
Part 3: The term 
vocabulary, postings lists 

and tolerant retrieval 

Francesco Ricci 
 

Most of these slides comes from the 
course: 

Information Retrieval and Web Search, 
Christopher Manning and Prabhakar 

Raghavan 
1 



Content 

p  Elaborate basic indexing 
p  Preprocessing to form the term vocabulary 

n  Documents 
n  Tokenization 
n  What terms do we put in the index? 

p  Postings 
n  Phrase queries and positional postings 

p  “Tolerant” retrieval 
n  Wild-card queries 
n  Spelling correction 
n  Soundex 

2 



Recall the basic indexing pipeline 

Tokenizer 

Token stream. Friends Romans Countrymen 
Linguistic 
modules 

Modified tokens. friend roman countryman 

Indexer 

Inverted index. 

friend 

roman 

countryman 

2 4 

2 

13 16 

1 

Documents to 
be indexed. 

Friends, Romans, countrymen. 

3 



Parsing a document 

p  What format is it in? 
n  pdf/word/excel/html? 

p  What language is it in? 
p  What character set encoding is in use? 
p  Each of these is a classification problem, which 

we will study later in the course 
p  But these tasks are often done heuristically: 

n  The classification is predicted with simple rules 
n  Example: "if there are many `the' then it is 

English". 

Sec. 2.1 

4 



Complications: Format/language 

p  Documents being indexed can include docs from 
many different languages 
n  A single index may have to contain terms of 

several languages 
p  Sometimes a document or its components can 

contain multiple languages/formats 
n  French email with a German pdf attachment 

p  What is a unit document? 
n  A file? 
n  An email?  (Perhaps one of many in a mbox) 
n  An email with 5 attachments? 
n  A group of files (PPT or LaTeX as HTML pages). 

Sec. 2.1 

5 



TOKENS AND TERMS 

6 



Tokenization 

p  Input: “Friends, Romans and Countrymen” 
p  Output: Tokens 

n  Friends 
n  Romans 
n  Countrymen 

p  A token is an instance of a sequence of 
characters 

p  Each such token is now a candidate for an index 
entry, after further processing 
n  Described below 

p  But what are valid tokens to emit? 

Sec. 2.2.1 

7 



Tokenization 

p  Issues in tokenization: 
n  Finland’s capital →  
     Finland? Finlands? Finland’s? 
n  Hewlett-Packard → Hewlett and Packard 

as two tokens? 
p state-of-the-art: break up hyphenated 

sequence   
p co-education 
p lowercase, lower-case, lower case ? 

n  San Francisco: one token or two?   
p How do you decide it is one token? 

Sec. 2.2.1 

8 



General Idea 

p  If you consider 2 tokens (e.g. splitting words with 
hyphens) then queries containing only one of the 
two tokens will match 
n  Ex1. Hewlett-Packard – a query for "packard" 

will retrieve documents about "Hewlett-
Packard" OK? 

n  Ex2. San Francisco – a query for "francisco" 
will match docs about "San Francisco" OK? 

p  If you consider 1 token then query containing 
only one of the two possible tokens will not 
match 
n  Ex3. co-education – a query for "education" 

will not match docs about "co-education".  
9 



Numbers 

p  3/20/91     Mar. 12, 1991     20/3/91 
p  55 B.C. 
p  B-52 
p  My PGP key is 324a3df234cb23e 
p  (800) 234-2333 

p  Often have embedded spaces (but we should not 
split the token) 

p  Older IR systems may not index numbers 
n  But often very useful: think about things like 

looking up error codes/stacktraces on the web 
p  Will often index “meta-data” separately 

n  Creation date, format, etc. 

Sec. 2.2.1 

10 



Tokenization: language issues 

p  French 
n  L'ensemble → one token or two? 

p L ? L’ ? Le ? 
p Want l’ensemble to match with un ensemble 

§  Until now, it didn’t on Google 
§  Internationalization! 

p  German noun compounds are not segmented 
n  Lebensversicherungsgesellschaftsangestellter 
n  ‘life insurance company employee’ 
n  German retrieval systems benefit greatly from a 

compound splitter module 
§  Can give a 15% performance boost for 

German. 

Sec. 2.2.1 

11 



Tokenization: language issues 

p  Chinese and Japanese have no spaces 
between words: 
n 莎拉波娃现在居住在美国东南部的佛罗里达。	

n  Not always guaranteed a unique 

tokenization  
p  Further complicated in Japanese, with multiple 

alphabets intermingled 
n  Dates/amounts in multiple formats 

End-user can express query entirely in hiragana! 

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円) 

Katakana Hiragana Kanji Romaji 

Sec. 2.2.1 

12 



Tokenization: language issues 

p  Arabic (or Hebrew) is basically written right to 
left, but with certain items like numbers written 
left to right 

p  Words are separated, but letter forms within a 
word form complex ligatures: 

                                ←  →    ← →                         ← start 

   ‘Algeria achieved its independence in 1962 after 
132 years of French occupation.’ 

p  With Unicode, the surface presentation is 
complex, but the stored form is  straightforward. 

Sec. 2.2.1 

13 



Stop words 
p  With a stop list, you exclude from the dictionary entirely 

the commonest words: 
n  Little semantic content: the, a, and, to, be 
n  Many of them: ~30% of (positional) postings for top 

30 words 
p  But the trend is away from doing this: 

n  Good compression techniques means the space for 
including stopwords in a system is very small 

n  Good query optimization techniques mean you pay 
little at query time for including stop words 

n  You need them for: 
p Phrase queries: “King of Denmark” 
p Various song titles, etc.: “Let it be”, “To be or not 

to be” 
p “Relational” queries: “flights to London” 

Sec. 2.2.2 

14 



Reuters RCV-1 

p  800,000 Documents 
p  Average tokens per document: 247 
p  If the documents are larger do you expect a bigger/

smaller reduction of nonpositional postings when 
eliminating stop words? 

p  Online text analysis: http://textalyser.net/ 
p  Words frequency data http://www.wordfrequency.info 15 



Normalization to terms 

p  We need to “normalize” words in indexed text 
as well as query words into the same form 
n  We want to match U.S.A. and USA 

p  Result is a term: a term is a (normalized) word 
type, which is an entry in our IR system 
dictionary 

p  We define equivalence classes of terms by, e.g.,  
n  deleting periods to form a term 

p  U.S.A., USA  ∈ [USA] 

n  deleting hyphens to form a term 
p  anti-discriminatory, antidiscriminatory ∈ 

[antidiscriminatory] 

Sec. 2.2.3 

Equivalence 
class of a 

[a] = {x | x~a} 

16 



Normalization: other languages 

p  Accents: e.g., French résumé vs. resume 
p  Umlauts: e.g., German: Tuebingen vs. 

Tübingen 
n  Should be equivalent 

p  Most important criterion: 
n  How are your users like to write their queries 

for these words? 
p  Even in languages that standardly have accents, 

users often may not type them 
n  Often best to normalize to a de-accented term 

p Tuebingen, Tübingen, Tubingen ∈ 
[Tubingen] 

Sec. 2.2.3 

17 



Normalization: other languages 

p  Normalization of things like date forms 
n  7月30日 vs. 7/30 
n  Japanese use of kana vs. Chinese characters 

 
p  Tokenization and normalization may depend on 

the language and so is intertwined with language 
detection 

p  Crucial: need to “normalize” indexed text as well 
as query terms into the same form. 

Morgen will ich in MIT …  

Sec. 2.2.3 

Is this 
German “mit”? 

 

18 



Case folding 

p  Reduce all letters to lower case 
n  exception: upper case in mid-sentence? 

p  e.g., General Motors 
p  Fed vs. fed 
p  SAIL vs. sail 

n  Often best to lower case everything, 
since users will use lowercase regardless 
of ‘correct’ capitalization… 

p  Google example: 
n  Query C.A.T.   
n  #1 result is for  

Caterpillar Inc.,  
then "usual" cat 

Sec. 2.2.3 

Federal reserve 

Steel Authority of India 

19 



Normalization to terms 

p  An alternative to equivalence classing is to 
include in the dictionary many variants of a term 
and then do asymmetric expansion at query time 
 

p  An example of where this may be useful 
n  User enters: window   System searches: window, 

windows 
n  Enter: windows  Search: Windows, windows, 

window 
n  Enter: Windows  Search: Windows 

p  Potentially more powerful, but less efficient 
(Why?) 

Sec. 2.2.3 

20 



Thesauri and soundex 

p  Do we handle synonyms? 
n  We can rewrite to form hand-constructed  

equivalence-class terms 
p Car ~ automobile   color ~ colour 
p When the document contains automobile, 

index it under car-automobile (and vice-versa) 
n  Or index the terms separately and expand at query 

time: 
p When the query contains automobile, look 

under car as well (but what expansions to 
consider?) 

p  What about spelling mistakes? 
n  One approach is soundex, which forms equivalence 

classes of words based on phonetic heuristics. 
p  And homonyms? 21 



Lemmatization 

p  Reduce inflectional/variant forms to base form 
(the one that you search in your English 
dictionary)  

p  E.g., 
n  am, are, is → be 
n  car, cars, car's, cars' → car 

p  "the boy's cars are different colors" → "the boy 
car be different color" 

p  Lemmatization implies doing “proper” reduction 
to dictionary headword form. 

Sec. 2.2.4 

22 



Stemming 

p  Reduce terms to their “roots” before indexing 
p  “Stemming” suggest crude affix chopping 

n  language dependent 
n  e.g., automate(s), automatic, automation 

all reduced to automat. 

for example compressed  
and compression are both  
accepted as equivalent to  
compress. 

for exampl compress and 
compress ar both accept 
as equival to compress 

Sec. 2.2.4 

23 



Porter’s algorithm 

p  Commonest algorithm for stemming English 
n  Results suggest it is at least as good as other 

stemming options 
p  5 phases of reductions and some conventions:  

n  phases applied sequentially 
n  each phase consists of a set of rules 
n  sample convention: of the rules in a group, 

select the one that applies to the longest 
suffix. 

p  Girls 

Sec. 2.2.4 

"Girl" is the stem 

"s" is the suffix 

24 



Typical rules in Porter 

p  ational → ate   (e.g., rational -> rate) 
p  tional → tion    (e.g., conventional -> convention) 
p  sses → ss    (e.g., guesses -> guess) 
p  ies → i        (e.g., dictionaries -> dictionari) 

p  Is the remaining word a stem? After the 
transformation the word should longer than a 
threshold (m = number of syllables) 

Sec. 2.2.4 

Rule: (m>1) EMENT → 
Examples: 

 replacement → replac      (Yes) 
 cement  → cement           (No because 
  "c" is not longer than 1 syllable) 

The longest suffix 
in these 4 rules 

25 



Other stemmers 

p  Other stemmers exist, e.g., Lovins stemmer  
n  http://www.comp.lancs.ac.uk/computing/research/

stemming/general/lovins.htm 
n  Single-pass, longest suffix removal (about 250 

rules) 
p  Full morphological analysis – at most modest benefits 

for retrieval 
p  Do stemming and other normalizations help? 

n  English: very mixed results. Helps recall for some 
queries but harms precision on others 
p E.g., operative (dentistry) ⇒ oper 

n  Definitely useful for Spanish, German, Finnish, … 
p 30% performance gains for Finnish! 

Sec. 2.2.4 

26 



Examples 

27 



Language-specificity 

p  Many of the above features embody 
transformations that are 
n  Language-specific and 
n  Often, application-specific 

p  These are “plug-in” addenda to the indexing 
process 

p  Both open source and commercial plug-ins are 
available for handling these. 
 

Sec. 2.2.4 

28 



Dictionary entries – first cut 

ensemble.french 

時間.japanese 

MIT.english 

mit.german 

guaranteed.english 

entries.english 

sometimes.english 

tokenization.english 

These may be 
grouped by 
language (or 

not…).   
More on this in 
ranking/query 

processing. 

Sec. 2.2 

29 



PHRASE QUERIES AND POSITIONAL 
INDEXES 

30 



Phrase queries 

p  Want to be able to answer queries such as 
“stanford university” – as a phrase 

p  Thus the sentence “I went to university at 
Stanford” is not a match 
n  The concept of phrase queries has proven to 

be easily understood by users; one of the few 
“advanced search” ideas that works 

n  Many more queries are implicit phrase queries 
p  For this, it no longer suffices to store only 
   <term : docs> entries 

1.  More vocabulary's entries, OR 
2.  The postings list structure must be expanded. 

Sec. 2.4 

31 



A first attempt: Biword indexes 

p  Index every consecutive pair of terms in the text 
as a phrase 

p  For example the text “Friends, Romans, 
Countrymen” would generate the biwords 
n  friends romans 
n  romans countrymen 

p  Each of these biwords is now a dictionary term 
p  Two-word phrase query-processing is now 

immediate 
n  But, what about three words? 

Sec. 2.4.1 

32 



Longer phrase queries 

p  Longer phrases (more than 2) are processed as: 
p  “stanford university palo alto” can be broken 

into the Boolean query on biwords: 
n  “stanford university” AND “university palo” 

AND “palo alto” 

p  BUT, without looking at the docs, we cannot 
verify that the docs matching the above Boolean 
query do contain the phrase 

Can have false positives! 

33 



Extended biwords 

p  Parse the indexed text and perform Part-Of-Speech-
Tagging (POST) 

p  Bucket the terms into (say) Nouns (N) and articles/
prepositions (X) 

p  Call any string of terms of the form NX*N an extended 
biword 
n  Each such extended biword is now made a term in 

the dictionary 
p  Example:  catcher in the rye 

                N           X   X    N 
p  Query processing: parse it into N’s and X’s 

n  Segment query into enhanced biwords 
n  Look up in index: catcher X* rye 
n  But will also match docs containing "catcher with the 

rye"! 

Sec. 2.4.1 

34 



Issues for biword indexes 

p  False positives, as noted before 
p  Index blowup due to bigger dictionary 

n  Infeasible for more than biwords, big even for 
them 

 
p  Biword indexes are not the standard solution (for 

all biwords) but can be part of a compound 
strategy. 

Sec. 2.4.1 

35 



Solution 2: Positional indexes 

p  In the postings, store, for each term the 
position(s) in which tokens of it appear: 

<term, number of docs containing term; 
Doc1, term-freq in Doc1: position1, position2 … ; 
Doc2, term-freq in Doc2: position1, position2 … ; 
etc.> 

Sec. 2.4.2 

36 



Positional index example 

p  For phrase queries, we use a merge algorithm 
recursively at the document level 

p  But we now need to deal with more than just 
equality 

<be: 993427; 
1, 6: 7, 18, 33, 72, 86, 231; 
2, 2: 3, 149; 
4, 5: 17, 191, 291, 430, 434; 
5, 9: 363, 367, …> 

Which of docs 1,2,4,5 
could contain “to be 

or not to be”? 

Sec. 2.4.2 

37 



Processing a phrase query 

p  Extract inverted index entries for each distinct 
term: to, be, or, not. 

p  Merge their doc:position lists to enumerate all 
positions with “to be or not to be”. 

p  to:  

n 2, 5: 1,17,74,222,551; 4, 5: 
8,16,190,429,433; 7, 3: 13,23,191; ... 

p  be:   

n 1, 2: 17,19; 4, 5: 17,191,291,430,440; 
5, 3: 14,19,101; ... 

p  Same general method for proximity searches 

Sec. 2.4.2 

38 

docId, term-freq in docId 



Proximity queries 

p  LIMIT! /3 STATUTE /3 FEDERAL /2 TORT  
n  /k means “within k words of”. 

p  Clearly, positional indexes can be used for such 
queries; biword indexes cannot 

p  Exercise: Adapt the linear merge of postings to 
handle proximity queries.  Can you make it work 
for any value of k? 
n  This is a little tricky to do correctly and 

efficiently 
n  See Figure 2.12 of IIR. 

Sec. 2.4.2 

39 



Positional Intersect 
N

ew
 p

art to
 ch

eck
  

p
ro

x
im

ity 

40 



Example k=2 

p  pp1=<1,3,5>, pp2 = <4,6,8> for DocID=77 
p  L9 |1-4|<=2? No ; L18 pp1=<3,5> 
p  L9 |3-4|<=2? Yes; L10 l=<4>; L13 pp2=<6,8> 
p  L9 |3-6|<=2? No;  
p  Check L14 |4-3|>2? No (so 4 is not deleted from 

l) 
p  L17 Answer=<(77,3,4)>; L18 pp1=<5> 
p  L9 |5-6|<=2? L10 Yes; l=<4,6>; L13 pp2 =<8> 
p  L9 |5-8|<=2? No 
p  Check L14 |4-5|>2? No (so 4 is not deleted from 

l) 
p  L17 Answer=<(77,3,4) (77,5,4) (77,5,6)> 41 



Positional index size 

p  You can compress position values/offsets 
(discussed in chapter 5 of IIR book)  

p  Nevertheless, a positional index expands postings 
storage substantially 

p  Nevertheless, a positional index is now standardly 
used because of the power and usefulness of 
phrase and proximity queries … whether used 
explicitly or implicitly in a ranking retrieval 
system. 

Sec. 2.4.2 

42 



Positional index size 

p  Need an entry for each occurrence, not just once 
per document 

p  Index size depends on average document size 
n  Average web page has <1000 terms 
n  SEC filings (U.S. Securities and Exchange 

Commission), books, even some epic poems … 
can have easily 100,000 terms 

p  Consider a term with frequency 0.1% 

Why? 

100 1 100,000 

1 1 1000 

Positional postings Non pos. postings Document size 

Sec. 2.4.2 

43 



Rules of thumb 

p  A positional index is 2–4 as large as a non-
positional index 

p  Positional index size 35–50% of volume of 
original text  

p  Because we use position-ids and term-ids that 
are shorter than terms – otherwise positional 
index would even larger than original text 

p  Imagine what is the consequence for indexing the 
Web 

p  Caveat: all of this holds for “English-like” 
languages. 

Sec. 2.4.2 

44 



Combination schemes 

p  These two approaches can be profitably 
combined: 

p  For particular phrases (“Michael Jackson”, 
“Britney Spears”) it is inefficient to keep on 
merging positional postings lists 
n  Even more so for phrases like “The Who”  

p (because the positional postings of these 
two very common terms will be very 
long) 

p  Use a biword index for certain queries and a 
positional index for others. 

Sec. 2.4.3 

45 



WILD-CARD QUERIES 

46 



Wild-card queries: * 

p  mor*: find all docs containing any word 
beginning “mon” 

p  Easy with binary tree (or B-tree) lexicon: 
retrieve all words in range: mor ≤ w < mos 

p  *mor: find words ending in “mon”: harder 
n  Maintain an additional B-tree for terms 

written backwards 
n  So we can retrieve all words in range: rom ≤ 

w < ron. 

Exercise: from this, how can we enumerate all terms 
meeting the wild-card query pro*cent ? 

Sec. 3.2 

47 



Handling*’s in the middle 

p  How can we handle *’s in the middle of query 
term? 
n  co*tion 

p  We could look up co* AND *tion in a B-tree and 
intersect the two term sets 
n  Expensive 

p  The solution: transform wild-card queries so that 
the *’s occur at the end 

p  This gives rise to the Permuterm Index. 

Sec. 3.2 

48 



Permuterm index example 

p  From the permuterm you get the term and then from the 
standard index you get the documents containing the term. 

49 



Example 

$hello 
hello$ 
ello$h 
llo$he 
lo$hel 
o$hell 
 

$help 
help$ 
elp$h 
lp$he 
p$hel 
 

50 

hello 
help 



Example 
$hello 
$help 
ello$h 
elp$h 
hello$ 
help$ 
llo$he 
lo$hel 
lp$he 
o$hell 
p$hel 
 
 

51 

hello 

help 



Permuterm index 

p  For term tech, index the documents containing tech 
under multiple keys: 
n  tech$, ech$t, ch$te, h$tec, $tech - where $ is a 

special symbol 
p  Queries: 

n  tech à lookup on tech$ - will find only the key 
tech – and then retrieve the postings 

n  tech* à lookup on all terms starting with $tech  
($tech*) – will find: $tech, $technical, 
$technique, … and then retrieve the postings of 
all these terms 

n  *tech à lookup tech$* - will find: tech$hi-, 
tech$air-, tech$ 

Sec. 3.2.1 

52 



Permuterm Index 

p  X*Y lookup on Y$X* 
n  Example: m*n à lookup on n$m* - will find 

man, moron, ecc 
p  The trick is:  

n  Given a query with 1 wildcard, concatenate 
with $ (at the end) and the rotate the query 
until the wildcard is at the end 

p  The trick works also for this: *tech* à lookup on 
tech*$* = tech* - will find tech$, tech$hi-, 
technical$, technical$hi- 

53 



Permuterm query processing 

p  Rotate query wild-card to the right 
p  Now use B-tree lookup as before 
p  Collect all the (permu)terms in the B-tree that 

are in the range specified by the wild-card (first 
the permuterm and then the indexed terms) 

p  Search in the inverted index all the documents 
indexed by these terms 

p  Permuterm problem: ≈ quadruples lexicon size 

Empirical observation for English 

Sec. 3.2.1 

54 



Bigram (k-gram) indexes 

p  Enumerate all k-grams (sequence of k chars) 
occurring in any term 

p  e.g., from text “April is the cruelest month” 
we get the 2-grams (bigrams) 

n  $ is a special word boundary symbol 
p  Maintain a second inverted index from 

bigrams to dictionary terms that match each 
bigram. 

$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru, 
ue,el,le,es,st,t$, $m,mo,on,nt,h$ 

Sec. 3.2.2 

55 



Bigram index example 

p  The k-gram index finds terms based on a query 
consisting of k-grams (here k=2) 

mo 

on 

among 

$m mace 

abstention 

amortize 

madden 

abstraction 

Sec. 3.2.2 

monday 

monday 

monday 

56 



Processing wild-cards 

p  Query mon* can now be run as 
n  $m AND mo AND on 

p  Gets terms that match all AND conditions - they 
satisfy our wildcard query (necessary condition) 

p  But we will get false positive: 
n  Eg.: we’d retrieve moon (false positive) 

p  Must post-filter these terms against query 
p  Surviving enumerated terms are then looked up 

in the term-document inverted index 
p  Fast, space efficient (compared to permuterm). 

Sec. 3.2.2 

57 



Processing wild-card queries 

p  As before, we must execute a Boolean query for 
each enumerated, filtered term 

p  Wild-cards can result in expensive query 
execution (very large disjunctions…) 
n  pyth* AND prog* 

p  If you encourage “laziness” people will respond! 

p  Which web search engines allow wildcard 
queries? (please double check) 

Search 
Type your search terms, use ‘*’ if you need to. 
E.g., Alex* will match Alexander. 

 
 
 
 

Sec. 3.2.2 

58 



SPELLING CORRECTION 

59 



Spell correction 

p  Two principal uses 
n  Correcting document(s) being indexed 
n  Correcting user queries to retrieve “right” answers 

p  Two main flavors: 
n  Isolated word 

p Check each word on its own for misspelling 
p But this will not catch typos resulting in correctly 

spelled words: e.g., from → form 
n  Context-sensitive 

p Look at surrounding words,  
p e.g., I flew form Heathrow to Narita. 

Sec. 3.3 

60 



Query mis-spellings 

p  Our principal focus here 
n  E.g., the query Alanis Morisett 

p  We can either 
n  Retrieve documents indexed by “the” correct 

spelling (Alanis Morisette), OR 
n  Return several suggested alternative queries 

with the correct spelling 
p Did you mean … ? 

n  One shot vs. Conversational 

Sec. 3.3 

61 



Isolated word correction 

p  Fundamental premise – there is a lexicon from 
which the correct spellings come 

p  Two basic choices for this 
1.  A standard lexicon such as 

p  Webster’s English Dictionary 
p  An “industry-specific” lexicon – hand-

maintained 
2.  The lexicon of the indexed corpus 

p  E.g., all words on the web 
p  All names, acronyms etc. 
p  (Including the mis-spellings in the corpus) 

Sec. 3.3.2 

62 



Isolated word correction 

p  Given a lexicon and a character sequence Q, 
return the words in the lexicon closest to Q 

p  What’s “closest”? 
p  There are several alternatives (see IIR book) 

n  Edit distance (Levenshtein distance) 
n  Weighted edit distance 
n  n-gram overlap 

Sec. 3.3.2 

63 



Edit distance 

p  Given two strings S and T, the minimum number of 
operations to convert S (source) into T (target) 

p  Operations are typically character-level 
n  Insert, Delete, Replace, (Transposition) 

p  E.g., the edit distance from dof to dog is 1 
n  From cat to act is 2 (Just 1 with transpose.) 
n  from cat to dog is 3.   

p  Generally found by dynamic programming 
p  And also 

http://en.wikipedia.org/wiki/Levenshtein_distance 

Sec. 3.3.3 

64 



Weighted edit distance 

p  The weight of an operation is not constant and 
depends on the character(s) involved 
n  Meant to capture OCR or keyboard errors, e.g. 

m more likely to be mis-typed as n than as q 
n  Therefore, replacing m by n is a smaller edit 

distance than by q 
n  This may be formulated as a probability model 

p  Requires weight matrix as input 
p  Modify dynamic programming to handle weights. 

Sec. 3.3.3 

65 



Using edit distances 
p  Given query:  

n  EITHER: first enumerate all character sequences 
within a preset edit distance (e.g., 2) and then 
intersect this set with list of “correct” words found 
in the vocabulary 

n  OR: search in the vocabulary the correct words 
within a preset distance to the query  

p  Show terms you found to user as suggestions 
p  Alternatively: 

1.  We can look up all possible corrections in our 
inverted index and return all docs … slow 

2.  We can run with a single most likely correction 
p  These last alternatives disempower the user, but 

save a round of interaction with the user. 

Sec. 3.3.4 

66 



Edit distance to all dictionary terms? 

p  Given a (mis-spelled) query – do we compute its 
edit distance to every dictionary term? 
n  Expensive and slow 
n  Alternative? 

p  How do we cut the set of candidate dictionary 
terms? Any idea? 

p  One possibility is to use n-gram overlap for this – 
because it is faster (provided that you have the 
n-gram index) 

p  This can also be used by itself for spelling 
correction. 

Sec. 3.3.4 

67 



n-gram overlap 

p  Enumerate all the n-grams in the query string 
p  Use the n-gram index (recall wild-card search) to 

retrieve all lexicon terms matching any of the 
query n-grams (why not all?) 

p  Or consider a threshold by the number of 
matching n-grams (e.g., at least 2 n-grams) 
n  Variants – weight by keyboard layout, etc. 

Sec. 3.3.4 

68 



Matching 2-grams 

p  Matching at least two 2-grams in the word 
"bord" will retrieve “aboard”, "border" and 
“boardroom” 

p  But “boardroom” is an unlikely correction – has a 
larger edit distance than "aboard" 

69 



Example with trigrams 

p  Suppose the text is november 
n  Trigrams are nov, ove, vem, emb, mbe, ber. 

p  The query is dicember 
n  Trigrams are   dic, ice, cem, emb, mbe, ber. 

p  So 3 trigrams overlap (of 6 in each term) 
p  How can we turn this into a normalized measure 

of overlap? 

Sec. 3.3.4 

70 



One option – Jaccard coefficient 

p  A commonly-used measure of overlap 
p  Let X and Y be two sets; then the J.C. is 

p  Equals 1 when X and Y have the same elements 
and 0 when they are disjoint 

p  X and Y don’t have to be of the same size 
p  Always assigns a number between 0 and 1 

n  Now threshold to decide if you have a match 
n  E.g., if J.C. > 0.8, declare a match  

YXYX ∪∩ /

Sec. 3.3.4 

71 



Reading Material 

p  Sections: 2.1, 2.2, 2.4  
p  Sections: 3.2, 3.3 
p  Advanced search functionalities in google 

http://www.google.com/support/websearch/bin/
answer.py?answer=136861 

72 


