Chapter 12
Recursion

Java Software Solutions
Foundations of Program Design
Seventh Edition

John Lewis
William Loftus
Recursion

• Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems

• Chapter 12 focuses on:
 – thinking in a recursive manner
 – programming in a recursive manner
 – the correct use of recursion
 – recursion examples
Recursive Thinking

• A recursive definition is one which uses the word or concept being defined in the definition itself.

• When defining an English word, a recursive definition is often not helpful.

• But in other situations, a recursive definition can be an appropriate way to express a concept.

• Before applying recursion to programming, it is best to practice thinking recursively.
Recursive Definitions

• Consider a list of numbers:

 24, 88, 40, 37

• A list can be defined as follows:

 A List is a: number
 or a: number comma List

• That is, a List is defined to be a single number, or a number followed by a comma followed by a List

• The concept of a List is used to define itself
Recursive Definitions

The recursive part of the LIST definition is used several times, terminating with the non-recursive part:

<table>
<thead>
<tr>
<th>LIST: number comma LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 , 88, 40, 37</td>
</tr>
<tr>
<td>number comma LIST</td>
</tr>
<tr>
<td>88 , 40, 37</td>
</tr>
<tr>
<td>number comma LIST</td>
</tr>
<tr>
<td>40 , 37</td>
</tr>
<tr>
<td>number</td>
</tr>
<tr>
<td>37</td>
</tr>
</tbody>
</table>
Peano's def. of Natural Numbers

• The following two **axioms** define the natural numbers
 – 0 is a natural number
 – For every natural number \(n \), \(S(n) \) – the successor of \(n \) - is a natural number

• The number 1 can be defined as \(S(0) \), 2 as \(S(S(0)) \) (which is also \(S(1) \)), and, in general, any natural number \(n \) as \(S^n(0) \)

• The next two axioms define their properties:
 – For every natural number \(n \), \(S(n) = 0 \) is false. That is, **there is no natural number whose successor is 0**
 – For all natural numbers \(m \) and \(n \), if \(S(m) = S(n) \), then \(m = n \). That is, \(S \) is an injection.
Infinite Recursion

• All recursive definitions **have to have** a non-recursive part called the *base case*

• If they didn't, there would be **no way to terminate** the recursive path

• For instance:

 A List is a: number comma List

• Such a definition would cause *infinite recursion*

• This problem is similar to an infinite loop
Quiz

What is printing the program described in this flowchart?
Factorial – Iterative version

```java
public int itFactorial (int n) {
    int m = 1, f = 1;
    while (m < n) {
        ++m;
        f = f * m;
    }
    return f;
}
```
Recursive Definition: Factorial

• N!, for any positive integer N, is defined to be the product of all integers between 1 and N inclusive

\[N! = N \times (N-1) \times (N-2) \times \ldots \times 2 \times 1 \]

• This definition can be expressed recursively as:

\[1! = 1 \]
\[N! = N \times (N-1)! \]

• A factorial is defined in terms of another factorial

• Eventually, the base case of 1! is reached
Recursive Factorial

\[5! = 5 \times 4! = 4 \times 3! = 3 \times 2! = 2 \times 1! = 1 \]

\[1 \times 2 = 2 \]

\[1 \times 6 = 6 \]

\[1 \times 24 = 24 \]

\[1 \times 120 = 120 \]
Quick Check

Write a recursive definition of e^n, where $n \geq 0$.
Quick Check

Write a recursive definition of e^n, where $n \geq 0$.

\[e^0 = 1 \]
\[e^n = e \times e^{n-1} \]

In this way you can compute e^n by just using multiplications.
Quick Check

Write a recursive definition of

\[f(n) = 5 \times n \]

where \(n > 0 \).
Quick Check

Write a recursive definition of

\[f(n) = 5 \times n \]

where \(n > 0 \).

\[
\begin{align*}
5 \times 1 &= 5 \\
5 \times n &= 5 + (5 \times (n-1))
\end{align*}
\]

\[
\begin{align*}
f(1) &= 5 \\
f(n) &= 5 + f(n-1)
\end{align*}
\]
Quick Check

Write a recursive definition of $f(n) = \frac{(n+1)n}{2}$, where $n > 0$.
Quick Check

Write a recursive definition of $f(n) = (n + 1)n/2$, where $n > 0$.

$f(1) = 1$

$$f(n+1) = (n + 2)(n + 1)/2 = (n + 1)n/2 + 2(n+1)/2$$
$$= f(n) + (n + 1)$$
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
private class SliderListener implements ChangeListener {
 private int red, green, blue;

 //---
 // Gets the value of each slider, then updates the labels and
 // the color panel.
 //---
 public void stateChanged (ChangeEvent event) {
 red = rSlider.getValue();
 green = gSlider.getValue();
 blue = bSlider.getValue();

 rLabel.setText ("Red: " + red);
 gLabel.setText ("Green: " + green);
 bLabel.setText ("Blue: " + blue);

 colorPanel.setBackground (new Color (red, green, blue));
 }
}
Recursive Programming

• A **recursive method** is a method that **invokes itself**

• A recursive method must be structured to handle both the **base case** and the **recursive case**

• **Each call** to the method sets up a **new execution environment**, with new parameters and local variables

• As with any method call, when the method completes, control returns to the method that invoked it (which may be an earlier invocation of itself)
Sum of 1 to N

• Consider the problem of computing the sum of all the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

\[
\sum_{i=1}^{N} i = N + \sum_{i=1}^{N-1} i = N + (N-1) + \sum_{i=1}^{N-2} i
\]

\[
= N + N - 1 + N - 2 + \sum_{i=1}^{N-3} i
\]

\[
= N + N - 1 + N - 2 + \cdots + 2 + 1
\]
Sum of 1 to N

• The summation could be implemented recursively as follows:

```java
// This method returns the sum of 1 to num
public int sum (int num) {
    int result;
    if (num == 1)
        result = 1;
    else
        result = num + sum (num-1);
    return result;
}
```
public int sum (int num)
{
 int result;

 if (num == 1)
 result = 1;
 else
 result = num + sum (num-1);

 return result;
}
Recursive Programming

• Note that just because we can use recursion to solve a problem, doesn't mean we should

• We usually would not use recursion to solve the summation problem, because the iterative version is easier to understand

• However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version (e.g. Fibonacci)

• You must carefully decide whether recursion is the correct technique for any problem
Quiz

- Write a recursive method that computes the factorial of a non-negative int number n:
 $\text{factorial}(0)=1$, $\text{factorial}(n) = n \times \text{factorial}(n-1)$
public int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial(n - 1);
}

factorial(4)
 factorial(3)
 factorial(2)
 factorial(1)
 factorial(0)
 return 1
 return 1*1 = 1
 return 2*1 = 2
 return 3*2 = 6
 return 4*6 = 24
Indirect Recursion

• A method invoking itself is considered to be *direct recursion*

• A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again

• For example, method m_1 could invoke m_2, which invokes m_3, which in turn invokes m_1 again

• This is called *indirect recursion*, and requires all the same care as direct recursion

• It is often more difficult to trace and debug
Indirect Recursion

m1 → m2 → m3

m1 ← m2 ← m3

m1 ← m2 ← m3

m1 ← m2 ← m3
Quiz

L is the left propagation and R is the right propagation:

• \(L(n) = L(R(n-1)) \)
• \(R(n) = R(L(n-1)) \)
• \(L(1) = R(1) = k \)

• For which values of \(k > 0 \), \(L(n) \) and \(R(n) \) terminate for all \(n > 0 \)?
Quiz

L is the left propagation and R is the right propagation:

• \(L(n) = L(R(n-1)) \)
• \(R(n) = R(L(n-1)) \)
• \(L(1) = R(1) = k \)

For which values of \(k > 0 \), \(L(n) \) and \(R(n) \) terminate for all \(n > 0 \)?

• Only \(k = 1 \) (and \(L \) and \(R \) are constant functions = 1)
• In fact, if \(k = 2 \) then:
 – \(L(2) = L(R(1)) = L(2) \) infinite loop
• If \(k = 3 \) then:
 – \(L(3) = L(R(2)) = L(R(L(1))) = L(R(3)) = L(R(2)) \) infinite loop
• If \(k = 4 \) …
Quiz

• What does the following recursive function return? Try it when the parameter s is your name.

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```
Quiz

• What does the following recursive function return?

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```

The reverse of the input string.
Mathematical Induction

• Recursive programming is directly related to *mathematical induction*, a technique for proving facts about discrete functions

• Proving by mathematical induction that a statement involving an integer N is true for all N involves two steps:

 – **The base case:** to prove the statement true for some specific value or values of N (usually 0 or 1).

 – **The induction step:** assume that a statement is true for all positive integers less than N, then use that fact to prove it true for N.
Proof by Induction Example

• Prove that:
 – \[1 + 2 + 3 + 4 + \ldots + N = \frac{(N+1)N}{2} \]

• **Base case:**
 – \[1 = \frac{(1+1)1}{2} \] TRUE

• **Induction step:**
 – Assume that it is true for \(N-1 \)
 • \[1+ \ldots + (N-1) = \frac{N(N-1)}{2} \]
 – Then:
 • \[1+ \ldots + (N-1) + N = \frac{N(N-1)}{2} + N \]
 • \[= \frac{(N^2 - N + 2N)}{2} \]
 • \[= \frac{(N^2 + N)}{2} = \frac{(N + 1)N}{2} \] Q.E.D.
Without using Induction

• Prove that:
 \[1 + 2 + 3 + 4 + \ldots + N = S_n = \frac{(N+1)N}{2} \]

• \[(1 + 2 + 3 + 4 + \ldots + N) + (1 + 2 + 3 + 4 + \ldots + N) = 2S_n \]
• \[(1 + 2 + 3 + 4 + \ldots + N) + (N + (N-1) + \ldots + 1) = 2S_n \]
• \[(1 + N) + (2 + N-1) + (3 + N-2) + \ldots + (N + 1) = 2S_n \]
• \[N(N+1) = 2S_n \]
• \[S_n = \frac{(N+1)N}{2} \]
Quiz

• Consider the fibonacci sequence:
 – f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
 – 0, 1, 1, 2, 3, 5, 8, 13, ..

• Prove by induction that:
 – For all n > 0, f(3n) is even
Quiz

• Consider the fibonacci sequence:
 – \(f(0) = 0, f(1) = 1; f(n) = f(n-1) + f(n-2) \)
 – 0, 1, 1, 2, 3, 5, 8, 13, ..

• Prove by induction that:
 – For all \(n > 0 \), \(f(3n) \) is even

• Base case \(n=1 \)
 – \(f(3) = 2 \) TRUE

• Induction step
 – if \(f(3n) \) is even we must prove that \(f(3(n+1)) \) is even
 – \(f(3(n+1)) = f(3n+2) + f(3n+1) = f(3n+1) + f(3n) + f(3n+1) = 2f(3n+1) + f(3n) \) THIS is EVEN
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?

```
f(5)  f(4)  f(3)  f(3)  f(2)  f(2)  f(2)  f(1)  f(1)  f(1)  f(1)  f(1)  f(0)  f(0)  f(0)
```

15 calls
Iterative version of Fibonacci

```c
int itFibonacci(int n) {
    int result = 0, prec = 1;
    for (int i = 1; i <= n; i++) {
        result += prec;  // f(i) = f(i-1) + f(i-2)
        prec = result - prec;  // f(i-1) = f(i) - f(i-2)
    }
    return result;
}
```

f(0) = 0, f(1) = 1, f(2) = 1, ..., f(n) = f(n-1) + f(n-2)
0, 1, 1, 2, 3, 5, 8, 13, ...
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Maze Traversal

- We can use recursion to find a path through a maze
- From each location, we can search in each direction
- The recursive calls keep track of the path through the maze
- The base case is an invalid move or reaching the final destination

See MazeSearch.java
See Maze.java
public class MazeSearch
{
 // Creates a new maze, prints its original form, attempts to
 // solve it, and prints out its final form.
 public static void main (String[] args)
 {
 Maze labyrinth = new Maze();

 System.out.println (labyrinth);

 if (labyrinth.traverse (0, 0))
 System.out.println ("The maze was successfully traversed!");
 else
 System.out.println ("There is no possible path.");

 System.out.println (labyrinth);
 }
}
public class MazeSearch {
 public static void main(String[] args) {
 Maze labyrinth = new Maze();
 System.out.println(labyrinth);
 if (labyrinth.traverse(0, 0)) {
 System.out.println("The maze was successfully traversed!");
 } else {
 System.out.println("There is no possible path.");
 }
 System.out.println(labyrinth);
 }
}
public class Maze
{
 private final int TRIED = 3;
 private final int PATH = 7;

 private int[][] grid = {
 {1,1,1,0,1,1,0,0,0,1,1,1,1},
 {1,0,1,1,1,0,1,1,1,1,0,0,1},
 {0,0,0,0,1,0,1,0,1,0,1,0,0},
 {1,1,1,0,1,1,1,0,1,0,1,1,1},
 {1,0,1,0,0,0,0,1,1,1,0,0,1},
 {1,0,1,1,1,1,1,1,0,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0},
 {1,1,1,1,1,1,1,1,1,1,1,1,1}
 };

 // continued
public boolean traverse (int row, int column)
{
 boolean done = false;

 if (valid (row, column))
 {
 grid[row][column] = TRIED; // this cell has been tried

 if (row == grid.length-1 && column == grid[0].length-1)
 done = true; // the maze is solved – base case
 else
 {
 done = traverse (row+1, column); // down
 if (!done)
 done = traverse (row, column+1); // right
 if (!done)
 done = traverse (row-1, column); // up
 if (!done)
 done = traverse (row, column-1); // left
 }

 if (done) // this location is part of the final path
 grid[row][column] = PATH;
 }

 return done;
}
private boolean valid (int row, int column) {
 boolean result = false;
 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)
 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 result = true;

 return result;
}
public String toString ()
{
 String result = "\n";

 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }

 return result;
}
Quiz

• Trace the calls to traverse() and valid() for the maze row0=11, row1=01
Quiz

- Trace the calls to `traverse()` and `valid()` for the maze row0=11, row1=01

```plaintext
traverse(0,0)
  valid(0,0)=TRUE
  grid[0][0]=3
  traverse(1,0)
    valid(1,0) = FALSE
    return=FALSE
  traverse(0,1)
    valid(0,1)=TRUE
    grid[0][1]=3
  traverse(1,1)
    valid(1,1)=TRUE
    grid[1][1]=3
    done=TRUE
  grid[1][1]=7
  return TRUE

done=traverse(1,1)=TRUE
grid[0][1]=7
return = TRUE
done=traverse(0,1)=TRUE
grid[0][0]=7
return TRUE
```
Towers of Hanoi

- The *Towers of Hanoi* is a puzzle made up of three vertical pegs and several disks that slide onto the pegs.

- The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller ones on top.

Start
Towers of Hanoi

• The goal is to move all of the disks from one peg to another

• Under the following rules:
 – Move only one disk at a time
 – A larger disk cannot be put on top of a smaller one
Towers of Hanoi

Original Configuration

Move 1

Move 2

Move 3

Target
Towers of Hanoi

Move 4

Move 5

Move 6

Move 7 (done)
Recursive Solution

• To solve a N-tower
 1. Solve the (N-1)-tower: move the (N-1)-tower in the middle peg
 2. Move the largest disc to target peg
 3. Solve the (N-1)-tower: move the (N-1)-tower from the middle peg to the target peg
Towers of Hanoi

• An iterative solution to the Towers of Hanoi is quite complex

• A recursive solution is much shorter and more elegant

• See SolveTowers.java
• See TowersOfHanoi.java
public class SolveTowers
{
 //-------------------------------
 // Creates a TowersOfHanoi puzzle and solves it.
 //-------------------------------
 public static void main (String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi (4);

 towers.solve();
 }
}
```java
public class SolveTowers {
    public static void main(String[] args) {
        TowersOfHanoi towers = new TowersOfHanoi(4);
        towers.solve();
    }
}
```

Output

```
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 3 to 1
Move one disk from 3 to 2
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 2 to 1
Move one disk from 3 to 1
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
```
public class TowersOfHanoi
{
 private int totalDisks;

 // Sets up the puzzle with the specified number of disks.
 public TowersOfHanoi (int disks)
 {
 totalDisks = disks;
 }

 // Performs the initial call to moveTower to solve the puzzle.
 // Moves the disks from tower 1 to tower 3 using tower 2.
 public void solve ()
 {
 moveTower (totalDisks, 1, 3, 2);
 }
}

continued
// Moves the specified number of disks from one tower to another
// by moving a subtower of n-1 disks out of the way, moving one
// disk, then moving the subtower back. Base case of 1 disk.
//
private void moveTower (int numDisks, int start, int end, int temp) {
 if (numDisks == 1)
 moveOneDisk (start, end);
 else
 {
 moveTower (numDisks-1, start, temp, end);
 moveOneDisk (start, end);
 moveTower (numDisks-1, temp, end, start);
 }
}

// Prints instructions to move one disk from the specified start
tower to the specified end tower.
//
private void moveOneDisk (int start, int end) {
 System.out.println ("Move one disk from " + start + " to " + end);
}
public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x - 1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?
A) 11
B) 8
C) 5
D) 3
E) 24
public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x-1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?

C) 5

The method computes x - y if x > y. The method works as follows: each time the method is called recursively, it subtracts 1 from x until (x == y) is becomes true, and adds 1 to the return value. So, 1 is added each time the method is called, and the method is called once for each int value between x and y.
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \((x == y)\)
B) \((x != y)\)
C) \((x > y)\)
D) \((x < y)\)
E) \((x == 0 && y != 0)\)
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \(x == y\)
B) \(x != y\)
C) \(x > y\)
D) \(x < y\)
E) \(x == 0 && y != 0\)

If \(x < y\) is true initially, then the else clause is executed resulting in the method being recursively invoked with a value of \(x - 1\), or a smaller value of \(x\), so that \(x < y\) will be true again, and so for each successive recursive call, \(x < y\) will be true and the base case, \(x == y\), will never be true.
Quiz

What does the following method compute? Assume the method is called initially with $i = 0$

```
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```
Quiz

What does the following method compute? Assume the method is called initially with $i = 0$

```java
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```

The number of times char b appears in String a. The method compares each character in String a with char b until i reaches the length of String a. 1 is added to the return value for each match.
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Tiled Pictures

• Consider the task of repeatedly displaying a set of images in a mosaic
 – Three quadrants contain individual images
 – Upper-left quadrant repeats pattern

• The base case is reached when the area for the images shrinks to a certain size

• See TiledPictures.java
import java.awt.*;
import javax.swing.JApplet;

public class TiledPictures extends JApplet {
 private final int APPLET_WIDTH = 320;
 private final int APPLET_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private Image world, everest, goat;

 continue
public void init()
{
 world = getImage (getDocumentBase(), "world.gif");
 everest = getImage (getDocumentBase(), "everest.gif");
 goat = getImage (getDocumentBase(), "goat.gif");

 setSize (APPLET_WIDTH, APPLET_HEIGHT);
}

public void drawPictures (int size, Graphics page)
{
 page.drawImage (everest, 0, size/2, size/2, size/2, this);
 page.drawImage (goat, size/2, 0, size/2, size/2, this);
 page.drawImage (world, size/2, size/2, size/2, size/2, this);

 if (size > MIN)
 drawPictures (size/2, page);
}
continue

//-- ---
// Performs the initial call to the drawPictures method.
//-- ---
public void paint (Graphics page)
{
 drawPictures (APPLET_WIDTH, page);
}
}
continue

// ------------------
// Performs the
// ------------------
public void
{
 drawPictures

}
import javax.swing.JFrame;

public class TiledPicturesApp {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Tiled Pictures");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new TiledPicturesPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

Application version of the previous applet
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.JPanel;

public class TiledPicturesPanel extends JPanel {

 private final int PANEL_WIDTH = 320;
 private final int PANEL_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private BufferedImage world, everest, goat;

 continue
public TiledPicturesPanel() {
 try {
 world = ImageIO.read(new File("world.gif"));
 everest = ImageIO.read(new File("everest.gif"));
 goat = ImageIO.read(new File("goat.gif"));
 } catch (IOException e) {
 }
 setPreferredSize(new Dimension(PANEL_WIDTH, PANEL_HEIGHT));
}

continue
```
public void drawPictures(int size, Graphics page) {
    page.drawImage(everest, 0, size / 2, size / 2, size / 2, this);
    page.drawImage(goat, size / 2, 0, size / 2, size / 2, this);
    page.drawImage(world, size / 2, size / 2, size / 2, size / 2, this);
    if (size > MIN) {
        drawPictures(size / 2, page);
    }
}

public void paintComponent(Graphics page) {
    super.paintComponent(page);
    drawPictures(PANEL_WIDTH, page);
}
```
Fractals

• A fractal is a geometric shape made up of the same pattern repeated in different sizes and orientations

• The Koch Snowflake is a particular fractal that begins with an equilateral triangle

• To get a higher order of the fractal, the sides of the triangle are replaced with angled line segments

• See KochSnowflake.java
• See KochPanel.java
import javax.swing.JFrame;

public class KochSnowflakeApp {

 public static void main (String[] args) {
 JFrame frame = new JFrame("Kock Snowflake");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new KochMainPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

This is an application; in the book you find an applet.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KochMainPanel extends JPanel implements ActionListener {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 440;

 private final int MIN = 1, MAX = 9;

 private JButton increase, decrease;
 private JLabel titleLabel, orderLabel;
 private KochPanel drawing;
 private JPanel tools;

 public class KochMainPanel extends JPanel implements ActionListener {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 440;

 private final int MIN = 1, MAX = 9;

 private JButton increase, decrease;
 private JLabel titleLabel, orderLabel;
 private KochPanel drawing;
 private JPanel tools;

 continue
public KochMainPanel()
{
 tools = new JPanel();
 tools.setLayout (new BoxLayout(tools, BoxLayout.X_AXIS));
 tools.setPreferredSize (new Dimension (PANEL_WIDTH, 40));
 tools.setBackground (Color.yellow);
 tools.setOpaque (true);

 titleLabel = new JLabel ("The Koch Snowflake");
 titleLabel.setForeground (Color.black);

 increase = new JButton (new ImageIcon ("increase.gif"));
 increase.setPressedIcon (new ImageIcon ("increasePressed.gif"));
 increase.addActionListener (this);

 decrease = new JButton (new ImageIcon ("decrease.gif"));
 decrease.setPressedIcon (new ImageIcon ("decreasePressed.gif"));
 decrease.addActionListener (this);
}
orderLabel = new JLabel ("Order: 1");
orderLabel.setForeground (Color.black);

tools.add (titleLabel);
tools.add (Box.createHorizontalStrut (40));
tools.add (decrease);
tools.add (increase);
tools.add (Box.createHorizontalStrut (20));
tools.add (orderLabel);

drawing = new KochPanel (1);

add (tools);
add (drawing);

setPreferredSize (PANEL_WIDTH, PANEL_HEIGHT);
}
```java
continue

// Determines which button was pushed, and sets the new order if it is in range.

public void actionPerformed (ActionEvent event)
{
    int order = drawing.getOrder();

    if (event.getSource() == increase)
        order++;
    else
        order--;

    if (order >= MIN && order <= MAX)
    {
        orderLabel.setText ("Order: " + order);
        drawing.setOrder (order);
        repaint();
    }
}
```
```java
// Determines which button was pushed, and sets the new order
// if it is in range.

public void actionPerformed(ActionEvent event) {
    int order = drawing.getOrder();
    if (event.getSource() == increase)
        order++;
    else
        order--;
    if (order >= MIN && order <= MAX) {
        orderLabel.setText("Order: " + order);
        drawing.setOrder(order);
        repaint();
    }
}
```
Koch Snowflakes

\[= \sqrt{\frac{3}{6}} \cdot |P_5 - P_1| \]
//**
// KochPanel.java Author: Lewis/Loftus
//
// Represents a drawing surface on which to paint a Koch Snowflake.
//**

import java.awt.*;
import javax.swing.JPanel;

public class KochPanel extends JPanel
{
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 400;

 private final double SQ = Math.sqrt(3.0) / 6;

 private final int TOPX = 200, TOPY = 20;
 private final int LEFTX = 60, LEFTY = 300;
 private final int RIGHTX = 340, RIGHTY = 300;

 private int current; // current order
// Draws the fractal recursively. The base case is order 1 for which a simple straight line is drawn. Otherwise three intermediate points are computed, and each line segment is drawn as a fractal.

public void drawFractal (int order, int x1, int y1, int x5, int y5, Graphics page)
{
 int deltaX, deltaY, x2, y2, x3, y3, x4, y4;

 if (order == 1)
 page.drawLine (x1, y1, x5, y5);
 else
 {
 deltaX = x5 - x1; // distance between end points
 deltaY = y5 - y1;

 x2 = x1 + deltaX / 3; // one third
 y2 = y1 + deltaY / 3;

 x3 = (int) ((x1+x5)/2 + SQ * (y1-y5)); // tip of projection
 y3 = (int) ((y1+y5)/2 + SQ * (x5-x1));
\[
x_4 = x_1 + \text{deltaX} \times \frac{2}{3}; \quad \text{// two thirds}
y_4 = y_1 + \text{deltaY} \times \frac{2}{3};
\]

\[
\text{drawFractal} \ (\text{order-1, } x_1, y_1, x_2, y_2, \text{page});
\]
\[
\text{drawFractal} \ (\text{order-1, } x_2, y_2, x_3, y_3, \text{page});
\]
\[
\text{drawFractal} \ (\text{order-1, } x_3, y_3, x_4, y_4, \text{page});
\]
\[
\text{drawFractal} \ (\text{order-1, } x_4, y_4, x_5, y_5, \text{page});
\]

//---
// Performs the initial calls to the drawFractal method.
//---

class Graphics
{
 public void paintComponent (Graphics page)
 {
 super.paintComponent (page);

 page.setColor (Color.green);

 \[
 \text{drawFractal} \ (\text{current, TOPX, TOPY, LEFTX, LEFTY, page});
 \]
 \[
 \text{drawFractal} \ (\text{current, LEFTX, LEFTY, RIGHTX, RIGHTY, page});
 \]
 \[
 \text{drawFractal} \ (\text{current, RIGHTX, RIGHTY, TOPX, TOPY, page});
 \]
 }
continue
// Sets the fractal order to the value specified.
public void setOrder (int order)
{
 current = order;
}

// Returns the current order.
public int getOrder ()
{
 return current;
}

Summary

• Chapter 12 has focused on:
 – thinking in a recursive manner
 – programming in a recursive manner
 – the correct use of recursion
 – recursion examples