-to-item collaborative
filtering system?

! ! How we can use SVD in recommender systems?

! ! How many factors should be used in matrix
factorization techniques?

! ! What is the role of the " parameter in matrix
factorization techniques?

! ! How I identify the optimal value for " ?

