Part 3: The term
vocabulary, postings lists

and tolerant retrieval
-] -

Francesco Ricci

Most of these slides comes from the
course:

Information Retrieval and Web Search,

Christopher Manning and Prabhakar
Raghavan

Content

0 Elaborate basic indexing
o Preprocessing to form the term vocabulary
= Documents
= Tokenization
= What terms do we put in the index?
O Postings
= Phrase queries and positional postings
o “Tolerant” retrieval
= Wild-card queries
= Spelling correction
= Soundex

Recall the basic indexing pipeline

Documents to

be indexed. Friends, Romans, countrymen.
[Tokenizer}
Token stream. J_|7 Friends || Romans | | Countrymen
Linguistic W
modules
Modified tokens. iL friend | |roman| |countryman

[Indexer] friend > 24—

Inverted index. ﬂ roman m——> |1 ™2
countrymaiic—— > |13 16

Parsing a document

o What format is it in?
= pdf/word/excel/html?
o What language is it in?
o What character set encoding is in use?

o Each of these is a classification problem, which
we will study later in the course

o But these tasks are often done heuristically:
= The classification is predicted with simple rules

= Example: "if there are many "the' then it is
English”.

Complications: Format/language

o Documents being indexed can include docs from
many different languages

= A single index may have to contain terms of
several languages

0o Sometimes a document or its components can
contain multiple languages/formats

= French email with a German pdf attachment
o What is a unit document?

= A file?

= An email? (Perhaps one of many in a mbox)

= An email with 5 attachments?

= A group of files (PPT or LaTeX as HTML pages).

TOKENS AND TERMS

Tokenization

o Input: “Friends, Romans and Countrymen”
o Output: Tokens
= Friends

= Romans
= Countrymen

O A token is an instance of a sequence of
characters

O Each such token is now a candidate for an index
entry, after further processing

» Described below
0o But what are valid tokens to emit?

Tokenization

O Issues in tokenization:
= Finland’s capital —
Finland? Finlands? Finland’s?

» Hewlett-Packard — Hewlett and Packard
as two tokens?

state-of-the-art: break up hyphenated
sequence

co-education

lowercase, lower-case, lower case
= San Francisco: one token or two?

How do you decide it is one token?

General Idea

o If you consider 2 tokens (e.g. splitting words with
hyphens) then queries containing only one of the
two tokens will match

= Ex1. Hewlett-Packard - a query for "packard"
will retrieve documents about "Hewlett-
Packard" OK?

= Ex2. San Francisco - a query for "francisco"
will match docs about "San Francisco" OK?

o If you consider 1 token then query containing
only one of the two possible tokens will not
match

= Ex3. co-education - a query for "education”
will not match docs about "co-education”.

Numbers

3/20/91 Mar. 12, 1991 20/3/91
55 B.C.

B-52

My PGP key is 324a3df234cb23e

(800) 234-2333

O O O O O

o Often have embedded spaces (but we should not
split the token)

o Older IR systems may not index numbers

= But often very useful: think about things like
looking up error codes/stacktraces on the web

o Will often index “meta-data” separately
= Creation date, format, etc. 10

Tokenization: language issues

o French
= L'ensemble — one token or two?
L?L’?Le?
Want I’'ensemble to match with un ensemble
= Until now, it didn’t on Google
« Internationalization!
o German noun compounds are not segmented
= Lebensversicherungsgesellschaftsangestellter
= ‘life insurance company employee’

= German retrieval systems benefit greatly from a
compound splitter module

= Can give a 15% performance boost for
German.

11

Tokenization: language issues

o Chinese and Japanese have no spaces
between words:

= SSRLREDE R EEERERFA G D EiX,

= Not always guaranteed a unique
tokenization

o Further complicated in Japanese, with multiple
alphabets intermingled

= Dates/amounts in multiple formats

T —F 22 5004 EHTE D=8 #/%Msammm)
N ” b\

—T e
Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana! "

Tokenization: language issues

o Arabic (or Hebrew) is basically written right to
left, but with certain items like numbers written
left to right

o Words are separated, but letter forms within a
word form complex ligatures:

o) Il cp e 132 0 1962 0um si s srd) @G

- > <> — start

Algeria achieved its independence in 1962 after
132 years of French occupation.’

o With Unicode, the surface presentation is
complex, but the stored form is straightforward.

13

Stop words

o With a stop list, you exclude from the dictionary entirely
the commonest words:

= Little semantic content: the, a, and, to, be

= Many of them: ~30% of (positional) postings for top
30 words

o But the trend is away from doing this:

= Good compression techniques means the space for
including stopwords in a system is very small

= Good query optimization techniqgues mean you pay
little at query time for including stop words

= You need them for:
Phrase queries: “King of Denmark”

Various song titles, etc.: “Let it be”, “To be or not
to be”

“Relational” queries: “flights to London” 14

Reuters RCV-1

tokens (= number of positi

(distinct) terms nonpositional postings entries in postings)
number A% T% number A% T% number A% T%

unfiltered 484,494 109,971,179 197,879,290

no numbers 473,723 -2 —2 100,680,242 —8 -8 179,158,204 -9 -9
case folding 391,523 —-17 —-19 96,969,056 -3 =12 179,158,204 -0 -9
30 stop words 391,493 -0 -19 83,390,443 -14 24 121,857,825 -3 —38
150 stop words 391,373 -0 —-19 67,001,847 —-30 —39 94,516,599 —47 —52
stemming 322,383 —-17 —-33 63,812,300 -4 42 94,516,599 —0 —52

O
O

800,000 Documents
Average tokens per document: 247

If the documents are larger do you expect a bigger/
smaller reduction of nonpositional postings when
eliminating stop words?

Online text analysis: http://textalyser.net/

Words frequency data http://www.wordfrequency.info *

Normalization to terms

o We need to “normalize” words in indexed text
as well as query words into the same form

= We want to match U.S.A. and USA

O Result is a term: a term is a (normalized) word
type, which is an entry in our IR system
dictionary

o We define equivalence classes of terms by, e.q.,

= deleting periods to form a t Equivalence
class of a
U.S.A., USA E[USA]

[a] = {x | x~a}
= deleting hyphens to form a term

anti-discriminatory, antidiscriminatory &
[antidiscriminatory] 6

Normalization: other languages

o Accents: e.qg., French résumeé vs. resume

o Umlauts: e.g., German: Tuebingen vs.
Tubingen

= Should be equivalent
O Most important criterion:

= How are your users like to write their queries
for these words?

o Even in languages that standardly have accents,
users often may not type them

» Often best to normalize to a de-accented term

Tuebingen, Tubingen, Tubingen &€
[Tubingen]

17

Normalization: other languages

o Normalization of things like date forms
m 7H30H vs. 7/30
= Japanese use of kana vs. Chinese characters

0 Tokenization and normalization may depend on
the language and so is intertwined with language

detection —_—[1s this
Morgen will ich in MIT ... |German “mit”?

0 Crucial: need to “normalize” indexed text as well
as query terms into the same form.

18

Case folding

0 Reduce all letters to lower case
m exception: upper case in mid-sentence?

e.g.,vWacors/ Federal reserve
Fed vs. fed

saILvs sail | Steel Authority of India

= Often best to lower case everything,
since users will use lowercase regardless
of ‘correct’ capitalization...

0 Google example: Ceterpillar Home
Caterpillar is the world's leading manufacturer of construction and mining equipment, diesel and
| Query C.A. T. natural gas engines, industrial gas turbines and a wide and ... [# Show stock quote for CAT
Caterpillar Products - Machine Specs - Careers - Engine Specs
- # 1 resu |t | S fo r wanaw. cat.com/ - Cached - Similar
: Cat - Wikipedia, the free encyclopedia
Caterpl | |a r II"IC. I/ The cat (Felis silvestris catus), also known as the domestic cat or housecat to distinguish it from
]|]| other felines and felids, is a small carnivorous mammal ...
then usual Cat File - Body language - Diet - Intelligence
en.wikipedia. orgfwiki/Cat - Cached - Similar

Lolcats 'n' Funny Pictures of Cats - | Can Has Cheezburger?
2 Feb 2010 ... Humorous captioned pictures of felings and other animals. Visitors can submifg
their own material or add captions to a large archivetof ...

Normalization to terms

o An alternative to equivalence classing is to
include in the dictionary many variants of a term
and then do asymmetric expansion at query time

o An example of where this may be useful

= User enters: window System searches: window,
windows

= Enter: windows Search: Windows, windows,
window

m Enter: Windows Search: Windows

o Potentially more powerful, but less efficient
(Why?)

20

Thesauri and soundex

o Do we handle synonyms?

= We can rewrite to form hand-constructed
equivalence-class terms

Car ~ automobile color ~ colour

When the document contains automobile,
index it under car-automobile (and vice-versa)

= Or index the terms separately and expand at query
time:

When the query contains automobile, look
under car as well (but what expansions to
consider?)

o What about spelling mistakes?

= One approach is soundex, which forms equivalence
classes of words based on phonetic heuristics.

o And homonyms? 21

Lemmatization

0 Reduce inflectional/variant forms to base form
(the one that you search in your English
dictionary)

o E.qg.,
= am, are, is — be
m car, cars, car's, cars' — car

o "the boy's cars are different colors” — "the boy
car be different color”

o Lemmatization implies doing “proper” reduction
to dictionary headword form.

22

Stemming

O Reduce terms to their “roots” before indexing
o “Stemming” suggest crude affix chopping
language dependent

e.g., automate(s), automatic, automation
all reduced to automat.

for example compressed for exampl compress and
and compression are both j> compress ar both accept
accepted as equivalent to as equival to compress

compress.

Porter’s algorithm

o Commonest algorithm for stemming English

m Results suggest it is at least as good as other
stemming options

o 5 phases of reductions and some conventions:
= phases applied sequentially
= each phase consists of a set of rules

= sample convention: of the rules in a group,
select the one that applies to the longest
suffix.

- Girls/ s" is the suffix

N

"Girl" is the stem

24

in these 4 rules
o ational — ate (e.g., rational -> rate)
o tional — tion (e.g., conventional -> convention)

O sses — ss (e.g., guesses -> guess)
Ojes — | (e.g., dictionaries -> dictionari)

o Is the remaining word a stem? After the
transformation the word should longer than a
threshold (m = number of syllables)

Rule: (m>1) EMENT —

Examples:
replacement — replac (Yes)
cement — cement (No because

c" is not longer than 1 syllable) 25

Other stemmers

o Other stemmers exist, e.g., Lovins stemmer

= http://www.comp.lancs.ac.uk/computing/research/
stemming/general/lovins.htm

= Single-pass, longest suffix removal (about 250
rules)
o Full morphological analysis — at most modest benefits
for retrieval
o Do stemming and other normalizations help?

= English: very mixed results. Helps recall for some
queries but harms precision on others

E.g., operative (dentistry) = oper
= Definitely useful for Spanish, German, Finnish, ...
30% performance gains for Finnish!

26

Examples

Sample text: Such an analysis can reveal features that are not easily visible
from the variations in the individual genes and can lead to a picture of
expression that is more biologically transparent and accessible to
interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th
vari in th individu gen and can lead to a pictur of expres that is mor
biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl
from the variat in the individu gene and can lead to a pictur of express
that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the
vary in the individ gen and can lead to a pict of express that is mor
biolog transp and access to interpret

27

Language-specificity

o Many of the above features embody
transformations that are

= Language-specific and
= Often, application-specific

O These are “plug-in” addenda to the indexing
PDrocess

o Both open source and commercial plug-ins are
available for handling these.

28

Dictionary entries - first cut

ensemble.french

B japanese

MIT.english

mit.german

guaranteed.english

entries.english

sometimes.english

tokenization.english

These may be
grouped by
language (or

not...).

More on this in

ranking/query
processing.

29

PHRASE QUERIES AND POSITIONAL
INDEXES

30

Phrase queries

o Want to be able to answer queries such as
“stanford university” - as a phrase

o Thus the sentence “T went to university at
Stanford” is not a match

= The concept of phrase queries has proven to
be easily understood by users; one of the few
“advanced search” ideas that works

= Many more queries are implicit phrase queries
o For this, it no longer suffices to store only

<term : docs> entries

1. More vocabulary's entries, OR

2. The postings list structure must be expanded.

31

A first attempt: Biword indexes

0 Index every consecutive pair of terms in the text
as a phrase

o For example the text “Friends, Romans,
Countrymen” would generate the biwords

= friends romans
= romans countrymen
o Each of these biwords is now a dictionary term

o Two-word phrase query-processing is now
immediate

= But, what about three words?

32

Longer phrase queries

0 Longer phrases (more than 2) are processed as:

o “stanford university palo alto” can be broken
into the Boolean query on biwords:

n “stanford university” AND “university palo”
AND “palo alto”

o BUT, without looking at the docs, we cannot
verify that the docs matching the above Boolean

query do contain the phrase

,%’/”X
Can have false positives!

33

Extended biwords

O

O

Parse the indexed text and perform Part-Of-Speech-
Tagging (POST)

Bucket the terms into (say) Nouns (N) and articles/
prepositions (X)

Call any string of terms of the form NX*N an extended
biword

» Each such extended biword is now made a term in
the dictionary

Example: catcher in the rye
N X X N
Query processing: parse it into N's and X’'s
= Segment query into enhanced biwords
= Look up in index: catcher X* rye

m But will also match docs containing "catcher with the
rye"!

34

Issues for biword indexes

0 False positives, as noted before
0 Index blowup due to bigger dictionary

= Infeasible for more than biwords, big even for
them

0 Biword indexes are not the standard solution (for
all biwords) but can be part of a compound
strategy.

35

Solution 2: Positional indexes

o In the postings, store, for each term the
position(s) in which tokens of it appear:

<term, number of docs containing term;

Docl, term-freqg in Docl: positionl, position2 ... ;
Doc2, term-freqg in DocZ2: positionl, position2 ... ;

etc.>

36

Positional index example

<be: 993427,

1, 6:7,18,33,72, 86, 231;
2, 2:3,149;

4,5: 17,191, 291, 430, 434
J, 9:363, 367, ...>

<=

Which of docs 1,2,4.5
could contain “to be
or not to be”?

o For phrase queries, we use a merge algorithm
recursively at the document level

o But we now need to deal with more than just

equality

37

Processing a phrase query

O Extract inverted index entries for each distinct
term: to, be, or, not.

o Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

o to: docld, term-freq in docld

w2, 5:1,17,74,222,551; 4, 5:
8,16,190,429,433; 7, 3: 13,23,191; ...
o be:
m1,2:17,19;4,5:1/,191,291,430,440;
5 3:14,19,101; ...

0o Same general method for proximity searches

38

Proximity queries

o LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
= /k means “within k words of”.

o Clearly, positional indexes can be used for such
queries; biword indexes cannot

0 Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it work

for any value of k?

= This is a little tricky to do correctly and
efficiently

= See Figure 2.12 of IIR.

39

Positional Intersect

POSITIONALINTERSECT(p1, p2, k)
1 answer — ()
2 while p; # NIL and p; # NIL
3 doifdocID(pq) = doclD(p,)

4 then ! — ()

5 pp1 < positions(pq) -9‘ Z
6 pp2 — positions(pz) O (ED
7 while pp1 = NIL X

8 do while pp; # NIL = 0O
9 do if |pos(pp1) — pos(pp2)| <k 3 Q
10 then ADD(I, pos(pp;)) ~ 3
11 else if pos(pp,) > pos(pp1) < —
12 then break (@)
13 pp2 — next(pp2) A
14 while! == () and |I[0] — pos(pp1)| > k -~
15 do DELETE(!/[0]) (D
16 for each ps €1 N
17 do ADD(answer, (docID(pq), pos(pp1), ps)) ~
18 pp1 — next(ppq)
19 p1 — next(p1)
20 pa — next(pa)
21 else if docID(p1) < docID(p2)
22 then p; — next(py)
23 else p, — next(p,)

24 return answer

40

Example k=2

O O O O O

O O O O

ppl=<1,3,5>, pp2 = <4,6,8> for DocID=77

L9
L9
L9

1-4
3-4
3-6

<=2? No ; L18 ppl1=<3,5>
<=27Yes; L10 |=<4>; L13 pp2=<6,8>
<=27? No;

Check L14 |4-3|>2? No (so 4 is not deleted from

)

L17 Answer=<(77,3,4)>; L18 ppl=<5>

L9 |5-6|<=2? L10 Yes; |=<4,6>; L13 pp2 =<8>
L9 |5-8|<=2? No

Check L14 |4-5|>2? No (so 4 is not deleted from

)

L17 Answer=<(77,3,4) (77,5,4) (77,5,6)>

Positional index size

o You can compress position values/offsets
(discussed in chapter 5 of IIR book)

0 Nevertheless, a positional index expands postings
storage substantially

o Nevertheless, a positional index is now standardly
used because of the power and usefulness of
phrase and proximity queries ... whether used
explicitly or implicitly in a ranking retrieval
system.

42

Positional index size

o Need an entry for each occurrence, not just once
per document

0 Index size depends on average document size (\Why?
= Average web page has <1000 terms

= SEC filings (U.S. Securities and Exchange
Commission), books, even some epic poems ...
can have easily 100,000 terms

o Consider a term with frequency 0.1%

Document size Non pos. postings | Positional postings
1000 1 1
100,000 1 100

43

Rules of thumb

o A positional index is 2—-4 as large as a non-
positional index

O Positional index size 35-50% of volume of
original text

O Because we use position-ids and term-ids that
are shorter than terms - otherwise positional
index would even larger than original text

o Imagine what is the consequence for indexing the
Web

o Caveat: all of this holds for “English-like”
languages.

44

Combination schemes

O These two approaches can be profitably
combined:

o For particular phrases (“Michael Jackson’,
“Britney Spears”’) it is inefficient to keep on
merging positional postings lists

= Even more so for phrases like “The Who”

(because the positional postings of these
two very common terms will be very

long)

O Use a biword index for certain queries and a
positional index for others.

45

WILD-CARD QUERIES

46

Wild-card queries: *

o mor*: find all docs containing any word
beginning “mon”

o Easy with binary tree (or B-tree) lexicon:
retrieve all words in range: mor = w < mos
o *mor: find words ending in “mon”: harder

= Maintain an additional B-tree for terms
written backwards

= SO0 we can retrieve all words in range: rom =
w < ron.

Exercise: from this, how can we enumerate all terms
meeting the wild-card query pro*cent?

47

Handling*'s in the middle

o How can we handle *’ s in the middle of query
term?

m co*tion

o We could look up co* AND *tion in a B-tree and
intersect the two term sets

= Expensive

o The solution: transform wild-card queries so that
the *’ s occur at the end

O This gives rise to the Permuterm Index.

48

Permuterm index example

hello$

ellosh

hello

lloShe

loShel

L
L
» Figure 3.3 A portion of a permuterm index.

o From the permuterm you get the term and then from the
standard index you get the documents containing the term.

49

Example

$hello
hello$
ello$h
llo$he
lo$hel
o$hell

hello

$help
help$
elp$h
Ip$he
p$hel

help

50

Example

nello
nelp
lo$h
elp$h
nello$
nelp$
lo$he
o$hel

p$he
o$hell

p$hel

“ A

()

3 hello

* help

51

Permuterm index

o For term tech, index the documents containing tech
under multiple keys:

= techs$, echs$t, chste, hstec, $tech - where $ is a
special symbol

0 Queries:

= tech -2 lookup on tech$ - will find only the key
tech - and then retrieve the postings

= tech* - lookup on all terms starting with $tech
($tech*) - will find: $tech, $technical,
$technique, ... and then retrieve the postings of
all these terms

= *tech > lookup tech$* - will find: tech$hi-,
tech$air-, tech$

52

Permuterm Index

o X*Y lookup on Y$X*

= Example: m*n -2 lookup on n$m#* - will find
man, moron, ecc

O The trick is:

= Given a query with 1 wildcard, concatenate
with $ (at the end) and the rotate the query
until the wildcard is at the end

o The trick works also for this: *tech* - lookup on
tech*$* = tech* - will find tech$, tech$hi-,
technical$, technical$hi-

53

Permuterm query processing

o Rotate query wild-card to the right
o Now use B-tree lookup as before

o Collect all the (permu)terms in the B-tree that
are in the range specified by the wild-card (first
the permuterm and then the indexed terms)

0 Search in the inverted index all the documents
indexed by these terms

o Permuterm problem: = quadruples lexicon size

—
Empirical observation for English

54

Bigram (k-gram) indexes

o Enumerate all k-grams (sequence of k chars)
occurring in any term

o e.qg., from text “April is the cruelest month”
we get the 2-grams (bigrams)

$a,ap,pr,ri,il,1$,%i,is,s$,%t,th,he,e$,$c,cr,ru,
ue,el le,es,st,t$, m,mo,on,nt,h

$ is a special word boundary symbol

o Maintain a second inverted index from
bigrams to dictionary terms that match each
bigram.

55

Bigram index example

o The k-gram index finds terms based on a query
consisting of k-grams (here k=2)

$m

mo

\ 4

A 4

on

\ 4

mace — madden |---------- > monday |-
among — amortize “monday |-
abstention —{ abstraction ---~| monday

56

Processing wild-cards

O

O

Query mon* can now be run as
= $m AND mo AND on

Gets terms that match all AND conditions - they
satisfy our wildcard query (necessary condition)

But we will get false positive:
= Eg.: we' d retrieve moon (false positive)
Must post-filter these terms against query

Surviving enumerated terms are then looked up
in the term-document inverted index

Fast, space efficient (compared to permuterm).

57

Processing wild-card queries

o As before, we must execute a Boolean query for
each enumerated, filtered term

o Wild-cards can result in expensive query
execution (very large disjunctions...)

= pyth* AND prog*
o If you encourage “laziness” people will respond!

‘ [Search}

Type your search terms, use * if you need to.
E.g., Alex™ will match Alexander.

o Which web search engines allow wildcard
queries? (please double check)

SPELLING CORRECTION

59

Spell correction

o Two principal uses
= Correcting document(s) being indexed
m Correcting user queries to retrieve “right” answers
o Two main flavors:
= Isolated word
Check each word on its own for misspelling

But this will not catch typos resulting in correctly
spelled words: e.qg., from — form

= Context-sensitive
Look at surrounding words,
e.g., I flew form Heathrow to Narita.

60

Query mis-spellings

o Our principal focus here
= E.g., the query Alanis Morisett
o We can either

= Retrieve documents indexed by “the” correct
spelling (Alanis Morisette), OR

= Return several suggested alternative queries
with the correct spelling

Did you mean ... ?
m One shot vs. Conversational

61

Isolated word correction

o Fundamental premise - there is a lexicon from
which the correct spellings come

O Two basic choices for this
1. A standard lexicon such as
Webster’ s English Dictionary

An “industry-specific” lexicon - hand-
maintained

2. The lexicon of the indexed corpus
E.g., all words on the web
All names, acronyms etc.
(Including the mis-spellings in the corpus)

62

Isolated word correction

o Given a lexicon and a character sequence Q,
return the words in the lexicon closest to Q

o What' s “closest”?

O There are several alternatives (see IIR book)
= Edit distance (Levenshtein distance)
= Weighted edit distance
= n-gram overlap

63

Edit distance

o Given two strings S and T, the minimum number of
operations to convert S (source) into T (target)

o Operations are typically character-level
= Insert, Delete, Replace, (Transposition)

o E.g., the edit distance from dof to dog is 1
= From cat to act is 2 (Just 1 with transpose.)
= from cat to dog is 3.

o Generally found by dynamic programming

o And also
http://en.wikipedia.org/wiki/Levenshtein_distance

64

Weighted edit distance

o The weight of an operation is not constant and
depends on the character(s) involved

= Meant to capture OCR or keyboard errors, e.qg.
m more likely to be mis-typed as n than as g

= Therefore, replacing m by n is a smaller edit
distance than by g

= This may be formulated as a probability model
0 Requires weight matrix as input
o Modify dynamic programming to handle weights.

65

Using edit distances

o Given query:

= EITHER: first enumerate all character sequences
within a preset edit distance (e.g., 2) and then
intersect this set with list of “correct” words found
in the vocabulary

= OR: search in the vocabulary the correct words
within a preset distance to the query

o Show terms you found to user as suggestions
o Alternatively:

1. We can look up all possible corrections in our
inverted index and return all docs ... slow

2. We can run with a single most likely correction

o These last alternatives disempower the user, but
save a round of interaction with the user.

66

Edit distance to all dictionary terms?

o Given a (mis-spelled) query — do we compute its
edit distance to every dictionary term?

= Expensive and slow
= Alternative?

o How do we cut the set of candidate dictionary
terms? Any idea?

o One possibility is to use n-gram overlap for this -
because it is faster (provided that you have the
n-gram index)

o This can also be used by itself for spelling
correction.

67

n-gram overlap

o Enumerate all the n-grams in the query string

o Use the n-gram index (recall wild-card search) to
retrieve all lexicon terms matching any of the
query n-grams (why not all?)

o Or consider a threshold by the number of
matching n-grams (e.g., at least 2 n-grams)

= Variants — weight by keyboard layout, etc.

68

Matching 2-grams

o Matching at least two 2-grams in the word
"bord" will retrieve “aboard”, "border" and

“boardroom”
o But “boardroom” is an unlikely correction — has a

larger edit distance than "aboard"
bo » aboard » about »lboardroo »| border
or » border > lord » morbid » sordid
rd » aboard » ardent »lboardroo »| border

» Figure 3.7 Matching at least two of the three 2-grams in the query bord.

69

Example with trigrams

O Suppose the text is november
= Trigrams are nov, ove, vem,
o The query is dicember
= Trigrams are dic, ice, cem,

emb, mbe, ber.

emb, mbe, ber.

o So 3 trigrams overlap (of 6 in each term)

O How can we turn this into a normalized measure

of overlap?

70

One option - Jaccard coefficient

o A commonly-used measure of overlap
O Let X and Y be two sets; then the J.C. is

XNY|/|XUY
o Equals 1 when X and Y have the same elements
and 0 when they are disjoint
o X and Y don’t have to be of the same size
o Always assigns a number between 0 and 1

= Now threshold to decide if you have a match
= E.g., if J.C. > 0.8, declare a match

71

Reading Material

o Sections: 2.1, 2.2, 2.4
o Sections: 3.2, 3.3

o Advanced search functionalities in google
http://www.google.com/support/websearch/bin/

answer.py?answer=136861

72

