
The YouTube Video Recommendation System

James Davidson
Google Inc

davidson@google.com

Benjamin Liebald
Google Inc

liebald@google.com

Junning Liu
Google Inc

ljn@google.com
Palash Nandy

Google Inc
palash@google.com

Taylor Van Vleet
Google Inc

tvv@google.com

ABSTRACT
We discuss the video recommendation system in use at
YouTube, the world’s most popular online video commu-
nity. The system recommends personalized sets of videos to
users based on their activity on the site. We discuss some
of the unique challenges that the system faces and how we
address them. In addition, we provide details on the exper-
imentation and evaluation framework used to test and tune
new algorithms. We also present some of the findings from
these experiments.

Categories and Subject Descriptors
H.3 [Information Systems]: Information Storage and Re-
trieval; H.4 [Information Systems]: Information Systems
Applications

General Terms
Algorithms, Measurement

1. INTRODUCTION
Personalized recommendations are a key method for infor-

mation retrieval and content discovery in today’s information-
rich environment. Combined with pure search (querying)
and browsing (directed or non-directed), they allow users
facing a huge amount of information to navigate that infor-
mation in an efficient and satisfying way. As the largest and
most-popular online video community with vast amounts of
user-generated content, YouTube presents some unique op-
portunities and challenges for content discovery and recom-
mendations.

Founded in February 2005, YouTube has quickly grown
to be the world’s most popular video site. Users come
to YouTube to discover, watch and share originally-created
videos. YouTube provides a forum for people to engage with
video content across the globe and acts as a distribution plat-
form for content creators. Every day, over a billion video
plays are done across millions of videos by millions of users,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys2010, September 26–30, 2010, Barcelona, Spain.
Copyright 2010 ACM 978-1-60558-906-0/10/09 ...$10.00.

and every minute, users upload more than 24 hours of video
to YouTube.

In this paper, we present our video recommendation sys-
tem, which delivers personalized sets of videos to signed
in users based on their previous activity on the YouTube
site (while recommendations are also available in a limited
form to signed out users, we focus on signed in users for
the remainder of this paper). Recommendations are fea-
tured in two primary locations: The YouTube home page
(http://www.youtube.com) and the “Browse”page at http:
//www.youtube.com/videos. An example of how recom-
mendations are presented on the homepage can be found
in Figure 1.

1.1 Goals
Users come to YouTube for a wide variety of reasons which

span a spectrum from more to less specific: To watch a
single video that they found elsewhere (direct navigation), to
find specific videos around a topic (search and goal-oriented

browse), or to just be entertained by content that they find
interesting. Personalized Video Recommendations are one
way to address this last use case, which we dub unarticulated

want.
As such, the goal of the system is to provide personalized

recommendations that help users find high quality videos rel-
evant to their interests. In order to keep users entertained
and engaged, it is imperative that these recommendations
are updated regularly and reflect a user’s recent activity on
the site. They are also meant to highlight the broad spec-
trum of content that is available on the site.

In its present form, our recommendation system is a top-N
recommender rather than a predictor [4]. We review how we
evaluate the success of the recommendation system in sec-
tion 3 of this paper. An additional primary goal for YouTube
recommendations is to maintain user privacy and provide
explicit control over personalized user data that our back-
end systems expose. We review how we address this goal in
section 2.5.

1.2 Challenges
There are many aspects of the YouTube site that make

recommending interesting and personally relevant videos to
users a unique challenge: Videos as they are uploaded by
users often have no or very poor metadata. The video cor-
pus size is roughly on the same order of magnitude as the
number of active users. Furthermore, videos on YouTube
are mostly short form (under 10 minutes in length). User
interactions are thus relatively short and noisy. Compare
this to user interactions with movie rental or purchase sites

293

Figure 1: A screenshot of the recommendations module on the YouTube home page

such as Netflix or Amazon where renting a movie or pur-
chasing an item are very clear declarations of intent. In
addition, many of the interesting videos on YouTube have
a short life cycle going from upload to viral in the order of
days requiring constant freshness of recommendation.

2. SYSTEM DESIGN
The overall design of the recommendation system is guided

by the goals and challenges outlined above: We want rec-
ommendations to be reasonably recent and fresh, as well as
diverse and relevant to the user’s recent actions. In addi-
tion, it’s important that users understand why a video was
recommended to them.

The set of recommended videos videos is generated by
using a user’s personal activity (watched, favorited, liked
videos) as seeds and expanding the set of videos by travers-
ing a co-visitation based graph of videos. The set of videos
is then ranked using a variety of signals for relevance and
diversity.

From an engineering perspective, we want individual com-
ponents of the system to be decoupled from each other, al-
lowing them to be understood and debugged in isolation.
Given that our system is part of the larger YouTube ecosys-
tem, recommendations also needs to be resilient to failure
and degrade gracefully in case of partial failures. As a con-
sequence, we strive to minimize complexity in the overall
system.

2.1 Input data
During the generation of personalized video recommenda-

tions we consider a number of data sources. In general, there
are two broad classes of data to consider: 1) content data,
such as the raw video streams and video metadata such as
title, description, etc, and 2) user activity data, which can
further be divided into explicit and implicit categories. Ex-
plicit activities include rating a video, favoriting/liking a
video, or subscribing to an uploader. Implicit activities are
datum generated as a result of users watching and interact-
ing with videos, e.g., user started to watch a video and user
watched a large portion of the video (long watch).

In all cases, the data that we have at our disposal is quite
noisy: Video metadata can be non-existent, incomplete, out-
dated, or simply incorrect; user data only captures a fraction
of a user’s activity on the site and only indirectly measures
a user’s engagement and happiness, e.g., the fact that a user
watched a video in its entirety is not enough to conclude
that she actually liked it. The length of the video and user

engagement level all influence the signal quality. Moreover,
implicit activity data is generated asynchronously and can
be incomplete, e.g., the user closes the browser before we
receive a long-watch notification.

2.2 Related Videos
One of the building blocks of the recommendation system

is the construction of a mapping from a video vi to a set
of similar or related videos Ri. In this context, we define
similar videos as those that a user is likely to watch after
having watched the given seed video v. In order to com-
pute the mapping we make use of a well-known technique
known as association rule mining [1] or co-visitation counts.
Consider sessions of user watch activities on the site. For a
given time period (usually 24 hours), we count for each pair
of videos (vi, vj) how often they were co-watched within ses-
sions. Denoting this co-visitation count by cij , we define the
relatedness score of video vj to base video vi as:

r(vi, vj) =
cij

f(vi, vj)
(1)

where ci and cj are the total occurrence counts across
all sessions for videos vi and vj , respectively. f(vi, vj) is
a normalization function that takes the “global popularity”
of both the seed video and the candidate video into ac-
count. One of the simplest normalization functions is to
simply divide by the product of the videos’ global popular-
ity: f(vi, vj) = ci · cj . Other normalization functions are
possible. See [6] for an overview of possible choices. When
using the simple product of cardinalities for normalization,
ci is the same for all candidate related videos and can be
ignored in our setting, so we are normalizing only by the
candidate’s global popularity. This essentially favors less
popular videos over popular ones.

We then pick the set of related videos Ri for a given seed
video vi as the top N candidate videos ranked by their scores
r(vi, vj). Note that in addition to only picking the top N
videos, we also impose a minimum score threshold. Hence,
there are many videos for which we will not be able to com-
pute a reliable set of related videos this way because their
overall view count (and thereby co-visitation counts with
other videos) is too low.

Note that this is a simplified description. In practice there
are additional problems that need to be solved—presentation
bias, noisy watch data, etc.—and additional data sources
beyond co-visitation counts that can be used: sequence and
time stamp of video watches, video metadata, etc.

294

The related videos can be seen as inducing a directed
graph over the set of videos: For each pair of videos (vi, vj),
there is an edge eij from vi to vj iff vj ∈ Ri, with the weight
of this edge given by (1).

2.3 Generating Recommendation Candidates
To compute personalized recommendations we combine

the related videos association rules with a user’s personal
activity on the site: This can include both videos that were
watched (potentially beyond a certain threshold), as well as
videos that were explicitly favorited, “liked”, rated, or added
to playlists. We call the union of these videos the seed set.

In order to obtain candidate recommendations for a given
seed set S, we expand it along the edges of the related videos
graph: For each video vi in the seed set consider its related
videos Ri. We denote the union of these related video sets
as C1:

C1(S) =
[

vi∈S

Ri (2)

In many cases, computing C1 is sufficient for generating a
set of candidate recommendations that is large and diverse
enough to yield interesting recommendations. However, in
practice the related videos for any videos tend to be quite
narrow, often highlighting other videos that are very similar
to the seed video. This can lead to equally narrow rec-
ommendations, which do achieve the goal of recommending
content close to the user’s interest, but fail to recommend
videos which are truly new to the user.

In order to broaden the span of recommendations, we ex-
pand the candidate set by taking a limited transitive closure
over the related videos graph. Let Cn be defined as the set
of videos reachable within a distance of n from any video in
the seed set:

Cn(S) =
[

vi∈Cn−1

Ri (3)

where C0 = S is the base case for the recursive definition
(note that this yields an identical definition for C1 as equa-
tion (2)). The final candidate set Cfinal of recommendations
is then defined as:

Cfinal = (
N
[

i=0

Ci) \ S (4)

Due to the high branching factor of the related videos
graph we found that expanding over a small distance yielded
a broad and diverse set of recommendations even for users
with a small seed set. Note that each video in the candi-
date set is associated with one or more videos in the seed
set. We keep track of these seed to candidate associations
for ranking purposes and to provide explanations of the rec-
ommendations to the user.

2.4 Ranking
After the generation step has produced a set of candidate

videos they are scored and ranked using a variety of signals.
The signals can be broadly categorized into three groups
corresponding to three different stages of ranking: 1) video
quality, 2) user specificity and 3) diversification.

Video quality signals are those signals that we use to judge
the likelihood that the video will be appreciated irrespective

of the user. These signals include view count (the total num-
ber of times a video has been watched), the ratings of the
video, commenting, favoriting and sharing activity around
the video, and upload time.

User specificity signals are used to boost videos that are
closely matched with a user’s unique taste and preferences.
To this end, we consider properties of the seed video in the
user’s watch history, such as view count and time of watch.

Using a linear combination of these signals we generate a
ranked list of the candidate videos. Because we display only
a small number of recommendations (between 4 and 60), we
have to choose a subset of the list. Instead of choosing just
the most relevant videos we optimize for a balance between
relevancy and diversity across categories. Since a user gen-
erally has interest in multiple different topics at differing
times, videos that are too similar to each other are removed
at this stage to further increase diversity. One simple way
to achieve this goal is to impose constraints on the number
of recommendations that are associated with a single seed
video, or by limiting the number of recommendations from
the same channel (uploader). More sophisticated techniques
based on topic clustering and content analysis can also be
used.

2.5 User Interface
Presentation of recommendations is an important part of

the overall user experience. Figure 1 shows how recommen-
dations are currently presented on YouTube’s home page.
There are a few features worth noting: First, all recom-
mended videos are displayed with a thumbnail and their
(possibly truncated) title, as well as information about video
age and popularity. This is similar to other sections on the
homepage and helps users decide quickly whether they are
interested in a video. Furthermore, we add an explanation

with a link to the seed video which triggered the recom-
mendation. Last, we give users control over where and how
many recommendations they want to see on the homepage.

As mentioned in section 2.4, we compute a ranked list of
recommendations but only display a subset at serving time.
This enables us to provide new and previously unseen rec-
ommendations every time the user comes back to the site,
even if the underlying recommendations have not been re-
computed.

2.6 System Implementation
We choose a batch-oriented pre-computation approach rather

than on-demand calculation of recommendations. This has
the advantages of allowing the recommendation generation
stage access to large amounts of data with ample amounts of
CPU resources while at the same time allowing the serving
of the pre-generated recommendations to be extremely low
latency. The most significant downside of this approach is
the delay between generating and serving a particular rec-
ommendation data set. We mitigate this by pipelining the
recommendation generation, updating the data sets several
times per day.

The actual implementation of YouTube’s recommendation
system can be divided into three main parts: 1) data collec-
tion, 2) recommendation generation and 3) recommendation
serving.

The raw data signals previously mentioned in section 2.1
are initially deposited into YouTube’s logs. These logs are
processed, signals extracted, and then stored on a per user

295

basis in a Bigtable [2]. We currently handle millions of users
and tens of billions of activity events with a total footprint
of several terabytes of data.

Recommendations are generated through a series of MapRe-
duces computations [3] that walk through the user/video
graph to accumulate and score recommendations as described
in section 2.

The generated data set sizes are relatively small (on the
order of Gigabytes) and can be easily served by simpli-
fied read-only Bigtable servers to YouTube’s webservers; the
time to complete a recommendation request is mostly dom-
inated by network transit time.

3. EVALUATION
In our production system we use live evaluation via A/B

testing [5] as the main method for evaluating the perfor-
mance of the recommendation system. In this method, live
traffic is diverted into distinct groups where one group acts
as the control or baseline and the other group is exposed to
a new feature, data, or UI. The two groups are then com-
pared against one another over a set of predefined metrics
and possibly swapped for another period of time to elimi-
nate other factors. The advantage of this approach is that
evaluation takes place in the context of the actual website
UI. It’s also possible to run multiple experiments in parallel
and get quick feedback on all of them. The downsides are
that not all experiments have reasonable controls that can
be used for comparison, the groups of users must have suf-
ficient traffic to achieve statistically significant results in a
timely manner and evaluation of subjective goals is limited
to the interpretation of a relatively small set of pre-defined
metrics.

To evaluate recommendation quality we use a combina-
tion of different metrics. The primary metrics we consider
include click through rate (CTR), long CTR (only counting
clicks that led to watches of a substantial fraction of the
video), session length, time until first long watch, and rec-
ommendation coverage (the fraction of logged in users with
recommendations). We use these metrics to both track per-
formance of the system at an ongoing basis as well as for
evaluating system changes on live traffic.

4. RESULTS
The recommendations feature has been part of the YouTube

homepage for more than a year and has been very successful
in context of our stated goals. For example, recommenda-
tions account for about 60% of all video clicks from the home
page.

Comparing the performance of recommendations with other
modules on the homepage suffers from presentation bias
(recommendations are placed at the top by default). To
adjust for this, we look at CTR metrics from the “browse”
pages and compare recommendations to other algorithmi-
cally generated video sets: a) Most Viewed - Videos that
have received the most number of views in a day, b) Top
Favorited - Videos that the viewers have added to their col-
lection of favorites and c) Top Rated - Videos receiving most
like ratings in a day.

We measured CTR for these sections over a period of 21
days. Overall we find that co-visitation based recommen-
dation performs at 207% of the baseline Most Viewed page
when averaged over the entire period, while Top Favorited

Figure 2: Per-day average CTR for different browse

page types over a period of 3 weeks.

and Top Rated perform at similar levels or below the Most
Viewed baseline. See figure 2 for an illustration of how the
relative CTR varies over the period of 3 weeks.

5. ACKNOWLEDGMENTS
We would like to thank John Harding, Louis Perrochon

and Hunter Walk for support and comments.

6. ADDITIONAL AUTHORS
Additional authors: Ullas Gargi, Sujoy Gupta, Yu He,

Mike Lambert, Blake Livingston, Dasarathi Sampath (all
Google Inc, emails {ullas, sujoy, yuhe, lambert, blivingston,
dasarathi}@google.com).

7. REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large
databases. SIGMOD Rec., 22(2):207–216, 1993.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. In USENIX ’07, pages 205–218, 2006.

[3] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI ’04, pages
137–150, 2004.

[4] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[5] S. Huffman. Search evaluation at Google.
http://googleblog.blogspot.com/2008/09/

search-evaluation-at-google.html, 2008.

[6] E. Spertus, M. Sahami, and O. Buyukkokten.
Evaluating similarity measures: a large-scale study in
the orkut social network. In KDD ’05, pages 678–684,
New York, NY, USA, 2005. ACM.

296

