Part 8: Relevance Feedback

Francesco Ricci

Most of these slides comes from the course:
Information Retrieval and Web Search,
Christopher Manning and Prabhakar Raghavan
Content

- Local methods
 - Relevance feedback
 - Pseudo relevance feedback
 - Indirect (implicit) relevance feedback

- Global methods
 - Query expansion
 - Thesauri
 - Automatic thesaurus generation
 - Query log mining
Relevance Feedback

- Relevance feedback: *user feedback on relevance of docs in initial set of results*
 - User issues a (short, simple) query
 - The *user* marks some results as relevant or non-relevant
 - The *system* **computes a better query representation of the information need based on feedback**
 - Relevance feedback can go through one or more iterations

- **Idea:** it may be difficult to formulate a good query when you don’t know the collection well, so iterate.
Example: search images

Google images search for bikes.

Feedback button is visible.

Related searches: cartoon bike, bmx bike, mountain bike, bicycle.

Images related to bikes and cities worldwide.

Available bikes and 1207 x 753 - 326k - gif
Find similar images

Six Crazy Concept 640 x 483 - 67k - jpg
Find similar images

sneaker meets bike 500 x 375 - 52k - jpg
Find similar images

The Youth Clinic 1 379 x 385 - 152k - png
Find Similar Images

Mountain bikes 406 x 300 - 31k - jpg
Find similar images
New Interface
Preference-based: DieToRecs

There are two ways to gain easily travel recommendations:
- Follow one of the alternatives you are interested and you will receive detailed offers.
- Rate the alternatives, click "Submit" and you will receive additional alternatives.

[Explorations of user preferences in travel recommendation]

[Ricci et al., 2006]
Exploratory Search: Example
Critiquing

Entree Results

We recommend:

Dave's Italian Kitchen (map)
906 Church St. (bet. Ridge & Sherman Aves.), Evanston, 708-864-6000

Italian

below $15

Fair Decor, Excellent Service, Excellent Food, No Reservations,
Weekend Brunch, Carry in Wine and Beer, Wheelchair Access, Long Drive

less $15 menu cuisine

traditional creative lively quieter

For other suggestions, select:

Dave's Italian Kitchen Dancing Noodles Cafe Anna Maria Pasteria
Gusto Italiano La Sorella di Francesca Mia Francesca
Carlucci Village Rosebud
Spavone's Seven Hills Salvatore's
Critiquing Interaction

Initial preferences

System *shows* K examples

User revises the preference model by critiquing examples

User picks the final choice
Key concept: Centroid

- The **centroid** is the center of mass of a set of points
- Recall that we represent documents as points in a high-dimensional space
- Definition: Centroid

\[
\tilde{\mu}(C) = \frac{1}{|C|} \sum_{d \in C} \vec{d}
\]

where \(C \) is a set of documents.

How would you call it if \(C \) is a set of numbers?
Example

- The centroid is not normalized
The Theoretically Best Query

Optimal query

\(\times\) non-relevant documents
\(\circ\) relevant documents
Rocchio Algorithm

- The Rocchio algorithm uses the vector space model to pick a relevance feedback query.
- Rocchio seeks the query \vec{q}_{opt} that maximizes

$$\vec{q}_{opt} = \arg \max_{\vec{q}} [\cos(\vec{q}, \bar{u}(C_r)) - \cos(\vec{q}, \bar{u}(C_{nr}))]$$

- Tries to separate docs marked relevant C_r and non-relevant C_{nr} – the solution is:

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\vec{d}_j \in C_r} \vec{d}_j - \frac{1}{|C_{nr}|} \sum_{\vec{d}_j \notin C_r} \vec{d}_j$$

- Problem: we don’t know the truly relevant docs.
Rocchio 1971 Algorithm (SMART)

- Used in practice:
 \[\tilde{q}_m = \alpha \tilde{q}_0 + \beta \frac{1}{|D_r|} \sum_{\tilde{d}_j \in D_r} \tilde{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\tilde{d}_j \in D_{nr}} \tilde{d}_j \]

- \(D_r \) = set of known relevant doc vectors
- \(D_{nr} \) = set of known irrelevant doc vectors
 - These are different from \(C_r \) and \(C_{nr} \)!
- \(q_m \) = modified query vector; \(q_0 \) = original query vector; \(\alpha, \beta, \gamma \): weights (hand-chosen or set empirically)
- New query moves toward relevant documents and away from irrelevant documents.
Relevance feedback on initial query

- **Initial query**
- **Revised query**

- X known non-relevant documents
- O known relevant documents
Subtleties to note

- Tradeoff α vs. β and γ: If we have a lot of judged documents, we want a higher β and γ
- Some weights in query vector can go negative:
 - Negative term weights are ignored (set to 0)
- **Positive** feedback is more valuable than negative feedback (so, set $\gamma < \beta$; e.g. $\gamma = 0.25, \beta = 0.75$) - many systems only allow positive feedback ($\gamma = 0$)
- Relevance feedback can improve recall and precision
- Relevance feedback is most useful for increasing recall in situations where recall is important – why?
 - Users can be expected to review results and to take time to iterate – when recall is important.
Relevance Feedback: Assumptions

- A1: User has sufficient knowledge for initial query
- A2: Relevance prototypes are “well-behaved”
 - Term distribution in relevant documents will be similar
 - Term distribution in non-relevant documents will be different from those in relevant documents
 - Either: all relevant documents are tightly clustered around a single prototype
 - Or: there are different prototypes, but they have significant vocabulary overlap
 - Similarities between relevant and irrelevant documents are small.
Violation of A1

- User **does not have** sufficient initial knowledge to be able to make an initial query which is at least somewhere **close** to the documents they desire

- Examples:
 - Misspellings (Brittany Speers) – *there will be no relevant docs to positively feedback*
 - Cross-language information retrieval (hígado) – *documents in another language are not nearby*
 - Mismatch of searcher’s vocabulary vs. collection vocabulary
 - E.g.: searching "laptop" but in the docs is mentioned as "notebook" – no relevant docs are shown – no feedback is possible.
Violation of A2

- There are several relevance prototypes – in different clusters
- Examples:
 - Burma/Myanmar
 - Instances of a general concept, which often appear as a disjunction of more specific concepts, e.g.: felines
 - Pop stars that worked at Burger King – documents about the pop star and documents about Burger King that refer to the pop star.
Relevance Feedback: Problems

- Long queries are inefficient for typical IR engine
 - Long response times for user
 - High cost for retrieval system
- Partial solution:
 - Only reweight certain prominent terms - perhaps top 20 by term frequency
- Users are often reluctant to provide explicit feedback
- It’s often harder to understand why a particular document was retrieved after applying relevance feedback
- Information needs may change during the interaction (so what?).
Evaluation of relevance feedback strategies

- Use q_0 and compute precision and recall graph
- Use q_m and compute precision recall graph
 - 1) Assess on all documents in the collection
 - Spectacular improvements, but ... it’s cheating!
 - Known relevant documents ranked higher
 - Must evaluate with respect to documents not seen by user
 - 2) Use documents in residual collection (all docs minus those assessed relevant)
 - Measures usually then lower than for original query
 - But a more realistic evaluation
 - Relative performance can be validly compared
- Empirically, one round of relevance feedback is often very useful - two rounds is sometimes marginally useful.
Evaluation of relevance feedback

- Second method – assess only the docs *not* rated by the user in the first round
 - Could make relevance feedback look worse than it really is
 - Can still assess relative performance of algorithms
- Most satisfactory – use two collections each with their own relevance assessments (i.e., split randomly the collection in two parts)
 - q_0 and user feedback from first collection
 - q_m run on second collection and measured.
Evaluation: Caveat

- True evaluation of usefulness must compare to other methods **taking the same amount of time** – or using similar user effort
- Alternative to relevance feedback: user revises and resubmits query
 - See next topic: query expansion
- Users may prefer revision/resubmission to having to judge relevance of documents
- There is no clear evidence that relevance feedback is the “best use” of the user’s time – it may be in some "situations".
Relevance Feedback on the Web

- Some search engines offer a similar/related pages feature (this is a simple form of relevance feedback)
 - Google (link-based)
 - Altavista
 - Stanford WebBase
- But some don’t because it’s hard to explain to average user:
 - Alltheweb, msn live.com, Yahoo
- Excite initially had true relevance feedback, but abandoned it due to lack of use.
Excite Relevance Feedback

Spink et al. 2000

- Only about 4% of query sessions from a user used relevance feedback option
 - Expressed as “More like this” link next to each result
- But about 70% of users only looked at first page of results and didn’t pursue things further
 - So 4% is about 1/8 (13%) of people extending search (30%)
- For people who used relevance feedback: improved results about 2/3 of the time.
Pseudo relevance feedback

- Pseudo-relevance feedback automates the “manual” part of true relevance feedback

- Pseudo-relevance algorithm:
 - Retrieve a ranked list of hits for the user’s query
 - Assume that the top k documents are relevant
 - Do relevance feedback (e.g., Rocchio)

- Works very well on average

- But can go horribly wrong for some queries: e.g. if the top results of a query are all about a subtopic

- Several iterations can cause query drift

- Why?
Indirect (implicit) relevance feedback

- On the web, DirectHit introduced a form of indirect relevance feedback
- DirectHit ranked documents higher that users look at more often
 - Clicked on links are assumed likely to be relevant
 - Assuming the displayed summaries are good, etc.
- Where considered globally: not user or query specific
 - This is the general area of clickstream mining
- Today – handled as part of machine-learned ranking.
Managing implicit feedback in information search

What can I derive from the fact that a user clicked on the 2nd link?
Learning to rank

- If all the users click on the third link then Yahoo should provide a different ranking for that query.
Adapting the Search Engine

- SE could be adapted to a **specific user**: using just his own clicks *(personalization)*

- SE could be adapted to a community: e.g., the students attending this course

- SE could be adapted to a specific documents collection
Percentage of queries where a user **viewed** the search result presented at a particular rank (measured with eye tracking).
Search Engines Bias Users II

- Blue is the normal rank
- Red is obtained by swapping the top two results.

Percentage of queries where a user clicked the result presented at a given rank.
Query Expansion

- In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the query for documents.

- In query expansion, users give additional input (good/bad search term) on words or phrases:
 - Generally it is simpler than relevance feedback.
Would you expect such a feature to increase the query volume at a search engine?
How do we augment the user query?

- Manual thesaurus
 - E.g. MedLine: **physician**, syn: *doc, doctor, MD, medico*
 - Can be related queries rather than just synonyms

- **Global Analysis**: static; based on all documents in collection
 - Automatically derived thesaurus
 - co-occurrence statistics
 - Refinements based on query log mining
 - Common on the web

- **Local Analysis**: dynamic
 - Analysis of documents in *result set*
Example of manual thesaurus

PubMed Query:

{"neoplasms"[MeSH Terms] OR cancer[Text Word]}
Thesaurus-based query expansion

- For each term, \(t \), in a query, expand the query with synonyms and related words of \(t \) from the thesaurus
 - feline \(\rightarrow \) feline cat
- May weight added terms less than original query terms
- Generally increases recall
- Widely used in many science/engineering fields
- May significantly decrease precision, particularly with ambiguous terms
 - “interest rate” \(\rightarrow \) “interest rate benefit evaluate”
- There is a high cost of manually producing a thesaurus
 - And for updating it for scientific changes.
WordNet

- **WordNet®** is a large lexical database of English (*there are also other languages*)
- Nouns, verbs, adjectives and adverbs are grouped into sets of cognitive synonyms - **Synsets** - each expressing a distinct concept
- Synsets are interlinked by means of conceptual-semantic and lexical relations.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypernym</td>
<td>From concepts to superordinates</td>
<td>water$^1 \rightarrow$ liquid</td>
</tr>
<tr>
<td>Hyponym</td>
<td>From concepts to subtypes</td>
<td>water$^1 \rightarrow$ seawater</td>
</tr>
<tr>
<td>Has-Part</td>
<td>From groups to their members</td>
<td>water$^1 \rightarrow$ oxygen</td>
</tr>
<tr>
<td>Part-of</td>
<td>From members to their groups</td>
<td>water$^1 \rightarrow$ ice</td>
</tr>
<tr>
<td>Antonym</td>
<td>Opposites</td>
<td>leader\rightarrow follower</td>
</tr>
</tbody>
</table>
Automatic Thesaurus Generation

- Attempt to generate a thesaurus automatically by analyzing the collection of documents
- Fundamental notion: *similarity between two words* (can we use Jaccard on word bigrams or Levenshtein?)
- Definition 1: Two words are similar if they often co-occur
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words
 - You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar
- Co-occurrence based is more robust, grammatical relations are more accurate.
Co-occurrence Thesaurus

- Simplest way to compute one co-occurrence thesaurus is based on term-term similarities in $C = AA^T$ where A is term-document matrix.
- Alternatively $A = [w_{i,j}]_{MxN} = \text{(row normalized) weight for } (t_i, d_j)$

For each t_i, pick terms t_j with high C_{ij} values

What does $C = AA^T$ contain if A is the term-doc incidence (0/1) matrix?
Automatic Thesaurus Generation

Example

<table>
<thead>
<tr>
<th>word</th>
<th>ten nearest neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>absolutely</td>
<td>absurd whatsoever totally exactly nothing</td>
</tr>
<tr>
<td>bottomed</td>
<td>dip copper drops topped slide trimmed slight</td>
</tr>
<tr>
<td>captivating</td>
<td>shimmer stunningly superbly plucky witty</td>
</tr>
<tr>
<td>doghouse</td>
<td>dog porch crawling beside downstairs gazed</td>
</tr>
<tr>
<td>Makeup</td>
<td>repellent lotion glossy sunscreen Skin gel pads</td>
</tr>
<tr>
<td>mediating</td>
<td>reconciliation negotiate cease conciliation reconciliation</td>
</tr>
<tr>
<td>keeping</td>
<td>hoping bring wiping could some would other</td>
</tr>
<tr>
<td>lithographs</td>
<td>drawings Picasso Dali sculptures Gauguin</td>
</tr>
<tr>
<td>pathogens</td>
<td>toxins bacteria organisms bacterial parasite</td>
</tr>
<tr>
<td>senses</td>
<td>grasp psyche truly clumsy naive innate awake</td>
</tr>
</tbody>
</table>
Quality of associations is usually a problem.

Term ambiguity may introduce irrelevant statistically correlated terms:
- “Apple computer” \rightarrow “Apple red fruit computer” (synsets are not distinguished)

Problems:
- False positives: Words deemed similar that are not.
- False negatives: Words deemed dissimilar that are similar.

Since terms are highly correlated anyway, expansion may not retrieve many additional documents.
Query assist

- Generally done by query log mining
- Recommend frequent recent queries that contain partial string typed by user
- A ranking problem! View each prior query as a doc – Rank-order those matching partial string ...
Resources

IIR Ch 9