Part 6: Scoring in a Complete Search System

Francesco Ricci

Most of these slides comes from the course:
Information Retrieval and Web Search,
Christopher Manning and Prabhakar Raghavan
Content

- Vector space scoring
- Speeding up vector space ranking
- Putting together a complete search system
Efficient cosine ranking

- Find the K docs in the collection “nearest” to the query $\Rightarrow K$ largest query-doc cosines

- Efficient ranking:
 - Computing a single (approximate) cosine efficiently
 - Choosing the K largest cosine values efficiently
 - Can we do this without computing all N cosines?
 - Can we find approximate solutions?
Efficient cosine ranking

- What we’re doing in effect: solving the K-nearest neighbor problem for a query vector
- In general, we do not know how to do this efficiently for high-dimensional spaces
- But it is solvable for short queries, and standard indexes support this well.
Special case – unweighted queries

- Assume each query term occurs only once
- idf scores are considered in the document terms
- Then for ranking, don’t need to consider the query vector weights
 - Slight simplification of algorithm from Chapter 6 IIR
Faster cosine: unweighted query

```plaintext
FastCosineScore(q)
1    float Scores[N] = 0
2    for each d
3    do Initialize Length[d] to the length of doc d
4    for each query term t
5    do calculate $w_{t,q}$ and fetch postings list for t
6    for each pair$(d, tf_{t,d})$ in postings list
7    do add $wf_{t,d}$ to $Scores[d]$
8    Read the array $Length[d]$
9    for each d
10   do Divide $Scores[d]$ by $Length[d]$
11   return Top K components of $Scores[]$

Figure 7.1 A faster algorithm for vector space scores.
```
Computing the K largest cosines: selection vs. sorting

- Typically we want to retrieve the **top** K docs (in the cosine ranking for the query)
 - **not to totally order** all docs in the collection
- Can we pick off docs with K highest cosines?
- Let $J =$ number of docs with nonzero cosines
 - We seek the K best of these J
Use heap for selecting top K

- Binary tree in which each node’s value > the values of children (assume that there are J nodes)
- Takes $2J$ operations to construct, then each of K “winners” read off in $2\log J$ steps.
- For $J=1M$, $K=100$, this is about 5% of the cost of sorting ($2J\log J$).
Cosine similarity is only a proxy

- User has a task and will formulate a query.
- The system computes cosine matches docs to query.
- Thus cosine is anyway a **proxy** for user happiness.
- If we get a list of K docs “close” to the top K by cosine measure, should be ok.
- *Remember, our final goal is to build effective and efficient systems, not to compute correctly our formulas.*
Generic approach

- Find a set A of *contenders*, with $K < |A| << N$ (N is the total number of docs)
 - A does not necessarily contain the top K, but has many docs from among the top K
 - Return the top K docs in A
- Think of A as *pruning* non-contenders
- The same approach is also used for other (non-cosine) scoring functions (remember spelling correction and the Levenshtein distance)
- Will look at several schemes following this approach.
Index elimination

- Basic algorithm FastCosineScore of Fig 7.1 only considers docs containing at least one query term – obvious!

- Take this idea further:
 - Only consider **high-idf query terms**
 - Only consider **docs** containing **many query terms**.

\[
\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{V} q_i d_i
\]

for \(q, d\) length-normalized
High-idf query terms only

- For a query such as “catcher in the rye”
- Only accumulate scores from “catcher” and “rye”
- Intuition: “in” and “the” contribute little to the scores and so don’t alter rank-ordering much
 - They are present in most of the documents and their idf weight is low
- Benefit:
 - Postings of low-idf terms have many docs – then these docs (many) get eliminated from set A of contenders.
Docs containing many query terms

- Any doc with at least one query term is a candidate for the top \(K \) output list
- For multi-term queries, only compute scores for docs containing several of the query terms
 - Say, at least 3 out of 4
 - Imposes a “soft conjunction” on queries seen on web search engines (early Google)
- Easy to implement in postings traversal.
Scores only computed for docs 8, 16 and 32.
Champion lists (documents)

- Precompute for each dictionary term t, the r docs of highest weight in t’s postings
 - Call this the champion list for t
 - (aka fancy list or top docs for t)
- Note that r has to be chosen at index build time
 - Thus, it’s possible that $r < K$
- At query time, only compute scores for docs in the champion list of some query term
 - Pick the K top-scoring docs from amongst these.
Exercises

- How do Champion Lists relate to Index Elimination? (i.e., eliminating query terms with low idf – compute the score only if a certain number of query terms appear in the document)
- Can they be used together?
- How can Champion Lists be implemented in an inverted index?
 - Note that the champion list has nothing to do with small docIDs.
Static quality scores

- We want top-ranking documents to be both relevant and authoritative.
- Relevance is being modeled by cosine scores.
- Authority is typically a query-independent property of a document.
- Examples of authority signals:
 - Wikipedia among websites
 - Articles in certain newspapers
 - A paper with many citations
 - Many diggs, Y!buzzes or del.icio.us marks
 - Pagerank
Assign to each document d a query-independent quality score in $[0,1]$

- Denote this by $g(d)$

Thus, a quantity like the number of citations is scaled into $[0,1]$

- Exercise: suggest a formula for this.
Net score

- Consider a simple total score combining cosine relevance and authority
- net-score\((q,d) = g(d) + \text{cosine}(q,d)\)
 - Can use some other linear combination than an equal weighting
 - Indeed, any function of the two “signals” of user happiness – more later
- Now we seek the top \(K\) docs by net-score.
Top K by net score – fast methods

- First idea: Order all postings by $g(d)$
- Key: this is a common ordering for all postings
- Thus, can concurrently traverse query terms’ postings for
 - Postings intersection
 - Cosine score computation
- Exercise: write pseudocode for cosine score computation if postings are ordered by $g(d)$
Why order postings by $g(d)$?

- Under $g(d)$-ordering, top-scoring docs *likely* to appear early in postings traversal
- In time-bound applications (say, we have to return whatever search results we can in 50 ms), this allows us to stop postings traversal early
 - Shortcut of computing scores for all docs in postings.
Champion lists in $g(d)$-ordering

- Can combine champion lists with $g(d)$-ordering
- Maintain for each term a champion list of the r docs with highest $g(d) + \text{tf-idf}_{td}$
- Order the postings by $g(d)$
- Seek top-K results from only the docs in these champion lists.
Impact-ordered postings

- We only want to compute scores for docs for which $wf_{t,d}$ is high enough
- We sort each postings list by $wf_{t,d}$
 - Hence, while considering the postings and computing the scores for documents not yet considered we have a bound on the final score for these documents
- Now: not all postings in a common order!
- How do we compute scores in order to pick off top K?
 - Two ideas follow
1. Early termination

- When traversing \(t \)'s postings, stop early after either
 - a fixed number of \(r \) docs
 - \(wf_{t,d} \) drops below some threshold
- Take the union of the resulting sets of docs
 - Documents from the postings of each query term
- Compute only the scores for docs in this union.
2. idf-ordered terms

- When considering the postings of query terms
- Look at them in order of decreasing idf (if there are many)
 - High idf terms likely to contribute most to score
- As we update score contribution from each query term
 - Stop if doc scores relatively unchanged
 - This will happen for popular query terms (low idf)
- Can apply to cosine or some other net scores.
Parametric and zone indexes

- Thus far, a doc has been a sequence of terms
- In fact documents have multiple parts, some with special semantics:
 - Author
 - Title
 - Date of publication
 - Language
 - Format
 - etc.
- These constitute the metadata about a document.
Fields

- We sometimes wish to search by these metadata
 - E.g., find docs authored by William Shakespeare in the year 1601, containing *alas poor Yorick*
- Year = 1601 is an example of a **field**
- Also, author last name = shakespeare, etc
- Field index: postings for each field value
 - Sometimes build range trees (e.g., for dates)
- Field query typically treated as conjunction
 - (doc *must* be authored by shakespeare)
Zone

- A zone is a region of the doc that can contain an arbitrary amount of text e.g.,
 - Title
 - Abstract
 - References ...
- Build inverted indexes on zones as well to permit querying
- E.g., “find docs with merchant in the title zone and matching the query gentle rain”
Example zone indexes

Encode zones in dictionary vs. postings.
High and low lists

- For each term, we maintain two postings lists called *high* and *low*
 - Think of *high* as the champion list
- When traversing postings on a query, only traverse *high* lists first
 - If we get more than K docs, select the top K and stop
 - Else proceed to get docs from the *low* lists
- Can be used even for simple cosine scores, without global quality $g(d)$
- A means for segmenting index into two tiers.
Tiered indexes

- Break **postings** (*not documents*) up into a hierarchy of lists
 - Most important
 - ...
 - Least important
- Can be done by $g(d)$ or another measure
- Inverted index thus broken up into **tiers** of decreasing importance
- At query time use top tier unless it fails to yield K docs
 - If so drop to lower tiers.
Example tiered index

Tier 1
- auto → Doc2
- best
- car → Doc1 → Doc3
- insurance → Doc2 → Doc3

Tier 2
- auto
- best → Doc1 → Doc3
- car
- insurance

Tier 3
- auto → Doc1
- best
- car → Doc2
- insurance
Query term proximity

- **Free text queries**: just a set of terms typed into the query box – common on the web
- Users prefer docs in which query terms occur within close proximity of each other
- Let w be the **smallest window** in a doc containing all query terms, e.g.,
- For the query "*strained mercy*" the smallest window in the doc "*The quality of mercy is not strained*" is 4 (words)
- Would like scoring function to take this into account – how?
Query parsers

- One free text query from user may in fact spawn one or more queries to the indexes, e.g. query "rising interest rates"
 - Run the query as a phrase query
 - If <K docs contain the phrase "rising interest rates", run the two phrase queries "rising interest" and "interest rates"
 - If we still have <K docs, run the vector space query "rising interest rates"
 - Rank matching docs by vector space scoring

- This sequence is issued by a query parser.
Aggregate scores

- We’ve seen that score functions can combine cosine, static quality, proximity, etc.
- How do we know the best combination?
- Some applications – expert-tuned
- Increasingly common: machine-learned
 - See a forthcoming lecture.
Putting it all together
Reading Material

- Sections: 7.1, 7.2