Part 3: The term vocabulary, postings lists and tolerant retrieval

Francesco Ricci

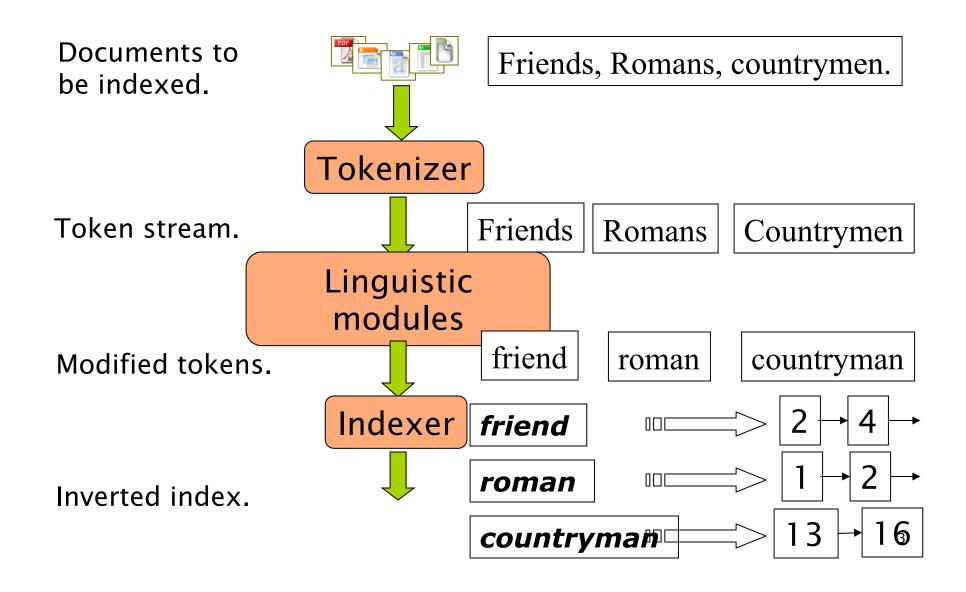
Most of these slides comes from the course:

Information Retrieval and Web Search,
Christopher Manning and Prabhakar
Raghavan

Content

- Elaborate basic indexing
- Preprocessing to form the term vocabulary
 - Documents
 - Tokenization
 - What terms do we put in the index?
- Postings
 - Phrase queries and positional postings
- "Tolerant" retrieval
 - Wild-card queries
 - Spelling correction
 - Soundex

Recall the basic indexing pipeline



Sec. 2.1

Parsing a document

- What format is it in?
 - pdf/word/excel/html?
- What language is it in?
- What character set encoding is in use?
- Each of these is a classification problem, which we will study later in the course
- But these tasks are often done heuristically:
 - The classification is predicted with simple rules
 - Example: "if there are many `the' then it is English".

Complications: Format/language

- Documents being indexed can include docs from many different languages
 - A single index may have to contain terms of several languages
- Sometimes a document or its components can contain multiple languages/formats
 - French email with a German pdf attachment
- What is a unit document?
 - A file?
 - An email? (Perhaps one of many in a mbox)
 - An email with 5 attachments?
 - A group of files (PPT or LaTeX as HTML pages).

TOKENS AND TERMS

Tokenization

- Input: "Friends, Romans and Countrymen"
- Output: Tokens
 - Friends
 - Romans
 - Countrymen
- A token is an instance of a sequence of characters
- Each such token is now a candidate for an index entry, after <u>further processing</u>
 - Described below
- But what are valid tokens to emit?

Tokenization

- Issues in tokenization:
 - Finland's capital → Finland? Finlands? Finland's?
 - Hewlett-Packard → Hewlett and Packard as two tokens?
 - state-of-the-art: break up hyphenated sequence
 - co-education
 - □ lowercase, lower-case, lower case?
 - San Francisco: one token or two?
 - How do you decide it is one token?

General Idea

- If you consider 2 tokens (e.g. splitting words with hyphens) then queries containing only one of the two tokens will **match**
 - Ex1. Hewlett-Packard a query for "packard" will retrieve documents about "Hewlett-Packard" OK?
 - Ex2. San Francisco a query for "francisco" will match docs about "San Francisco" OK?
- If you consider 1 token then query containing only one of the two possible tokens will **not match**
 - Ex3. co-education a query for "education" will not match docs about "co-education".

Numbers

3/20/91

Mar. 12, 1991

20/3/91

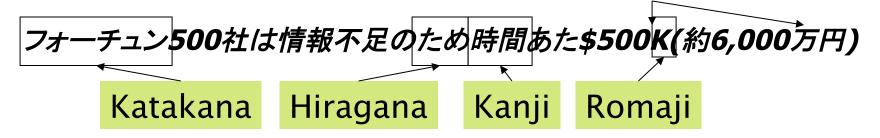
- □ 55 B.C.
- □ *B-52*
- My PGP key is 324a3df234cb23e
- **(800)** 234-2333
- Often have embedded spaces (but we should not split the token)
- Older IR systems may not index numbers
 - But often very useful: think about things like looking up error codes/stacktraces on the web
- Will often index "meta-data" separately
 - Creation date, format, etc.

Tokenization: language issues

- French
 - **L'ensemble** → one token or two?
 - $\Box L?L'?Le?$
 - Want I'ensemble to match with un ensemble
 - Until now, it didn't on Google
 - Internationalization!
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German retrieval systems benefit greatly from a compound splitter module
 - Can give a 15% performance boost for German.

Tokenization: language issues

- Chinese and Japanese have no spaces between words:
 - 莎拉波娃现在居住在美国东南部的佛罗里达。
 - Not always guaranteed a unique tokenization
- Further complicated in Japanese, with multiple alphabets intermingled
 - Dates/amounts in multiple formats



End-user can express query entirely in hiragana!

Tokenization: language issues

- Arabic (or Hebrew) is basically written right to left, but with certain items like numbers written left to right
- Words are separated, but letter forms within a word form complex ligatures:

استقلت الجزائر في سنة 1962 بعد 132 عاماً من الماحتلال الفرنسي.
$$\rightarrow$$
 start

'Algeria achieved its independence in 1962 after 132 years of French occupation.'

With Unicode, the surface presentation is complex, but the stored form is straightforward.

Stop words

- With a stop list, you exclude from the dictionary entirely the commonest words:
 - **Little semantic content**: the, a, and, to, be
 - **Many of them**: ~30% of (positional) postings for top 30 words
- But the trend is away from doing this:
 - Good compression techniques means the space for including stopwords in a system is very small
 - Good query optimization techniques mean you pay little at query time for including stop words
 - You need them for:
 - Phrase queries: "King of Denmark"
 - Various song titles, etc.: "Let it be", "To be or not to be"
 - "Relational" queries: "flights to London"

Reuters RCV-1

	(distinct) terms			nonpositional postings			tokens (= number of position entries in postings)		
	number	$\Delta\%$	T%	number	$\Delta\%$	T%	number	$\Delta\%$	T%
unfiltered	484,494			109,971,179			197,879,290		
no numbers	473,723	-2	-2	100,680,242	-8	-8	179,158,204	-9	-9
case folding	391,523	-17	-19	96,969,056	-3	-12	179,158,204	-0	_9
30 stop words	391,493	-0	-19	83,390,443	-14	-24	121,857,825	-31	-38
150 stop words	391,373	-0	-19	67,001,847	-30	-39	94,516,599	-47	-52
stemming	322,383	-17	-33	63,812,300	-4	-42	94,516,599	-0	-52
stemming	322,383	-17	-33	63,812,300	-4	-42	94,516,599	-0	_

- 800,000 Documents
- Average tokens per document: 247
- If the documents are larger do you expect a bigger/ smaller reduction of nonpositional postings when eliminating stop words?
- Online text analysis: http://textalyser.net/
- Words frequency data http://www.wordfrequency.info

Normalization to terms

- We need to "normalize" words in indexed text as well as query words into the same form
 - We want to match U.S.A. and USA
- Result is a term: a term is a (normalized) word type, which is an entry in our IR system dictionary
- We define equivalence classes of terms by, e.g.,
 - deleting periods to form a term
 - □ U.S.A., USA ∈ [USA]

 - deleting hyphens to form a term
- Equivalence class of a $[a] = \{x \mid x \sim a\}$

Normalization: other languages

- Accents: e.g., French résumé vs. resume
- Umlauts: e.g., German: *Tuebingen* vs. *Tübingen*
 - Should be equivalent
- Most important criterion:
 - How are your users like to write their queries for these words?
- Even in languages that standardly have accents, users often may not type them
 - Often best to normalize to a de-accented term
 - □ Tuebingen, Tübingen, Tubingen ∈ [Tubingen]

Normalization: other languages

- Normalization of things like date forms
 - 7月30日 vs. 7/30
 - Japanese use of kana vs. Chinese characters
- Tokenization and normalization may depend on the language and so is intertwined with language detection

Morgen will ich in MIT ...

Is this German "mit"?

Crucial: need to "normalize" indexed text as well as query terms into the same form.

Case folding

- Reduce all letters to lower case
 - exception: upper case in mid-sentence?
 - e.g., General Motors

□ Fed VS. fed

SAIL VS. sail

Federal reserve

Steel Authority of India

- Often best to lower case everything, since users will use lowercase regardless of 'correct' capitalization...
- Google example:
 - Query C.A.T.
 - #1 result is for Caterpillar Inc., then "usual" cat

Caterpillar: Home

Caterpillar is the world's leading manufacturer of construction and mining equipment, diesel and natural gas engines, industrial gas turbines and a wide and ...

Show stock quote for CAT Caterpillar Products - Machine Specs - Careers - Engine Specs

www.cat.com/ - Cached - Similar

Cat - Wikipedia, the free encyclopedia

The cat (Felis silvestris catus), also known as the domestic cat or housecat to distinguish it from other felines and felids, is a small carnivorous mammal ...

File - Body language - Diet - Intelligence en.wikipedia.org/wiki/Cat - Cached - Similar

Lolcats 'n' Funny Pictures of Cats - I Can Has Cheezburger?

2 Feb 2010 ... Humorous captioned pictures of felines and other animals. Visitors can submite their own material or add captions to a large archive of ...

Normalization to terms

- An alternative to equivalence classing is to include in the dictionary many variants of a term and then do asymmetric expansion at query time
- An example of where this may be useful
 - User enters: window System searches: window, windows
 - Enter: windows Search: Windows, windows, window
 - Enter: Windows Search: Windows
- Potentially more powerful, but less efficient (Why?)

Thesauri and soundex

- Do we handle synonyms?
 - We can rewrite to form hand-constructed equivalence-class terms
 - □ Car ~ automobile color ~ colour
 - When the document contains automobile, index it under car-automobile (and vice-versa)
 - Or index the terms separately and expand at query time:
 - When the query contains automobile, look under car as well (but what expansions to consider?)
- What about spelling mistakes?
 - One approach is soundex, which forms equivalence classes of words based on phonetic heuristics.
- And <u>homonyms</u>?

Lemmatization

- Reduce inflectional/variant forms to base form (the one that you search in your English dictionary)
- □ E.g.,
 - \blacksquare am, are, is \rightarrow be
 - car, cars, car's, cars' → car
- "the boy's cars are different colors" → "the boy car be different color"
- Lemmatization implies doing "proper" reduction to dictionary headword form.

Stemming

- Reduce terms to their "roots" before indexing
- "Stemming" suggest crude affix chopping
 - language dependent
 - e.g., automate(s), automatic, automation all reduced to automat.

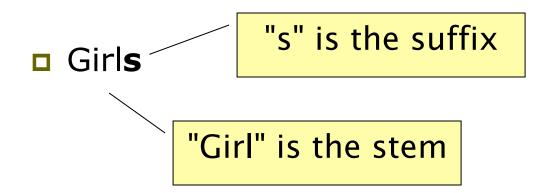
for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Sec. 2.2.4

Porter's algorithm

- Commonest algorithm for stemming English
 - Results suggest it is at least as good as other stemming options
- 5 phases of reductions and some conventions:
 - phases applied sequentially
 - each phase consists of a set of rules
 - sample convention: of the rules in a group, select the one that applies to the longest suffix.



Typical rules in Porter

The longest suffix in these 4 rules

- ational → ate (e.g., rational -> rate)
 tional → tion (e.g., conventional -> convention)
 sses → ss (e.g., guesses -> guess)
- □ *ies* \rightarrow *i* (e.g., dictionaries -> dictionari)
- Is the remaining word a stem? After the transformation the word should longer than a threshold (m = number of syllables)

```
Rule: (m>1) EMENT →

Examples:

replacement → replac (Yes)

cement → cement (No because

"c" is not longer than 1 syllable)
```

Sec. 2.2.4

Other stemmers

- Other stemmers exist, e.g., Lovins stemmer
 - http://www.comp.lancs.ac.uk/computing/research/ stemming/general/lovins.htm
 - Single-pass, longest suffix removal (about 250 rules)
- Full morphological analysis at most modest benefits for retrieval
- Do stemming and other normalizations help?
 - English: very mixed results. Helps recall for some queries but harms precision on others
 - □ E.g., operative (dentistry) ⇒ oper
 - Definitely useful for Spanish, German, Finnish, ...
 - 30% performance gains for Finnish!

Examples

Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from the vari in the individu generated and can lead to a pictur of express that is more biolog transpar and access to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

Language-specificity

- Many of the above features embody transformations that are
 - Language-specific and
 - Often, application-specific
- These are "plug-in" addenda to the indexing process
- Both open source and commercial plug-ins are available for handling these.

Dictionary entries – first cut

ensemble.french

時間.japanese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be grouped by language (or not...).

More on this in ranking/query processing.

PHRASE QUERIES AND POSITIONAL INDEXES

Phrase queries

- Want to be able to answer queries such as "stanford university" as a phrase
- Thus the sentence "I went to university at Stanford" is not a match
 - The concept of phrase queries has proven to be easily understood by users; one of the few "advanced search" ideas that works
 - Many more queries are implicit phrase queries
- For this, it no longer suffices to store only
 - <term : docs> entries
 - 1. More vocabulary's entries, OR
 - 2. The postings list structure must be expanded.

Sec. 2.4.1

A first attempt: Biword indexes

- Index every consecutive pair of terms in the text as a phrase
- For example the text "Friends, Romans, Countrymen" would generate the biwords
 - friends romans
 - romans countrymen
- Each of these biwords is now a dictionary term
- Two-word phrase query-processing is now immediate
 - But, what about three words?

Longer phrase queries

- Longer phrases (more than 2) are processed as:
- "stanford university palo alto" can be broken into the Boolean query on biwords:
 - "stanford university" AND "university palo" AND "palo alto"
- BUT, without looking at the docs, we cannot verify that the docs matching the above Boolean query do contain the phrase

Can have false positives!

Extended biwords

- Parse the indexed text and perform Part-Of-Speech-Tagging (POST)
- Bucket the terms into (say) Nouns (N) and articles/ prepositions (X)
- Call any string of terms of the form NX*N an <u>extended</u> <u>biword</u>
 - Each such extended biword is now made a term in the dictionary
- Example: catcher in the rye

N X X N

- Query processing: parse it into N's and X's
 - Segment query into enhanced biwords
 - Look up in index: catcher X* rye
 - But will also match docs containing "catcher with the rye"!

Issues for biword indexes

- False positives, as noted before
- Index blowup due to bigger dictionary
 - Infeasible for more than biwords, big even for them
- Biword indexes are not the standard solution (for all biwords) but can be part of a compound strategy.

Solution 2: Positional indexes

In the postings, store, for each *term* the position(s) in which tokens of it appear:

```
<term, number of docs containing term;

Doc1, term-freq in Doc1: position1, position2 ...;

Doc2, term-freq in Doc2: position1, position2 ...;

etc.>
```

Positional index example

```
<be: 993427;
1, 6: 7, 18, 33, 72, 86, 231;
2, 2: 3, 149;
4, 5: 17, 191, 291, 430, 434;
5, 9: 363, 367, ...>
Which of docs 1,2,4,5
could contain "to be
or not to be"?
```

- For phrase queries, we use a merge algorithm recursively at the document level
- But we now need to deal with more than just equality

Processing a phrase query

- Extract inverted index entries for each distinct term: to, be, or, not.
- Merge their doc:position lists to enumerate all positions with "to be or not to be".
- docId, term-freq in docId
 - *2, 5*: 1,17,74,222,551; *4, 5*: 8,16,190,429,433; *7, 3*: 13,23,191; ...
- □ be:
 - *1, 2*: 17,19; *4, 5*: 17,191,291,430,440; *5, 3*: 14,19,101; ...
- Same general method for proximity searches

Proximity queries

- □ LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
 - /k means "within k words of".
- Clearly, positional indexes can be used for such queries; biword indexes cannot
- Exercise: Adapt the linear merge of postings to handle proximity queries. Can you make it work for any value of k?
 - This is a little tricky to do correctly and efficiently
 - See Figure 2.12 of IIR.

Positional Intersect

```
PositionalIntersect(p_1, p_2, k)
  1 answer \leftarrow \langle \rangle
      while p_1 \neq \text{NIL} and p_2 \neq \text{NIL}
      do if docID(p_1) = docID(p_2)
             then l \leftarrow \langle \rangle
  ^4
                                                                                                   New part to proximity
  5
                    pp_1 \leftarrow positions(p_1)
  6
                    pp_2 \leftarrow positions(p_2)
  7
                    while pp_1 \neq NIL
  8
                    do while pp_2 \neq NIL
                        do if |pos(pp_1) - pos(pp_2)| \le k
  9
10
                               then ADD(l, pos(pp_2))
                               else if pos(pp_2) > pos(pp_1)
11
12
                                         then break
13
                             pp_2 \leftarrow next(pp_2)
                                                                                                           check
                        while l \neq \langle \rangle and |l[0] - pos(pp_1)| > k
14
15
                        do Delete(l[0])
16
                        for each ps \in l
17
                        do ADD(answer, \langle docID(p_1), pos(pp_1), ps \rangle)
18
                         pp_1 \leftarrow next(pp_1)
19
                    p_1 \leftarrow next(p_1)
 20
                    p_2 \leftarrow next(p_2)
21
             else if docID(p_1) < docID(p_2)
22
                       then p_1 \leftarrow next(p_1)
 23
                       else p_2 \leftarrow next(p_2)
     return answer
```

Example k=2

- \square pp1=<1,3,5>, pp2 = <4,6,8> for DocID=77
- □ L9 |1-4|<=2? No; L18 pp1=<3,5>
- □ L9 |3-4|<=2? Yes; L10 |=<4>; L13 pp2=<6,8>
- □ *L9* |3-6|<=2? No;
- □ Check L14 |4-3|>2? No (so 4 is not deleted from l)
- \Box L17 Answer=<(77,3,4)>; L18 pp1=<5>
- □ *L9* |5-6|<=2? *L10* Yes; |=<4,6>; *L13* pp2 =<8>
- □ *L9* |5-8|<=2? No
- □ Check L14 |4-5|>2? No (so 4 is not deleted from l)
- \square *L17* Answer=<(77,3,4) (77,5,4) (77,5,6)>

Positional index size

- You can compress position values/offsets (discussed in chapter 5 of IIR book)
- Nevertheless, a positional index expands postings storage substantially
- Nevertheless, a positional index is now standardly used because of the power and usefulness of phrase and proximity queries ... whether used explicitly or implicitly in a ranking retrieval system.

Sec. 2.4.2

Positional index size

- Need an entry for each occurrence, not just once per document
- □ Index size depends on average document size

- Average web page has <1000 terms</p>
- SEC filings (U.S. Securities and Exchange Commission), books, even some epic poems ... can have easily 100,000 terms
- Consider a term with frequency 0.1%

Document size	Non pos. postings	Positional postings
1000	1	1
100,000	1	100

Rules of thumb

- A positional index is 2-4 as large as a nonpositional index
- Positional index size 35–50% of volume of original text
- Because we use position-ids and term-ids that are shorter than terms – otherwise positional index would even larger than original text
- Imagine what is the consequence for indexing the Web
- Caveat: all of this holds for "English-like" languages.

Sec. 2.4.3

Combination schemes

- These two approaches can be profitably combined:
- For particular phrases ("Michael Jackson", "Britney Spears") it is inefficient to keep on merging positional postings lists
 - Even more so for phrases like "The Who"
 - (because the positional postings of these two very common terms will be very long)
- Use a biword index for certain queries and a positional index for others.

WILD-CARD QUERIES

Sec. 3.2

Wild-card queries: *

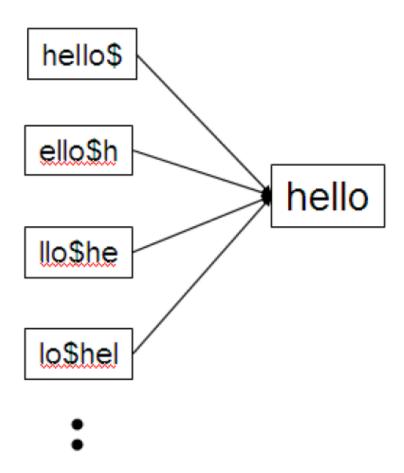
- mor*: find all docs containing any word beginning "mon"
- □ Easy with binary tree (or B-tree) lexicon: retrieve all words in range: mor ≤ w < mos</p>
- *mor: find words ending in "mon": harder
 - Maintain an additional B-tree for terms written backwards
 - So we can retrieve all words in range: rom ≤ w < ron.</p>

Exercise: from this, how can we enumerate all terms meeting the wild-card query **pro*cent**?

Handling*'s in the middle

- How can we handle *'s in the middle of query term?
 - co*tion
- We could look up co* AND *tion in a B-tree and intersect the two term sets
 - Expensive
- The solution: transform wild-card queries so that the *'s occur at the end
- This gives rise to the **Permuterm** Index.

Permuterm index example

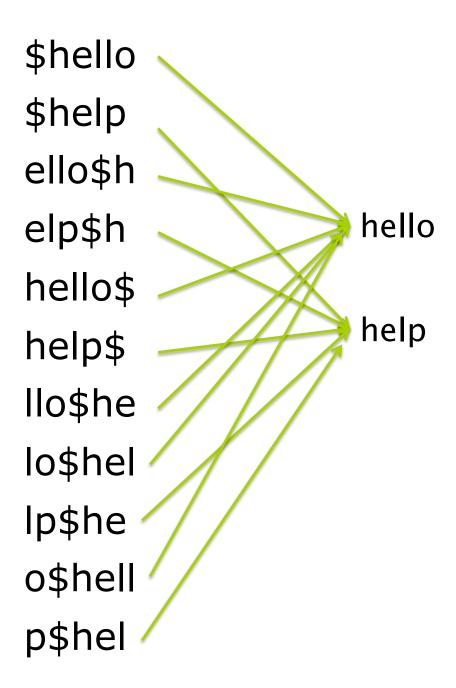


- ► Figure 3.3 A portion of a permuterm index.
- From the permuterm you get the term and then from the standard index you get the documents containing the term.

Example

\$hello \$help\$
hello\$ help\$
ello\$h elp\$h help
llo\$he lo\$hel p\$hel
o\$hell

Example



Sec. 3.2.1

Permuterm index

- For term **tech**, index the documents containing **tech** under multiple keys:
 - tech\$, ech\$t, ch\$te, h\$tec, \$tech where \$ is a special symbol
- Queries:
 - tech → lookup on tech\$ will find only the key tech - and then retrieve the postings
 - tech* → lookup on all terms starting with \$tech (\$tech*) will find: \$tech, \$technical, \$technique, ... and then retrieve the postings of all these terms
 - *tech → lookup tech\$* will find: tech\$hi-, tech\$air-, tech\$

Permuterm Index

- X*Y lookup on Y\$X*
 - Example: m*n → lookup on n\$m* will find man, moron, ecc
- The trick is:
 - Given a query with 1 wildcard, concatenate with \$ (at the end) and the rotate the query until the wildcard is at the end
- □ The trick works also for this: *tech* → lookup on tech*\$* = tech* - will find tech\$, tech\$hi-, technical\$, technical\$hi-

Permuterm query processing

- Rotate query wild-card to the right
- Now use B-tree lookup as before
- Collect all the (permu)terms in the B-tree that are in the range specified by the wild-card (first the permuterm and then the indexed terms)
- Search in the inverted index all the documents indexed by these terms
- □ Permuterm problem: ≈ quadruples lexicon size

Empirical observation for English

Sec. 3.2.2

Bigram (k-gram) indexes

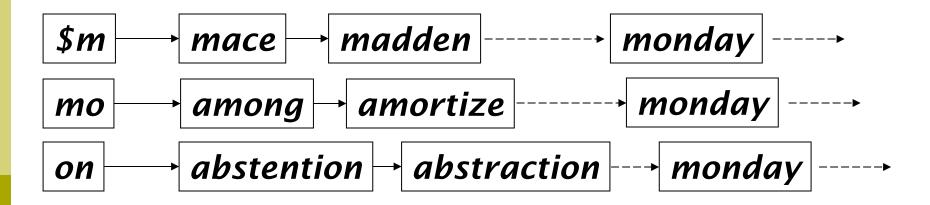
- Enumerate all k-grams (sequence of k chars) occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

\$a,ap,pr,ri,il,l\$,\$i,is,s\$,\$t,th,he,e\$,\$c,cr,ru,
ue,el,le,es,st,t\$, \$m,mo,on,nt,h\$

- \$ is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from</u> <u>bigrams to</u> <u>dictionary terms</u> that match each bigram.

Bigram index example

The k-gram index finds terms based on a query consisting of k-grams (here k=2)



Sec. 3.2.2

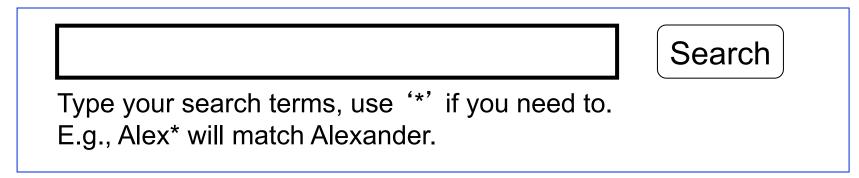
Processing wild-cards

- Query mon* can now be run as
 - \$m AND mo AND on
- Gets terms that match all AND conditions they satisfy our wildcard query (necessary condition)
- But we will get false positive:
 - Eg.: we'd retrieve moon (false positive)
- Must post-filter these terms against query
- Surviving enumerated terms are then looked up in the term-document inverted index
- □ Fast, space efficient (compared to permuterm).

Sec. 3.2.2

Processing wild-card queries

- As before, we must execute a Boolean query for each enumerated, filtered term
- Wild-cards can result in expensive query execution (very large disjunctions...)
 - pyth* AND prog*
- If you encourage "laziness" people will respond!



Which web search engines allow wildcard queries? (please double check)

SPELLING CORRECTION

Sec. 3.3

Spell correction

- Two principal uses
 - Correcting document(s) being indexed
 - Correcting user queries to retrieve "right" answers
- Two main flavors:
 - Isolated word
 - Check each word on its own for misspelling
 - But this will not catch typos resulting in correctly spelled words: e.g., from → form
 - Context-sensitive
 - Look at surrounding words,
 - e.g., I flew form Heathrow to Narita.

Sec. 3.3

Query mis-spellings

- Our principal focus here
 - E.g., the query Alanis Morisett
- We can either
 - Retrieve documents indexed by "the" correct spelling (Alanis Morisette), OR
 - Return several suggested alternative queries with the correct spelling
 - □ Did you mean ...?
 - One shot vs. Conversational

Sec. 3.3.2

Isolated word correction

- Fundamental premise there is a lexicon from which the correct spellings come
- Two basic choices for this
 - A standard lexicon such as
 - Webster's English Dictionary
 - An "industry-specific" lexicon handmaintained
 - 2. The lexicon of the indexed corpus
 - E.g., all words on the web
 - All names, acronyms etc.
 - (Including the mis-spellings in the corpus)

Isolated word correction

- Given a lexicon and a character sequence Q, return the words in the lexicon closest to Q
- What's "closest"?
- There are several alternatives (see IIR book)
 - Edit distance (Levenshtein distance)
 - Weighted edit distance
 - n-gram overlap

Edit distance

- Given two strings S and T, the minimum number of operations to convert S (source) into T (target)
- Operations are typically character-level
 - Insert, Delete, Replace, (Transposition)
- E.g., the edit distance from **dof** to **dog** is 1
 - From cat to act is 2 (Just 1 with transpose.)
 - from cat to dog is 3.
- Generally found by dynamic programming
- And also http://en.wikipedia.org/wiki/Levenshtein_distance

Sec. 3.3.3

Weighted edit distance

- The weight of an operation is not constant and depends on the character(s) involved
 - Meant to capture OCR or keyboard errors, e.g. m more likely to be mis-typed as n than as q
 - Therefore, replacing m by n is a smaller edit distance than by q
 - This may be formulated as a probability model
- Requires weight matrix as input
- Modify dynamic programming to handle weights.

Using edit distances

- Given query:
 - EITHER: first enumerate all character sequences within a preset edit distance (e.g., 2) and then intersect this set with list of "correct" words found in the vocabulary
 - OR: search in the vocabulary the correct words within a preset distance to the query
- Show terms you found to user as suggestions
- Alternatively:
 - We can look up all possible corrections in our inverted index and return all docs ... slow
 - 2. We can run with a single most likely correction
- □ These last alternatives **disempower** the user, but save a round of interaction with the user.

Edit distance to all dictionary terms?

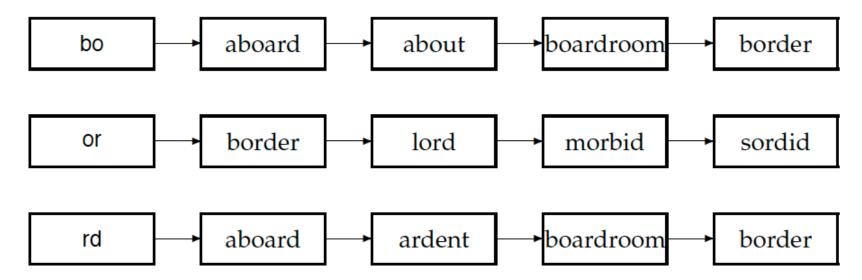
- Given a (mis-spelled) query do we compute its edit distance to every dictionary term?
 - Expensive and slow
 - Alternative?
- How do we cut the set of candidate dictionary terms? Any idea?
- One possibility is to use n-gram overlap for this because it is faster (provided that you have the n-gram index)
- This can also be used by itself for spelling correction.

n-gram overlap

- Enumerate all the n-grams in the query string
- Use the n-gram index (recall wild-card search) to retrieve all lexicon terms matching any of the query n-grams (why not all?)
- Or consider a threshold by the number of matching n-grams (e.g., at least 2 n-grams)
 - Variants weight by keyboard layout, etc.

Matching 2-grams

- Matching at least two 2-grams in the word "bord" will retrieve "aboard", "border" and "boardroom"
- But "boardroom" is an unlikely correction has a larger edit distance than "aboard"



Example with trigrams

- Suppose the text is *november*
 - Trigrams are *nov*, *ove*, *vem*, *emb*, *mbe*, *ber*.
- □ The query is *dicember*
 - Trigrams are dic, ice, cem, emb, mbe, ber.
- So 3 trigrams overlap (of 6 in each term)
- How can we turn this into a normalized measure of overlap?

One option – Jaccard coefficient

- A commonly-used measure of overlap
- □ Let *X* and *Y* be two sets; then the J.C. is

$$|X \cap Y|/|X \cup Y|$$

- Equals 1 when X and Y have the same elements and 0 when they are disjoint
- X and Y don't have to be of the same size
- Always assigns a number between 0 and 1
 - Now threshold to decide if you have a match
 - E.g., if J.C. > 0.8, declare a match

Reading Material

□ Sections: 2.1, 2.2, 2.4

□ Sections: 3.2, 3.3

Advanced search functionalities in google http://www.google.com/support/websearch/bin/ answer.py?answer=136861