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Item-to-Item Collaborative Filtering 
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Items  

Users  

Similar items with cosine distance  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
,1 ,3 ,6 ,1 ,3 ,4 ,3 ,3 ,2 ,6 ,2 ,5 ,4 ,5 ,5 ,3 1 ,3 ,5 ,4 ,2 ,4 ,4 ,5 

Similarity of item i with item 17 
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Item-to-item CF: the basic idea 

! ! Can the ratings of the target user for similar items be 
exploited for predicting an unknown rating?  

! ! Yes but not all the similar items should be equally relevant. 

Target user  
? 

5 4.5 5 4.5 5 5 

p1 p5 p9 
pi 

p22 p23 p27 
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Item-to-Item Collaborative Filtering 

! ! Rather matching user-to-user similarity, item-to-item 
CF matches item purchased or rated by a target user 
to similar items and combines those similar items in 
a recommendation list 

! ! It seems like a content-based filtering method (see 
next lecture) as the match/similarity between items is 
used 

! ! In fact it can work (in a simplified way) much like 
content-based methods will do: 

" ! One item describe the current interests of the user 
(user model) Ð the item you are looking at 

" ! Other similar items are recommended. 

[Linden et. al, 2003] 
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Item-to-Item Similarity 

! ! Similarity can be computed in a number of ways: 

" ! Using the user ratings 

" ! Using product descriptions 

" ! Using co-occurrence of the items in the user bags of 
past purchased products 

! ! Using the ratings: a collection of user ui, i=1, Én  and 

a collection of items pj, j=1, É, m 

! ! A n !  m matrix of ratings ruj , with ruj = ? if user u did not 

rate item j 

cos( pi , pj ) =

rui ruj
u! Uij

"

rui
2

u! Ui

" ruj
2

u! U j

"
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Prediction Computation��

! ! Generating the prediction: look into the target 
user Aûs ratings and use techniques to obtain 
predictions based on the ratings of similar 
products 

! ! Weighted Sum of the ratings of the active user to 
similar items 

! ! The sum is over a subset Nu(i) (neighbor) of items 
similar to the target i that the user u has rated Ð 
wij is the similarity of i and j��

rui
* =

wij ruj
j ! Nu i( )
"

|w ij |
j ! Nu i( )
"



Example 

! ! Suppose the prediction is made using two nearest-
neighbors, and that the items most similar to ÒTitanicÓ are 
ÒForrest GumpÓ and ÒWall-EÓ 

! ! wtitanic , forrest  = 0.85 

! ! wtitanic , wall-e  = 0.75 

! ! r* eric , titanic  = (0.85*5 + 0.75*4)/(0.85 + 0.75) = 4.53 
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target neigh. neigh. 



Mean-Centering 

! ! As for user-based collaborative filtering we can 
estimate the difference from the item average 
rating rather than the rating of a user for an item 

! ! Where ri is the average rating of item i, Nu(i) is a 
neighbor of items similar to the item i that the user u 
has rated, K is a normalization factor such that the 
absolute values of wij sum to 1:
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rui
* = ri +K wij (ruj ! rj )j " Nu(i )

#
A set of item neighbours of 
i that have been rated by u 

K = 1
wijj ! Nu(i )

"
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Computing the Item-to-Item Similarity 

! ! Build a product-to-product matrix of similarities 
by iterating trough all possible pairs 

" ! Inefficient because many pairs have no 
common customers! 

! ! A better approach for selecting pairs of items for 
which the similarity can be computed is: 

1. ! Scan the products, and for all the customers 
that bought a product, identify the other 
products bought by those customers 

2. ! Then compute the similarity only for these 
pairs 



12 

To compute the similarity of product 1 to the others 

Discover that only g, m and x bought p1 

Then take the union of the products bought by g, m and x 

 (2 3 4 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24)  



13 

Computing the Item-to-Item Similarity 

We must have: 

For each customer u, I u the list of items rated by 
u (i.e. the indexes j of ruj  such that ruj  != ?)  
For each item j, Uj the list of users who rated j 
(i.e. the indexes u of ruj  such that ruj  != ?)  

Have you 
already seen 
these kind of 

indexes? 
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Item-to-Item Recommendations for a 
User 

! ! If the goal is to find the recommendations for a 
user u, then 

! ! For each item i in the profile of u (generally few) 
" ! Find the top-n similar items to i Top-n(i) 
" ! It is a heuristic – it finds good candidates and 

avoid considering all the items whose rating 
can be predicted for u 

! ! For the union of the items in Top-n(i) compute 
the rating predictions 

" ! You use the similarities with the items in the 
user's profile that you computed above.   
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Performance Implications��

! ! A user profile normally contains less ratings than a 
product profile! 

! ! User-based CF Ð similarity between users is 
dynamic, pre-computing user neighborhood can lead 
to poor predictions 

" ! Because the similarity between users can change if 
only a few ratings are changing (the overlap 
between users Aû profiles is small)  

! ! Item-based CF Ð similarity between items is more 
static 

! ! This enables pre-computing of item-item similarity 
=> prediction process involves only a table lookup for 
the similarity values & computation of the weighted 
sum. ��
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Example: Netflix Data Details 

! ! Training data 
" ! 100 million ratings (from 1 to 5 stars) 

" ! 6 years (2000-2005) 

" ! 480,000 users 

" ! 17,770 Aþmovies Aÿ 

" ! #users/#items ! 27 (hence one can expect 
more ratings per item rather than per user) 

! ! Test data 
" ! Last few ratings of each user (2.8 million) 

What is the situation when 
you bootstrap a CF system? 
More users or more items? 
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Ratings per Movie in Training Data 

Avg #ratings/movie: 5627 
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Ratings per User in Training Data 

Avg #ratings/user: 208 
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Comparing Item- vs. User-Based: The 
Data Set��

! ! MovieLens  Ð a web-based movies recommender 
system with 43,000 users & over 3500 movies ��

! ! They used 100,000 ratings from the DB  

" ! Only users who rated 20 or more movies: 943 
rows (users) 

" ! Items/movies Ð rated by at least one user: 
1682 columns (items)  

! ! Split data into train and test 

" ! 80% of the data - training set 

" ! 20% of the data - test set 

[Sarwar et al., 2001] 



! ! In adjusted cosine instead of  
using the ratings ruj , they have  
used ( ruj  Ð ru) Ð where ru is the  
average rating of user u. ��
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Effect of similarity Algorithms��

cos(i, j ) =

rui ruj
u! Uij

"

rui
2

u! Ui

" ruj
2

u! U j

"
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Quality Experiments��

! ! Item-to-item vs. user-to-user based at selected 
neighborhood sizes 
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Item-to-item vs User-to-User ��

! ! item-item CF normally provides better predictions 
than the user-user CF ( in the popular data set 
where there are more users than items!) 

! ! Improvement is consistent over different 
neighborhood sizes and train/test ratio 

! ! Improvement is not significantly large 

! ! Item neighborhood is fairly static, hence enables 
pre-computation which improves online 
performance. ��
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Personalised vs Non-Personalised CF 

! ! Collaborative-based recommendations are 
personalized since the rating Aþprediction Aÿ differs 
depending on the target user 

" ! User-to-user: the ratings (for a given item) 
expressed by users that are similar to the 
active user 

" ! Item-to-item: the weighted average of the 
ratings of the active user for similar items  

! ! A non-personalized collaborative-based rating 
prediction can be generated, for instance, by 
averaging the ratings of ALL the users for an item 

" ! Then the rating prediction for an item is the 
same for all the users - they receive the same 
recommendations. 
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Personalised vs Non-Personalised CF 

Data Set  users  items  
Lower 
Upper 
rating  

total 
ratings  

Av. 
RatedIt  density  average  stddev  

MAE 
Non 
Pers 

MAE 

Pers 

Jester  48483  100  
-10 - 
+10  3519449  72,59  0,725  0,816  4,40  0,220  0,152  

MovieLens  6040  3952  1 - 5  1000209  165,59  0,041  3,580  0,934  0,233  0,179  

EachMovie  74424  1649  0 Ð 1  2811718  37,77  0,022  0,607  0,223  0,223  0,151  

[Berkowsky et al., 2006] 

MAE(NP) =
|rui − ri |

u,i
!

#ratings ! rmax ! rmin( )

rui  is the rating of user u for 
product i and r i is the average 
rating for item i 

Normalized 
MAE from 23% to 30% improvement 



Netflix RMSEs 

Grand Prize: 0.8563; 10% 
improvement   

BellKor: 0.8693; 8.63% improvement 

Cinematch: 0.9514; baseline   

Movie average: 1.0533 

User average: 1.0651  

Global average: 1.1296  

Inherent noise: ????  

Personalization 

erroneous 

accurate 
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These two numbers 
are incredibly close. 
What is your 
explanation? 
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Geared 
towards  
females 

Geared 
towards  

males 

serious  

escapist 

The Princess 
Diaries 

The Lion King 

Braveheart 

Lethal 
Weapon 

Independence 
Day 

Amadeus The Color 
Purple 

Dumb and 
Dumber 

OceanAûs 11 

Sense and 
Sensibility 

Gus 

Dave 

Latent Factor Models 
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Basic Matrix Factorization Model 

45531

312445

53432142

24542

522434

42331

users 

.2 -.4 .1 

.5 .6 -.5 

.5 .3 -.2 

.3 2.1 1.1 

-2 2.1 -.7 

.3 .7 -1 

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1 

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8 

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1 

~ 

~ 

users 

items 

items 

A rank-3 approximation 

12 items 
6 users 
max 72 entries 

12 x 3 entries 
6 x 3 entries 
54 total entries 
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Estimate Unknown Ratings 

45531
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items 

  ? 
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Estimate Unknown Ratings 

45531
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A rank-3 approximation 

items 
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Estimate Unknown Ratings 

45531

312445

53432142

24542

522434

42331

users 

.2 -.4 .1 

.5 .6 -.5 

.5 .3 -.2 

.3 2.1 1.1 

-2 2.1 -.7 

.3 .7 -1 

-.9 2.4 1.4 .3 -.4 .8 -.5 -2 .5 .3 -.2 1.1 

1.3 -.1 1.2 -.7 2.9 1.4 -1 .3 1.4 .5 .7 -.8 

.1 -.6 .7 .8 .4 -.3 .9 2.4 1.7 .6 -.4 2.1 

~ 

~ 

users 

items 

2.4 

A rank-3 approximation 

items -0.5*(-2) + 0.6*0.3 + 0.5*2.4 = 2.4 
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Matrix Factorization Model 
! ! Each item i and user u is associated with a f-dimensional 

real vector qi and pu
T 

! ! The elements of qi = (q1i, ..., qfi) measure the extent to 
which the item i possesses those factors, positive or 
negative 

! ! The elements of pu
T = (pu1, ..., puf) measure the extent of 

interest u has in items that are high on the corresponding 
factors, positive or negative 

" ! r*ui = pu
T
 qi is the predicted userÕs overall  

interest in the itemÕs characteristics 

! ! Problem: how to compute qi and pu
T? 

! ! Solution: try to determine qi and pu
T
  s.t. on known ratings 

the prediction is correct  
" ! Standard SVD (singular value decomposition) is 

undefined when knowledge about the matrix is 
incomplete (missing values in {rui} matrix) 

" ! Carelessly addressing only the relatively few known 
entries is highly prone to overfitting. 

pu
Tqi = pujqji

j=1

f

!



Singular Value Decomposition 

A =U! V T

M! M M! N V is N! N 

For an M !  N matrix A of rank r there exists a 
factorization (Singular Value Decomposition = SVD) 
as follows: 

The columns of U are orthogonal eigenvectors of AAT. 

The columns of V are orthogonal eigenvectors of ATA. 

! i = " i

! = diag ! 1...! r( ) Singular values 

Eigenvalues " 1 É " r of AAT are the eigenvalues of ATA. 

Sec. 18.2 
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Singular Value Decomposition 

! ! Illustration of SVD dimensions and sparseness 

Sec. 18.2 

!"#

The brown parts can be 
discarded 



SVD example 

Let 

!
!
!

"

#

$
$
$

%

& '

=

01

10

11

A

Thus M=3, N=2. Its SVD is 

!  

2/ 6 0 1/ 3

" 1/ 6 1/ 2 1/ 3

1/ 6 1/ 2 " 1/ 3

# 

$ 

% 
% 
% 

& 

'  

( 
( 
( 

3 0

0 1

0 0

# 

$ 

% 
% 
% 

& 

'  

( 
( 
( 

1/ 2 " 1/ 2

1/ 2 1/ 2

# 

$ 
% 

& 

'  
( 

The singular values arranged in decreasing order. 

Sec. 18.2 
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www.bluebit.gr/matrix-calculator/  



! ! SVD can be used to compute optimal low-rank 
approximations 

! ! Approximation problem: Find Ak of rank k such 
that 

Ak and X are both m! n matrices. 

We want k << r. 

Low-rank Approximation 
Sec. 18.3 
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Frobenius norm 

A
F

= aij

2

j=1

n

!
i=1

m

!

Ak = argmin
X:rank(X)=k

A! X
F



! ! Solution via SVD 

Low-rank Approximation 

set smallest r-k 
singular values to zero 

Ak =U  diag(! 1,...,! k,0,...,0)VT

column notation: sum  
of rank 1 matrices 

Ak = ! ii=1

k

! uivi
T

k 

Sec. 18.3 
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! ! If we retain only k singular values, and set the 
rest to 0, we don Aût need the matrix parts in 
brown/blue 

! ! Then "  is k# k, U is M# k, VT is k# N, and Ak is 
M# N  

! ! This is referred to as the reduced SVD 
! ! It is the convenient (space-saving) and usual 

form for computational application. 

Reduced SVD 

k 

Sec. 18.3 
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Approximation error 

! ! How good (bad) is this approximation? 

! ! It Aûs the best possible, measured by the Frobenius  
norm of the error: 

Where the #i are ordered such that #i $ #i+1 . 

Frobenius  error drops as k increased. 

X:rank(X)=k
min A! X

F
= A! Ak F

=σ k+1

Sec. 18.3 

!$#
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Matrix factorization as a cost function 

Minp* ,q*
rui ! pu

Tqi( )
2
+ ! pu

2
+ qi

2"
#
$

%
&
'

(
)*

+
,-known rui

.

regularization       - user-factors of u 
  
      - item-factors of i 
 
      - rating by u for i uir

iq
up

¥! Optimize by either stochastic gradient-descent or 
alternating least squares 

Why this? 
What it is happening 

if "  is large? 



Gradient of a Function 

47 
The gradient of the function f(x,y) = $(cos 2x + cos 2y) 2 depicted as a 
vector field on the bottom plane 
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Stochastic Gradient Descent 

Perform till convergence: 

" ! For each training example rui  : 

! !Compute prediction error: eui  = rui  Ð pu
Tqi 

! !Update item factor: qi # qi+ %(pu&eui- ' &qi)  

! !Update user factor: pu # pu+ %(qi&eui- ' &pu)  

! ! The parameters are modified by a magnitude 
proportional to % in the opposite direction of the 
gradient (of the function that we want to minimize)  

! ! Two constants to tune: % (step size) and '  
(regularization)  

! ! The true goal is to find values that minimize 
error on test set. 
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Adding Biases 

! ! Much of the observed variation in rating values is due 
to effects associated to either users or items 
(individually) 

! ! Example: certain users give higher ratings and certain 
items are widely perceived as better 

! ! First order approximation of the bias involved in rating rui  
is: 

" ! bui= µ + bu +  bi  

" ! Where µ is the overall average rating 

! ! Example: If µ=3.7, if Titanic is a movie that tends to be 
rated 0.5 better than an average movie,  and Marius is a 
critical user who tends to rate 0.3 stars lower than the 
average 

" ! bmarius , titanic  = 3.7 -0.3 +0.5 = 3.9 



50 

Adding Biases 

! ! The rating prediction function is now 

" ! r* ui  = µ + bu + b i + pu
T

 qi 

! ! And the corresponding new error function that 
we must minimize is: 

! ! K is the set of indexes of the known ratings 

 

min
p! ,q! ,b!

(rui " µ " bu" bi " pu
Tqi )

2 + ! ( pu

2
+ qi

2
+bu

2

(u,i )# K

$ +bi
2)
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Implicit Feedback and User Attributes 

! ! Consider that the user u gave an implicit feedback to 
the items in N(u), e.g., he bought them 

! ! We can use an additional set of factor vectors, one vector 
for each item i, x i Ð expressing how much a user that 
showed an implicit feedback on i is loading the factors 

! ! An additional component of the user model is then given 
by 

! ! If we have also some user attributes A(u) (Boolean) that 
could be used to model the load of the different factors 
we have another component  

N(u)
! 0.5

xi
i" N(u)

# Implicit feedback 

ya
a! A(u)

" User attributes 
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Adding Implicit Feedback and Attributes 

! ! The rating prediction function is now: 

! ! Gradient descend can still be applied to 
minimize the corresponding error function. 
 
 
 

rui
* = µ +bi +bu +qi

T pu + N(u)
! 0.5

xi + ya
a" A(u)

#
i" N(u)

#
$

%
&
&

'

(
)
)
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Temporal Dynamics and Confidence 

! ! Ratings can change with time because users change 
the way they rate or items change their relevance 

! ! Some ratings can be more reliable than others 
" ! E.g. you may infer that old ratings, or ratings 

produced after a massive advertisement, are not 
much reliable 

! ! This can be easily incorporated in the prediction model: 

rui
* (t) = µ +bi (t)+bu(t)+ pu

T(t)qi (t)

min
p! ,q! ,b!

cui (rui " µ " bu" bi " pu
Tqi )

2 + ! ( pu

2
+ qi

2
+bu

2

(u,i )# K

$ +bi
2)

cui  is the reliability of rating r ui   
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Collaborative-Based Filtering 

! ! Pros: require minimal knowledge engineering efforts (knowledge 
poor) 

" ! Users and products are symbols without any internal 
structure or characteristics 

! ! Cons: 
" ! Requires a large number of explicit and reliable Aþrates Aÿ to 

bootstrap 

" ! Requires products to be standardized (users should have 
bought exactly the same product) 

" ! Assumes that prior behavior determines current 
behavior without taking into account Aþcontextual Aÿ knowledge 
(session-level) 

" ! Does not provide information about products or explanations 
for the recommendations 

" ! Does not support sequential decision making or 
recommendation of Aþgood bundling Aÿ, e.g., a travel package.  
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Summary 

! ! Introduced Item-to-item collaborative 
recommendations (the method that is 
really used now in MovieLens  and 
Amazon) 

! !Discussed its advantages on user-to-user 
collaborative filtering 

! !Presented the more recent approaches 
based on factor models. 
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Questions 

! ! Why item-to-item collaborative filtering is preferred to 
user-to-user collaborative filtering? 

! ! What are the methods used for computing the 
similarity of products? 

! ! Could you imagine other similarity methods for 
products? 

! ! What is the user model in a item-to-item collaborative 
filtering system? 

! ! How we can use SVD in recommender systems? 

! ! How many factors should be used in matrix 
factorization techniques? 

! ! What is the role of the "  parameter in matrix 
factorization techniques?  

! ! How I identify the optimal value for " ?  


