Part 8: Relevance Feedback

Francesco Ricci

Most of these slides comes from the course:

Information Retrieval and Web Search,
Christopher Manning and Prabhakar Raghavan
Content

- Local methods
 - Relevance feedback
 - Pseudo relevance feedback
 - Indirect (implicit) relevance feedback

- Global methods
 - Query expansion
 - Thesauri
 - Automatic thesaurus generation
 - Query log mining
Relevance Feedback

- Relevance feedback: *user feedback on relevance of docs in initial set of results*
 - User issues a (short, simple) query
 - The user marks some results as relevant or non-relevant
 - The system *computes a better query representation of the information need based on feedback*
 - Relevance feedback can go through one or more iterations

- **Idea:** it may be difficult to formulate a good query when you don’t know the collection well, so iterate.
Example: search images

Google images

Images Show options...

Bikes Photos
AlthEye.com Photos of Bikes in cities all over the world

Related searches: cartoon bike, bmx bike, mountain bike, bicycle

Feedback

Available bikes and 1207 x 753 - 326k - gif www.fanweb.com
Find similar images

Six Crazy Concept 640 x 483 - 67k - jpg wired.com
Find similar images

sneaker meets bike 500 x 375 - 52k - jpg enveapparel...
Find similar images

The Youth Clinic 379 x 385 - 152k - png suitcaseclinic.org
Find similar images

Mountain bikes 406 x 380 - 31k - jpg adventure...
Find similar images
New Interface
Preference-based: DieToRecs

There are two ways to gain easily travel recommendations:
- Follow one of the alternatives you are interested and you will receive detailed offers.
- Rate the alternatives, click "Submit" and you will receive additional alternatives.

[Destinations]:
1. Ischgl, Tirol
 (Accommodation): 4***
 (Min - Max [Euro]): 0.0 - 156.0
 I like this!
2. Ottenbruck
 (Accommodation): 4***
 (Min - Max [Euro]): 0.0 - 0.0
 I like this!
3. Innsbruck
 (Accommodation): 4***
 (Min - Max [Euro]): 0.0 - 156.0
 I like this!
4. Längenfeld
 (Accommodation): 3***
 (Min - Max [Euro]): 0.0 - 0.0
 I like this!
5. Kastental
 (Accommodation): 4***
 (Min - Max [Euro]): 0.0 - 0.0
 I like this!
6. Tux
 (Accommodation): 4***
 (Min - Max [Euro]): 0.0 - 0.0
 I like this!

[Suggest more like this!]
Submit your rates to improve our suggestions.

[Next]

[Go Back]

History of your inspiration visits:
1. Kemmerich, 2009
2. Trip to Salzburg
3. Trip to Salzburg
4. 10.06.2009 10.21.45
5. 10.06.2009 10.21.45

Search for travel items:

[Ricci et al., 2006]
Exploratory Search: Example
Critiquing

Entree Results

We recommend:

Dave's Italian Kitchen (map)
906 Church St. (bet. Ridge & Sherman Aves.), Evanston, 708-864-6000

Italian

below $15

Fair Decor, Excellent Service, Excellent Food, No Reservations, Weekend Brunch, Carry in Wine and Beer, Wheelchair Access, Long Drive

less $15

more

creative

traditional

quieter
cuisine

For other suggestions, select:

Dave's Italian Kitchen
Gusto Italiano
Carlucci
Spavone's Seven Hills

Dancing Noodles Cafe
La Sorella di Francesca
Village

Anna Maria Pasteria
Mia Francesca
Rosebud

Salvatore's
Critiquing Interaction

- Initial preferences
- System *shows* K examples
- User picks the final choice
- User revises the preference model by critiquing examples

[Pu et al., 2006]
Key concept: Centroid

- The **centroid** is the center of mass of a set of points.
- Recall that we represent documents as points in a high-dimensional space.
- Definition: Centroid

\[
\vec{\mu}(C) = \frac{1}{|C|} \sum_{d \in C} \vec{d}
\]

where \(C \) is a set of documents.
The centroid is not normalized
The Theoretically Best Query

x non-relevant documents
O relevant documents
Rocchio Algorithm

- The Rocchio algorithm uses the vector space model to pick a relevance feedback query.
- Rocchio seeks the query \vec{q}_{opt} that maximizes

$$\vec{q}_{opt} = \arg \max_{\vec{q}} [\cos(\vec{q}, \vec{\mu}(C_r)) - \cos(\vec{q}, \vec{\mu}(C_{nr}))]$$

- Tries to separate docs marked relevant C_r and non-relevant C_{nr} – the solution is:

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\vec{d}_j \in C_r} \vec{d}_j - \frac{1}{|C_{nr}|} \sum_{\vec{d}_j \notin C_r} \vec{d}_j$$

- Problem: we don’t know the truly relevant docs.
Rocchio 1971 Algorithm (SMART)

- Used in practice:
 \[\tilde{q}_m = \alpha\tilde{q}_0 + \beta \frac{1}{|D_r|} \sum_{\tilde{d}_j \in D_r} \tilde{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\tilde{d}_j \in D_{nr}} \tilde{d}_j \]

- \(D_r \) = set of known relevant doc vectors
- \(D_{nr} \) = set of known irrelevant doc vectors
 - These are different from \(C_r \) and \(C_{nr} \)!
- \(q_m \) = modified query vector; \(q_0 \) = original query vector; \(\alpha, \beta, \gamma \): weights (hand-chosen or set empirically)

- New query moves toward relevant documents and away from irrelevant documents.
Relevance feedback on initial query

- Initial query
- Revised query

x known non-relevant documents
o known relevant documents
Subtleties to note

- Tradeoff α vs. β and γ: If we have a lot of judged documents, we want a higher β and γ
- Some weights in query vector can go negative:
 - Negative term weights are ignored (set to 0)
- **Positive** feedback is more valuable than negative feedback (so, set $\gamma < \beta$; e.g. $\gamma = 0.25$, $\beta = 0.75$) - many systems only allow positive feedback ($\gamma=0$)
- Relevance feedback can improve recall and precision
- Relevance feedback is most useful for increasing recall in situations where recall is important – why?
 - Users can be expected to review results and to take time to iterate – when recall is important.
Relevance Feedback: Assumptions

- A1: User has sufficient knowledge for initial query
- A2: Relevance prototypes are “well-behaved”
 - Term distribution in relevant documents will be similar
 - Term distribution in non-relevant documents will be different from those in relevant documents
 - Either: all relevant documents are tightly clustered around a single prototype
 - Or: there are different prototypes, but they have significant vocabulary overlap
 - Similarities between relevant and irrelevant documents are small.
Relevance Feedback: Problems

- Long queries are inefficient for typical IR engine
 - Long response times for user
 - High cost for retrieval system
- Partial solution:
 - Only reweight certain prominent terms - perhaps top 20 by term frequency
- Users are often reluctant to provide explicit feedback
- It’s often harder to understand why a particular document was retrieved after applying relevance feedback
- Information needs may change during the interaction (so what?).
Evaluation of relevance feedback strategies

- Use q_0 and compute precision and recall graph
- Use q_m and compute precision recall graph
 - 1) Assess on all documents in the collection
 - Spectacular improvements, but ... it’s cheating!
 - Known relevant documents ranked higher
 - Must evaluate with respect to documents not seen by user
 - 2) Use documents in residual collection (all docs minus those assessed relevant)
 - Measures usually then lower than for original query
 - But a more realistic evaluation
 - Relative performance can be validly compared
- Empirically, one round of relevance feedback is often very useful - two rounds is sometimes marginally useful.
Evaluation of relevance feedback

- Second method – assess only the docs not rated by the user in the first round
 - Could make relevance feedback look worse than it really is
 - Can still assess relative performance of algorithms

- Most satisfactory – use two collections each with their own relevance assessments (i.e., split randomly the collection in two parts)
 - q_0 and user feedback from first collection
 - q_m run on second collection and measured.
Evaluation: Caveat

- True evaluation of usefulness must compare to other methods taking the same amount of time – or using similar user effort
- Alternative to relevance feedback: user revises and resubmits query
 - See next topic: query expansion
- Users may prefer revision/resubmission to having to judge relevance of documents
- There is no clear evidence that relevance feedback is the “best use” of the user’s time – it may be in some "situations".

23
Managing implicit feedback in information search

What can I derive from the fact that a user clicked on the 2nd link?
Learning to rank

- If all the users click on the third link then Yahoo should provide a different ranking for that query.
Adapting the Search Engine

- SE could be adapted to a specific **user**: using just his own clicks (*personalization*)

- SE could be adapted to a community: e.g., the students attending this course

- SE could be adapted to a specific documents collection
Search Engines Bias Users I

- Percentage of queries where a user **viewed** the search result presented at a particular rank (measured with eye tracking).
Search Engines Bias Users II

- **Blue** is the normal rank.
- **Red** is obtained by swapping the top two results.

Percentage of queries where a user clicked the result presented at a given rank.
Query Expansion

- In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the query for documents.

- In **query expansion**, users give additional input (good/bad search term) on **words or phrases**.
 - Generally it is simpler than relevance feedback.
Query assist

Would you expect such a feature to increase the query volume at a search engine?
How do we augment the user query?

- Manual thesaurus
 - E.g. MedLine: **physician**, syn: *doc, doctor, MD, medico*
 - Can be related queries rather than just synonyms

- **Global Analysis:** static; based on all documents in collection
 - Automatically derived thesaurus
 - co-occurrence statistics
 - Refinements based on query log mining
 - Common on the web

- **Local Analysis:** dynamic
 - Analysis of documents in **result set**
Example of manual thesaurus
Thesaurus-based query expansion

- For each term, \(t \), in a query, expand the query with synonyms and related words of \(t \) from the thesaurus
 - feline \(\rightarrow \) feline cat
- May weight added terms less than original query terms
- **Generally increases recall**
- Widely used in many science/engineering fields
- May significantly decrease precision, particularly with ambiguous terms
 - “interest rate” \(\rightarrow \) “interest rate benefit evaluate”
- There is a high cost of manually producing a thesaurus
 - And for updating it for scientific changes.
WordNet

- **WordNet®** is a large lexical database of English *(there are also other languages)*
- Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms - **Synsets** - each expressing a distinct concept
- Synsets are interlinked by means of conceptual-semantic and lexical relations.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponym</td>
<td>From concepts to superordinates</td>
<td>water$^1 \rightarrow$ liquid</td>
</tr>
<tr>
<td>Hyponym</td>
<td>From concepts to subtypes</td>
<td>water$^1 \rightarrow$ seawater</td>
</tr>
<tr>
<td>Has-Part</td>
<td>From groups to their members</td>
<td>water$^1 \rightarrow$ oxygen</td>
</tr>
<tr>
<td>Part-of</td>
<td>From members to their groups</td>
<td>water$^1 \rightarrow$ ice</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>leader \rightarrow follower</td>
</tr>
</tbody>
</table>
Automatic Thesaurus Generation

- Attempt to generate a thesaurus automatically by analyzing the collection of documents
- Fundamental notion: **similarity between two words** (can we use Jaccard on word bigrams or Levenshtein?)
- Definition 1: Two words are similar if they often co-occur
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words
 - You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar
- Co-occurrence based is more robust, grammatical relations are more accurate.
Co-occurrence Thesaurus

- Simplest way to compute a thesaurus is to observe the term-term similarities in $C = AA^T$:
 - A is term-document matrix
 - Alternatively $A = [w_{i,j}]_{M \times N} = (\text{row normalized})$ weight for (t_i,d_j)

For each t_i, pick terms t_j with high C_{ij} values

What does $C = AA^T$ contain if A is the term-doc incidence (0/1) matrix?
Automatic Thesaurus Generation Example

<table>
<thead>
<tr>
<th>word</th>
<th>ten nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely</td>
<td>absurd whatsoever totally exactly nothing</td>
</tr>
<tr>
<td>bottomed</td>
<td>dip copper drops topped slide trimmed slight</td>
</tr>
<tr>
<td>captivating</td>
<td>shimmer stunningly superbly plucky witty</td>
</tr>
<tr>
<td>doghouse</td>
<td>dog porch crawling beside downstairs gazed</td>
</tr>
<tr>
<td>Makeup</td>
<td>repellent lotion glossy sunscreen Skin gel</td>
</tr>
<tr>
<td>mediating</td>
<td>reconciliation negotiate cease conciliation</td>
</tr>
<tr>
<td>keeping</td>
<td>hoping bring wiping could some would other</td>
</tr>
<tr>
<td>lithographs</td>
<td>drawings Picasso Dali sculptures Gauguin</td>
</tr>
<tr>
<td>pathogens</td>
<td>toxins bacteria organisms bacterial parasite</td>
</tr>
<tr>
<td>senses</td>
<td>grasp psyche truly clumsy naive innate aw...</td>
</tr>
</tbody>
</table>
Automatic Thesaurus Generation

Discussion

- Quality of associations is usually a problem
- Term ambiguity may introduce irrelevant statistically correlated terms:
 - “Apple computer” → “Apple red fruit computer” (synsets are not distinguished)
- Problems:
 - False positives: Words deemed similar that are not
 - False negatives: Words deemed dissimilar that are similar
- Since terms are highly correlated anyway, expansion may not retrieve many additional documents.
Query assist

- Generally done by query log mining
- Recommend frequent recent queries that contain partial string typed by user
- A ranking problem! View each prior query as a doc – Rank-order those matching partial string ...
Resources

IIR Ch 9