Part 12: Advanced Topics in Collaborative Filtering

Francesco Ricci
Content

- Generating recommendations in CF using frequency of ratings
- Role of neighborhood size
- Comparison of CF with association rules ("traditional" data-mining)
- Classification and regression learning
- Memory-based CF vs. Model-Based CF
- Reliability of the user-to-user similarity
- Evaluating the importance of each rating in user-to-user similarity
- Computational complexity of collaborative filtering.
Example of Evaluation of a Collaborative Filtering Recommender System

- **Movie data:** 35,000 users, 3,000 movies, random selection of 100,000 ratings – obtained a matrix of 943 users and 1682 movies
  - Sparsity = 1 - 100,000/(943*1682) = 0.9369
  - On average there are 100,000/943 = 106 ratings per user

- **E-Commerce data:** 6,502 customers, 23,554 products and 97,045 purchase records
  - Sparsity = 0.9994
  - On average 14.9 ratings per user

- **Sparsity** is the proportion of missing ratings over all the possible ratings
  - #missing-ratings/#all-possible-ratings.

[Sarwar et al., 2000]
Sparsity: visual example

94% sparsity

99.9% sparsity

A set of known ratings
Evaluation Procedure

- They evaluate top-N recommendation (10 recommendations for each user)
- Separate ratings in training and test sets (80% Train - 20% Test)
- Use the training to compute the prediction (top-N)
- Compare (precision and recall) the items in the test set of a user with the top N recommendations for that user
- Hit set is the intersection of the top N with the test set (selected-relevant)
- Precision = size of the hit set / size of the top-N set
- Recall = size of the hit set / size of the test set
- They assume that all the rated items are relevant
- They used the cosine metric to find the neighbors.
Generation of recommendations

- Instead of using the weighted average of the ratings

\[ r_{uj}^* = r_u + K \sum_{v \in N_j(u)} w_{uv} (r_{vj} - r_v) \]

- They used the **most-frequent item recommendation** method
  - Looks in the neighbors (users similar to the target user) scanning the purchase data
  - Compute the **user frequency** of the products in the neighbors purchases - not already in the (training part of the) profile of the target user
  - Sort the products according to the frequency
  - Returns the N most frequent products.

- **Most-frequent item recommendation** computes a recommendation list without computing any rating estimation.
Assume that all the depicted users are neighbors of the first one.
EC = eCommerce data; ML = MovieLens data

Splitting the entire data set into 80% train and 20% test

**Top 10 recommendations**
EC users rated 14.9 items (avg) – ML users rated 106 items (avg)
Clusters of users with 2 ratings

- Fixed similarity threshold in two different points (users) may mean completely different neighbors.
Neighbor Size

- Reducing the neighbor size is important for performance considerations (why?)
- If the neighbor size $k$ is too large then we are using in the prediction users that are **not very similar** to the target user – hence accuracy should decrease
- Selection can be made with a **fixed $k$**: 
  - Accuracy for users with more unique preferences will be lower – their $k$-nn are far away
- Selection can be made with a **threshold similarity**: the drawback is that as the number of ratings increases we may have too many neighbors

Remember the discussion on knn optimality
Neighbor Size (II)

- When using Pearson correlation it is common to discard neighbors with negative similarity
- *Advanced techniques use “adaptive” neighbor formation algorithm – the size depends on the global data characteristics and the user and item specific ratings.*
Association Rules

- Discovering association between sets of co-purchased products – the presence of a set of products “implies” the presence of others

- \{p_1, ..., p_m\} = P are **products**, and a **transaction** T is a **subset of products** P

- **Association rule:** \( X \rightarrow Y \)

- \( X,Y \) are **not overlapping subsets** of P

- The meaning of \( X \rightarrow Y \) is that in a collection of transactions \( T_j \) (j=1, ...N), if \( X \) are present it is likely that \( Y \) are also present

- We may generate a **transaction for each** user in the CF system: contains **the products that have been rated/purchased by the user.**
In [Sarwar et al., 2000] a transaction is made of all the products bought/rated by a user - not exploiting the rating values.
Example - X → Y

- **Support** = proportion of transactions that contains X and Y = 3/6
- **Confidence** = proportion of those that contains X and Y over those containing X=3/4
Association Rules and Recommender

- **Long term user profile:** a transaction for each user containing all the products both in the past
- **Short term user profile:** a transaction for each bundle of products bought during a shopping experience (e.g. a travel)

1. Build a set of association rule (e.g. with the "Apriori" algorithm) with at least a **minimum** confidence and support
   - [Sarwar et al., 2000] used all the users-transactions to build the association rules
   - You may use only the users close to the target (kind of mix between AR and CF)
2. Find the rules R supported by a user profile: X is in the **training** part of the user profile
3. Rank a product in the right-hand-side of some rules in R with the (maximal) confidence of the rules that predict it
4. Select the top-N

[Sarwar et al., 2000]
Comparison with Association Rules

Different Recommendation Algorithms
(MovieLens data set)

When we do not have enough data personalization is not useful – all these methods tend to perform similarly.
Comparison with Association Rules

Different Recommendation Algorithms
(E-Commerce data set)

Density of data (as % of original)

F1 metric

- Ctr-MF-Hi
- Ctr-MF-Lo
- Rule-non personal

Lo and Hi means low (=20) and original dimensionality for the products dimension achieved with LSI (Latent Semantic Indexing).
## Classification Learning

<table>
<thead>
<tr>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>windy</th>
<th>Play/CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>85</td>
<td>85</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>80</td>
<td>90</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>83</td>
<td>86</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>70</td>
<td>96</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>68</td>
<td>80</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>65</td>
<td>70</td>
<td>TRUE</td>
<td>no</td>
</tr>
<tr>
<td>overcast</td>
<td>64</td>
<td>65</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>72</td>
<td>95</td>
<td>FALSE</td>
<td>no</td>
</tr>
<tr>
<td>sunny</td>
<td>69</td>
<td>70</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>75</td>
<td>80</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>sunny</td>
<td>75</td>
<td>70</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>72</td>
<td>90</td>
<td>TRUE</td>
<td>yes</td>
</tr>
<tr>
<td>overcast</td>
<td>81</td>
<td>75</td>
<td>FALSE</td>
<td>yes</td>
</tr>
<tr>
<td>rainy</td>
<td>71</td>
<td>91</td>
<td>TRUE</td>
<td>?</td>
</tr>
</tbody>
</table>

### Set of classified examples

Given a set of examples for which we know the class, predict the class for an unclassified examples.
### Regression Learning

<table>
<thead>
<tr>
<th>outlook</th>
<th>temperature</th>
<th>humidity</th>
<th>windy</th>
<th>Play duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>sunny</td>
<td>85</td>
<td>85</td>
<td>FALSE</td>
<td>5</td>
</tr>
<tr>
<td>sunny</td>
<td>80</td>
<td>90</td>
<td>TRUE</td>
<td>0</td>
</tr>
<tr>
<td>overcast</td>
<td>83</td>
<td>86</td>
<td>FALSE</td>
<td>55</td>
</tr>
<tr>
<td>rainy</td>
<td>70</td>
<td>96</td>
<td>FALSE</td>
<td>40</td>
</tr>
<tr>
<td>rainy</td>
<td>68</td>
<td>80</td>
<td>FALSE</td>
<td>65</td>
</tr>
<tr>
<td>rainy</td>
<td>65</td>
<td>70</td>
<td>TRUE</td>
<td>45</td>
</tr>
<tr>
<td>overcast</td>
<td>64</td>
<td>65</td>
<td>TRUE</td>
<td>60</td>
</tr>
<tr>
<td>sunny</td>
<td>72</td>
<td>95</td>
<td>FALSE</td>
<td>0</td>
</tr>
<tr>
<td>sunny</td>
<td>69</td>
<td>70</td>
<td>FALSE</td>
<td>70</td>
</tr>
<tr>
<td>rainy</td>
<td>75</td>
<td>80</td>
<td>FALSE</td>
<td>45</td>
</tr>
<tr>
<td>sunny</td>
<td>75</td>
<td>70</td>
<td>TRUE</td>
<td>50</td>
</tr>
<tr>
<td>overcast</td>
<td>72</td>
<td>90</td>
<td>TRUE</td>
<td>55</td>
</tr>
<tr>
<td>overcast</td>
<td>81</td>
<td>75</td>
<td>FALSE</td>
<td>75</td>
</tr>
<tr>
<td>rainy</td>
<td>71</td>
<td>91</td>
<td>TRUE</td>
<td>?</td>
</tr>
</tbody>
</table>

Set of examples - target feature is numeric

Given a set of examples for which we know the target (duration), predict it for examples where it is unknown.
Learning

- In order to predict the class several Machine Learning techniques can be used, e.g.:
  - Naïve Bayes
  - K-nn
  - Perceptron
  - Neural Network
  - Decision Trees (ID3)
  - Classification Rules (AC4.5)
  - Support Vector Machine
Matrix of ratings

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td></td>
<td>5</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>j</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>l</td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
</tr>
<tr>
<td>q</td>
<td></td>
</tr>
<tr>
<td>r</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

Items

Users
Recommendation and Classification

- Users = instances described by their ratings
- Class = the rating given by the users/instances to a target product
- Or items=instances and class = the rating to the items/instances given by a target user
- Differences with classical ML problems
  - Data are sparse
  - There is no preferred class/item-rating to predict
  - In fact, the main problem is related to determining the classes (item ratings) that it is better to predict
  - You cannot (?) predict all and then choose the item with higher predicted ratings (too expensive)
  - Unless there are few items (? Generalize the notion of item ?).
Lazy and Eager Learning

- **Lazy:** wait for query before generalizing
  - *k*-Nearest Neighbor, Case based reasoning

- **Eager:** generalize, i.e., build a model, before seeing query
  - Radial basis function networks, ID3, Neural Networks, Naïve Bayes, SVM

- Does it matter?
  - Eager learner must create global approximation
  - Lazy learner can create many local approximations
Model-Based Collaborative Filtering

- Previously seen approach is called *lazy* or *memory-based* as the original examples (vectors of user ratings) are used when a prediction is required (no computation when data is collected)

- **Model based** approaches build and store a (probabilistic) model and use it to make the prediction:

  \[ r_{uj}^* = E[r_{uj}] = \sum_{r=1}^{5} r \times P(r_{uj} = r | \{r_{uk}, k \in I_u\}) \]

  **User model**

- Where \( r = 1, ..., 5 \) are the possible values of the rating and \( I_u \) is the set of items rated by user \( u \)

- \( E[X] \) is the Expectation (i.e., the average value of the random variable \( X \))

- The probabilities above are estimated with a classifier producing the probability for an example to belong to a class (the class of products having a rating = \( r \)), e.g., Naïve Bayes (but also \( k \)-nearest neighbor!).

}\[29\]
Naïve Bayes

- \(P(H|E) = P(H) \times [P(E|H) / P(E)]\)

Example:
- \(P(\text{flue} \mid \text{fever}) = P(\text{flue}) \times [P(\text{fever} \mid \text{flue}) / P(\text{fever})]\)
- \(P(\text{flue} \mid \text{fever}) = P(\text{flue}) \times [0.99 / 0.03] = 0.01 \times 33 = 0.33\)

- A class variable is the rating for a particular item (e.g., the first item): \(X_i\) is a variable (feature) representing the rating for product \(i\)

\[
P(X_1 = r \mid X_2 = r_{u2}, \ldots, X_n = r_{un}) = \frac{P(X_2 = r_{u2}, \ldots, X_n = r_{un} \mid X_1 = r)P(X_1 = r)}{P(X_2 = r_{u2}, \ldots, X_n = r_{un})}
\]

- Assuming the independence of the ratings on different products

\[
P(X_1 = r \mid X_2 = r_{u2}, \ldots, X_n = r_{un}) = \frac{\prod_{j=2}^{n} P(X_j = r_{uj} \mid X_1 = r)P(X_1 = r)}{P(X_2 = r_{u2}, \ldots, X_n = r_{un})}
\]
Problems of CF : Sparsity

- Typically we have large product sets and user ratings for a small percentage of them.
- Example Amazon: millions of books and a user may have bought hundreds of them:
  - The probability that two users, who have rated 100 books, have at least a common rated book (in a catalogue of 1 million books) is $\sim 0.01$ (with 50 ratings and 10 millions books is 0.00025) – if all books are equally likely to be bought!
  
- Exercise: what is the probability that they have 10 books in common (stattrek.com/Tables/Binomial.aspx)

- Hence, if you have not a large set of users it may be difficult to find out a single neighbor for a target user.
- But if there are 10,000,000 users then one can easily find $10^7 \times 0.00025 = 2,500$ neighbors!
Reliability of the similarity measure

Overlapping ratings with $u_1$

Means that there is a rating for that user-item pair
Significance of User-to-User Similarity

- Rating data are typically **sparse** – user-to-user similarity weights are often computed on few ratings given to common items: $I_{uv}$
- Take into account the **significance** of the user-to-user similarity metric: how dependable the measure of similarity is – and not only its value – when making a rating prediction [Herlocker et al., 1999]

$$w'_{uv} = \frac{\min\{I_{uv}, \gamma\}}{\gamma} \times w_{uv}$$

- $\gamma$ is a parameter that must be cross validated – 50 gave optimal results (movielens)
  - This approach **improves** the prediction accuracy (MAE)
Low variance vs. High variance items

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Overlapping ratings with $u_1$
Improvements of CF

- Not all items may be informative in the similarity computation – items that have low variance in their ratings are supposed to be less informative than items that have more diverse ratings [Herlocker et al., 1999]

- He gave more importance, in the similarity computation, to the products having larger variance in ratings – this did **not improve** accuracy of the prediction

- [Baltrunas & Ricci, 2008] found **good results** using in the similarity computation only the most important items (feature selection: items with the highest Pearson correlation with the target item).
Inverse User Frequency

- Items rated by a small number of users may be more informative – similar idea to "terms present in a small number of documents are more informative"

- $\lambda_i = \log \left( \frac{|U|}{|U_i|} \right)$, $U_i$ is the set of users that rated item $i$ (assume that $U_i$ is not empty)

- **Frequency-Weighted Pearson Correlation** similarity metric:

$$FWPC(u,w) = \frac{\sum_{i \in I_{uv}} \lambda_i (r_{ui} - r_u)(r_{vi} - r_v)}{\sqrt{\sum_{i \in I_{uv}} \lambda_i (r_{ui} - r_u)^2 \sum_{i \in I_{uv}} \lambda_i (r_{vi} - r_v)^2}}$$

- [Breese et al., 1998] found that this improves prediction accuracy.
Item Popularity

Popular Items

Not popular Item
Popular vs Not Popular

- Predicting the rating of **popular** items is **easier** than for not popular ones:
  - The prediction can be based on the ratings of **many neighbor users**
- The **usefulness** of predicting the rating of popular items is questionable:
  - It could be guessed in a simpler way
  - The system will not appear as much smart to the user
- Predicting the rating of **unpopular** items is **Risky** - not many neighbors on which to base the prediction
  - But could really bring a lot of **value** to the user!
Problems of CF: Scalability

- Nearest neighbor algorithms require computations that grow with both the number of customers and products.
- With millions of customers and products, a web-based recommender will suffer serious scalability problems.
- The **worst case complexity** is $O(m \times n)$ (m customers and n products).
- But in practice, the complexity is $O(m + n)$ since for each customer only a small number of products are in the user profile and are considered for computing the similarity.
  - Then one loop on the $m$ customers to compute similarity PLUS one on the $n$ products to compute the prediction.
To compute the similarity of \( u_1 \) with the other users we must scan the users database \( m \) (large) but only 3 products will be considered (in this example)

Represent a user as \( u_1 = ((1, r_{11}), (6, r_{16}), (12, r_{112})) \)
When you have selected the neighbors

\[ u_3 = ((1, r_{31}), (3, r_{33}), (8, r_{38}), (12, r_{312})) \]

\[ u_4 = ((3, r_{43}), (6, r_{46}), (12, r_{412})) \]

You must only scan the \textbf{union of the products in the neighbors’ profiles} and \textbf{identify those not yet rated} by the target user \( u_1 \).
Some Solutions for Addressing the Computational Complexity

- Discard customers with few purchases
- Discard very popular items
- Partition the products into categories
- Dimensionality reduction (LSI or clustering data)
- All of these methods also reduce recommendation quality (according to [Linden et al., 2003]).
Summary

- Example of usage of precision and recall in the evaluation of a CF system
- CF using only the presence or absence of a rating
- Association rules
- Comparison between CF and association rules
- Illustrated the relationships between CF and classification learning
- Briefly discussed the notion of model-based CF
- Naïve Bayes methods
- Discussed some problems of CF recommendation: sparsity and scalability
- Discussed the computational complexity of CF
Questions

- What are the two alternative approaches for selecting the nearest neighbors, given a user-to-user similarity metric?
- How could be defined a measure of reliability of the similarity between two users?
- What is the computational complexity of a naïve implementation of the CF algorithm? What is its complexity in practice?
- How CF compares with association rules?
- What are the main differences between the recommendation learning and classification learning?
- How CF would work with very popular or very rare products?
- Will CF work better for popular or not popular items?