Chapter 12
Recursion

Java Software Solutions
Foundations of Program Design
Seventh Edition

John Lewis
William Loftus
Recursion

• Recursion is a fundamental programming technique that can provide an elegant solution certain kinds of problems

• Chapter 12 focuses on:
 – thinking in a recursive manner
 – programming in a recursive manner
 – the correct use of recursion
 – recursion examples
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Recursive Thinking

• A recursive definition is one which uses the word or concept being defined in the definition itself

• When defining an English word, a recursive definition is often not helpful

• But in other situations, a recursive definition can be an appropriate way to express a concept

• Before applying recursion to programming, it is best to practice thinking recursively
Recursive Definitions

• Consider a list of numbers:

 24, 88, 40, 37

• A list can be defined as follows:

 A List is a: number
 or a: number comma List

• That is, a List is defined to be a single number, or a number followed by a comma followed by a List

• The concept of a List is used to define itself
Recursive Definitions

- The recursive part of the LIST definition is used several times, terminating with the non-recursive part:

```
LIST: number comma LIST
   24 , 88, 40, 37
   number comma LIST
       88 , 40, 37
   number comma LIST
       40 , 37
   number
       37
```
Peano's def. of Natural Numbers

• The following two axioms define the natural numbers
 – 0 is a natural number
 – For every natural number n, $S(n)$ is a natural number

• The number 1 can be defined as $S(0)$, 2 as $S(S(0))$ (which is also $S(1)$), and, in general, any natural number n as $S^n(0)$

• The next two axioms define their properties:
 – For every natural number n, $S(n) = 0$ is false. That is, there is no natural number whose successor is 0
 – For all natural numbers m and n, if $S(m) = S(n)$, then $m = n$. That is, S is an injection.
Infinite Recursion

• All recursive definitions have to have a non-recursive part called the base case

• If they didn't, there would be no way to terminate the recursive path

• Such a definition would cause infinite recursion

• This problem is similar to an infinite loop, but the non-terminating "loop" is part of the definition itself
Quiz

What is printing the program described in this flowchart?
Recursive Definition: Factorial

• N!, for any positive integer N, is defined to be the product of all integers between 1 and N inclusive

\[N! = N \times (N-1) \times (N-2) \times \ldots \times 2 \times 1 \]

• This definition can be expressed recursively as:

\[1! = 1 \]
\[N! = N \times (N-1)! \]

• A factorial is defined in terms of another factorial

• Eventually, the base case of 1! is reached
Recursive Factorial

5!
5 \times 4!
4 \times 3!
3 \times 2!
2 \times 1!

1

120
24
6
2
1

Copyright © 2012 Pearson Education, Inc.
Quick Check

Write a recursive definition of

\[f: \ n \mapsto 5 \times n \]

where \(n > 0 \).
Quick Check

Write a recursive definition of

\[f: n \mapsto 5 \times n \]

where \(n > 0 \).

\[5 \times 1 = 5 \]

\[5 \times n = 5 + (5 \times (n-1)) \]

\[f(1) = 5 \]

\[f(n) = 5 + f(n-1) \]
Quick Check

Write a recursive definition of e^n, where $n \geq 0$.
Quick Check

Write a recursive definition of e^n, where $n \geq 0$.

\[e^0 = 1 \]

\[e^n = e \times e^{n-1} \]
A (non recursive) Method

```java
private class SliderListener implements ChangeListener {
    private int red, green, blue;

    // Gets the value of each slider, then updates the labels and the color panel.
    public void stateChanged (ChangeEvent event) {
        red = rSlider.getValue();
        green = gSlider.getValue();
        blue = bSlider.getValue();

        rLabel.setText ("Red: " + red);
        gLabel.setText ("Green: " + green);
        bLabel.setText ("Blue: " + blue);

        colorPanel.setBackground (new Color (red, green, blue));
    }
}
```

(stateChanged()) is NOT used in the definition of stateChanged()
Recursive Programming

• A recursive method is a method that invokes itself.

• A recursive method must be structured to handle both the base case and the recursive case.

• Each call to the method sets up a new execution environment, with new parameters and local variables.

• As with any method call, when the method completes, control returns to the method that invoked it (which may be an earlier invocation of itself).
Sum of 1 to N

• Consider the problem of computing the sum of all the numbers between 1 and any positive integer N

• This problem can be recursively defined as:

\[
\sum_{i=1}^{N} i = N + \sum_{i=1}^{N-1} i = N + (N - 1) + \sum_{i=1}^{N-2} i \\
\vdots \\
= N + (N - 1) + (N - 2) + \cdots + 2 + 1
\]
Sum of 1 to N

• The summation could be implemented recursively as follows:

```java
// This method returns the sum of 1 to num
public int sum (int num)
{
    int result;

    if (num == 1)
        result = 1;
    else
        result = num + sum (num-1);

    return result;
}
```
Recursive Programming

• Note that just because we can use recursion to solve a problem, doesn't mean we should

• We usually would not use recursion to solve the summation problem, because the iterative version is easier to understand

• However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version

• You must carefully decide whether recursion is the correct technique for any problem
Quiz

• Write a recursive method that computes the factorial of a non-negative int number \(n \):
 \[
 \text{factorial}(0)=1, \quad \text{factorial}(n) = n \times \text{factorial}(n-1)
 \]
Factorial

public int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial(n-1);
}

factorial(4)
 factorial(3)
 factorial(2)
 factorial(1)
 factorial(0)
 return 1
 return 1*1 = 1
 return 1*1 = 1
 return 2*1 = 2
 return 3*2 = 6
 return 4*6 = 24
 return 2*1 = 2
 return 3*2 = 6
 return 4*6 = 24
 return 24
Indirect Recursion

• A method invoking itself is considered to be *direct recursion*

• A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again

• For example, method \textit{m1} could invoke \textit{m2}, which invokes \textit{m3}, which in turn invokes \textit{m1} again

• This is called *indirect recursion*, and requires all the same care as direct recursion

• It is often more difficult to trace and debug
Indirect Recursion
Quiz

• What does the following recursive function return?

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```
Quiz

• What does the following recursive function return?

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```

The reverse of the input string.
Mathematical Induction

- Recursive programming is directly related to mathematical induction, a technique for proving facts about discrete functions.

- Proving that a statement involving an integer N is true for all N by mathematical induction involves two steps:
 - **The base case:** to prove the statement true for some specific value or values of N (usually 0 or 1).
 - **The induction step:** assume that a statement is true for all positive integers less than N, then use that fact to prove it true for N.
Proof by Induction Example

• Prove that:
 – $1 + 2 + 3 + 4 + \ldots + N = (N+1)N/2$

• Base case:
 – $1 = (1+1)1/2$ TRUE

• Induction step:
 – Assume that it is true for $N-1$
 • $1+ \ldots + (N-1) = N(N-1)/2$
 – Then:
 • $1+ \ldots + (N-1) + N = N(N-1)/2 + N$
 • $= (N^2 - N + 2N)/2$
 • $= (N^2 + N)/2 = (N + 1) N /2$ Q.E.D.
Without using Induction

• Prove that:
 – $1 + 2 + 3 + 4 + \ldots + N = S_n = \frac{(N+1)N}{2}$

• $(1 + 2 + 3 + 4 + \ldots + N) + (1 + 2 + 3 + 4 + \ldots + N) = 2S_n$

• $(1 + 2 + 3 + 4 + \ldots + N) + (N + (N-1) + \ldots + 1) = 2S_n$

• $N(N+1) = 2S_n$

• $S_n = \frac{(N+1)N}{2}$
Quiz

• Consider the fibonacci sequence:
 – f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
 – 0, 1, 1, 2, 3, 5, 8, 13, ..

• Prove by induction that:
 – For all n > 0, f(3n) is even
Quiz

- Consider the Fibonacci sequence:
 - \(f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2) \)
 - 0, 1, 1, 2, 3, 5, 8, 13, ..

- Prove by induction that:
 - For all \(n > 0 \), \(f(3n) \) is even

- Base case \(n=1 \)
 - \(f(3) = 2 \) TRUE

- Induction step
 - if \(f(3n) \) is even we must prove that \(f(3(n+1)) \) is even
 - \(f(3(n+1)) = f(3n+2) + f(3n+1) = f(3n+1) + f(3n) + f(3n+1) = 2f(3n+1) + f(3n) \) THIS is EVEN
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?

\[
\begin{array}{cccccc}
 f(5) & f(4) & f(3) & f(3) & f(2) & f(2) & f(1) \\
 f(3) & f(2) & f(2) & f(1) & f(1) & f(0) & f(0) \\
 f(2) & f(1) & f(1) & f(0) & f(1) & f(0) & \\
 f(1) & f(0) & & & & & \\
\end{array}
\]

15 calls
Iterative version of Fibonacci

```c
int itFibonacci(int n) {
    int result = 0, prec = 1;
    for (int i = 1; i <= n; i++) {
        result += prec;  // f(n+1) = f(n) + f(n-1)
        prec = result - prec;  // f(n) = f(n+1) - f(n-1)
    }
    return result;
}
```

f(0) = 0, f(1) = 1, f(n) = f(n-1) + f(n-2)
0, 1, 2, 3, 5, 8, 13, ...
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Maze Traversal

• We can use recursion to find a path through a maze

• From each location, we can search in each direction

• The recursive calls keep track of the path through the maze

• The base case is an invalid move or reaching the final destination

• See MazeSearch.java
• See Maze.java
public class MazeSearch
{
 public static void main (String[] args)
 {
 Maze labyrinth = new Maze();

 System.out.println (labyrinth);

 if (labyrinth.traverse (0, 0))
 System.out.println ("The maze was successfully traversed!");
 else
 System.out.println ("There is no possible path.");

 System.out.println (labyrinth);
 }
}
public class MazeSearch {
 public static void main(String[] args) {
 Maze labyrinth = new Maze();
 System.out.println(labyrinth);
 if (labyrinth.traverse(0, 0))
 System.out.println("The maze was successfully traversed!");
 else
 System.out.println("There is no possible path.");
 System.out.println(labyrinth);
 }
}

Output
1110110001111
1011101111001
0000101010100
1110110101111
1010001111001
1011111101111
1000000000000
1111111111111

The maze was successfully traversed!
public class Maze
{
 private final int TRIED = 3;
 private final int PATH = 7;

 private int[][] grid = {
 {1,1,1,0,1,1,0,0,0,1,1,1,1},
 {1,0,1,1,1,0,1,1,1,1,0,0,1},
 {0,0,0,0,1,0,1,0,1,0,1,0,0},
 {1,1,1,0,1,1,1,0,1,0,1,1,1},
 {1,0,1,0,0,0,0,1,1,1,0,0,1},
 {1,0,1,1,1,1,1,1,0,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0},
 {1,1,1,1,1,1,1,1,1,1,1,1,1}
 };
continued
public boolean traverse (int row, int column)
{
 boolean done = false;

 if (valid (row, column))
 {
 grid[row][column] = TRIED; // this cell has been tried

 if (row == grid.length-1 && column == grid[0].length-1)
 done = true; // the maze is solved — base case
 else
 {
 done = traverse (row+1, column); // down
 if (!done)
 done = traverse (row, column+1); // right
 if (!done)
 done = traverse (row-1, column); // up
 if (!done)
 done = traverse (row, column-1); // left
 }

 if (done) // this location is part of the final path
 grid[row][column] = PATH;
 }

 return done;
}
continued

// Determines if a specific location is valid.
private boolean valid (int row, int column)
{
 boolean result = false;

 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 result = true;

 return result;
}
public String toString ()
{
 String result = "\n";
 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }
 return result;
}
Quiz

• Trace the calls to `traverse()` and `valid()` for the maze
 `row0=11, row1=01`
Quiz

• Trace the calls to `traverse()` and `valid()` for the maze row0=11, row1=01
Towers of Hanoi

• The *Towers of Hanoi* is a puzzle made up of three vertical pegs and several disks that slide onto the pegs.

• The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller ones on top.
Towers of Hanoi

• The goal is to move all of the disks from one peg to another

• Under the following rules:
 – Move only one disk at a time
 – A larger disk cannot be put on top of a smaller one
Towers of Hanoi

Original Configuration

Move 1

Move 2

Move 3

Target
Towers of Hanoi

Move 4

Move 5

Move 6

Move 7 (done)
Recursive Solution

• To solve a N-tower
 1. Solve the (N-1)-tower: move the (N-1)-tower in the middle peg
 2. Move the largest disc to target peg
 3. Solve the (N-1)-tower: move the (N-1)-tower from the middle peg to the target peg
Towers of Hanoi

- An iterative solution to the Towers of Hanoi is quite complex
- A recursive solution is much shorter and more elegant

- See `SolveTowers.java`
- See `TowersOfHanoi.java`
public class SolveTowers
{
 // Creates a TowersOfHanoi puzzle and solves it.
 public static void main (String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi (4);
 towers.solve();
 }
}
public class SolveTowers {

 // Creates a TowersOfHanoi puzzle and solves it.
 public static void main(String[] args) {
 TowersOfHanoi towers = new TowersOfHanoi(4);
 towers.solve();
 }
}

Output

Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 3 to 1
Move one disk from 3 to 2
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 2 to 1
Move one disk from 3 to 1
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
/**
 * TowersOfHanoi.java Author: Lewis/Loftus
 *
 * Represents the classic Towers of Hanoi puzzle.
 */

public class TowersOfHanoi
{
 private int totalDisks;

 //---
 // Sets up the puzzle with the specified number of disks.
 //---
 public TowersOfHanoi (int disks)
 {
 totalDisks = disks;
 }

 //---
 // Performs the initial call to moveTower to solve the puzzle.
 // Moves the disks from tower 1 to tower 3 using tower 2.
 //---
 public void solve ()
 {
 moveTower (totalDisks, 1, 3, 2);
 }

continued
continued

 //--
 // Moves the specified number of disks from one tower to another
 // by moving a subtower of n-1 disks out of the way, moving one
 // disk, then moving the subtower back. Base case of 1 disk.
 //--
 private void moveTower (int numDisks, int start, int end, int temp)
 {
 if (numDisks == 1)
 moveOneDisk (start, end);
 else
 {
 moveTower (numDisks-1, start, temp, end);
 moveOneDisk (start, end);
 moveTower (numDisks-1, temp, end, start);
 }
 }

 //--
 // Prints instructions to move one disk from the specified start
 // tower to the specified end tower.
 //--
 private void moveOneDisk (int start, int end)
 {
 System.out.println ("Move one disk from " + start + " to " +
 end);
 }

Hanoi Tower Solution

Hanoi Tower execution time (seconds)

number of tiles
public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x-1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?
A) 11
B) 8
C) 5
D) 3
E) 24
public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x-1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?

C) 5

The method computes x - y if x > y. The method works as follows: each time the method is called recursively, it subtracts 1 from x until (x == y) is becomes true, and adds 1 to the return value. So, 1 is added each time the method is called, and the method is called once for each int value between x and y.
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \((x == y)\)
B) \((x != y)\)
C) \((x > y)\)
D) \((x < y)\)
E) \((x == 0 && y != 0)\)
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \(x == y \)
B) \(x != y \)
C) \(x > y \)
D) \(x < y \)
E) \(x == 0 && y != 0 \)

If \(x < y \) is true initially, then the else clause is executed resulting in the method being recursively invoked with a value of \(x - 1 \), or a smaller value of \(x \), so that \(x < y \) will be true again, and so for each successive recursive call, \(x < y \) will be true and the base case, \(x == y \), will never be true.
Quiz

What does the following method compute? Assume the method is called initially with i = 0

```java
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```
Quiz

What does the following method compute? Assume the method is called initially with i = 0

```java
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```

The number of times char b appears in String a. The method compares each character in String a with char b until i reaches the length of String a. 1 is added to the return value for each match.
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Tiled Pictures

• Consider the task of repeatedly displaying a set of images in a mosaic
 – Three quadrants contain individual images
 – Upper-left quadrant repeats pattern

• The base case is reached when the area for the images shrinks to a certain size

• See TiledPictures.java
import java.awt.*;
import javax.swing.JApplet;

public class TiledPictures extends JApplet
{
 private final int APPLET_WIDTH = 320;
 private final int APPLET_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private Image world, everest, goat;

 continue
continue

//---
// Loads the images.
//---
public void init()
{
 world = getImage (getDocumentBase(), "world.gif");
 everest = getImage (getDocumentBase(), "everest.gif");
 goat = getImage (getDocumentBase(), "goat.gif");

 setSize (APPLET_WIDTH, APPLET_HEIGHT);
}

//---
// Draws the three images, then calls itself recursively.
//---
public void drawPictures (int size, Graphics page)
{
 page.drawImage (everest, 0, size/2, size/2, size/2, this);
 page.drawImage (goat, size/2, 0, size/2, size/2, this);
 page.drawImage (world, size/2, size/2, size/2, size/2, this);

 if (size > MIN)
 drawPictures (size/2, page);
}

continue
continue

// Performs the initial call to the drawPictures method.
public void paint (Graphics page)
{
 drawPictures (APPLET_WIDTH, page);
}
}
```java
// Performs the initial call to the drawPictures method.
public void paint(Graphics page) {
    drawPictures(APPLET_WIDTH, page);
}
```
import javax.swing.JFrame;

public class TiledPicturesApp {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Tiled Pictures");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new TiledPicturesPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

Application version of the previous applet
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.JPanel;

public class TiledPicturesPanel extends JPanel {

 private final int PANEL_WIDTH = 320;
 private final int PANEL_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private BufferedImage world, everest, goat;

}
public TiledPicturesPanel() {
try {
 world = ImageIO.read(new File("world.gif"));
 everest = ImageIO.read(new File("everest.gif"));
 goat = ImageIO.read(new File("goat.gif"));
} catch (IOException e) {
}
 setPreferredSize(new Dimension(PANEL_WIDTH, PANEL_HEIGHT));
}

continue
public void drawPictures(int size, Graphics page) {
 page.drawImage(everest, 0, size / 2, size / 2, size / 2, this);
 page.drawImage(goat, size / 2, 0, size / 2, size / 2, this);
 page.drawImage(world, size / 2, size / 2, size / 2, size / 2, this);

 if (size > MIN) {
 drawPictures(size / 2, page);
 }
}

public void paintComponent(Graphics page) {
 super.paintComponent(page);
 drawPictures(PANEL_WIDTH, page);
}

Fractals

• A *fractal* is a geometric shape made up of the same pattern repeated in different sizes and orientations

• The *Koch Snowflake* is a particular fractal that begins with an equilateral triangle

• To get a higher order of the fractal, the sides of the triangle are replaced with angled line segments

• See `KochSnowflake.java`

• See `KochPanel.java`
//**
// KochSnowflakeApp.java Author: Lewis/Loftus
//
// Demonstrates the use of recursion in graphics.
//**

import javax.swing.JFrame;

public class KochSnowflakeApp {

 public static void main (String[] args)
 {
 JFrame frame = new JFrame("Koch Snowflake");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new KochMainPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

This is an application; in the book you find an applet.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KochMainPanel extends JPanel implements ActionListener {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 440;

 private final int MIN = 1, MAX = 9;

 private JButton increase, decrease;
 private JLabel titleLabel, orderLabel;
 private KochPanel drawing;
 private Jpanel tools;

 continue
public KochMainPanel()
{
 tools = new JPanel();
 tools.setLayout (new BoxLayout(tools, BoxLayout.X_AXIS));
 tools.setPreferredSize (new Dimension (PANEL_WIDTH, 40));
 tools.setBackground (Color.yellow);
 tools.setOpaque (true);

 titleLabel = new JLabel ("The Koch Snowflake");
 titleLabel.setForeground (Color.black);

 increase = new JButton (new ImageIcon ("increase.gif"));
 increase.setPressedIcon (new ImageIcon ("increasePressed.gif"));
 increase.addActionListener (this);

 decrease = new JButton (new ImageIcon ("decrease.gif"));
 decrease.setPressedIcon (new ImageIcon ("decreasePressed.gif"));
 decrease.addActionListener (this);
continue

orderLabel = new JLabel ("Order: 1");
orderLabel.setForeground (Color.black);

tools.add (titleLabel);
tools.add (Box.createHorizontalStrut (40));
tools.add (decrease);
tools.add (increase);
tools.add (Box.createHorizontalStrut (20));
tools.add (orderLabel);

drawing = new KochPanel (1);

add (tools);
add (drawing);

setPreferredSize (PANEL_WIDTH, PANEL_HEIGHT);
}
public void actionPerformed(ActionEvent event) {
 int order = drawing.getOrder();

 if (event.getSource() == increase)
 order++;
 else
 order--;

 if (order >= MIN && order <= MAX)
 {
 orderLabel.setText("Order: " + order);
 drawing.setOrder(order);
 repaint();
 }
}
public void actionPerformed(ActionEvent event) {
 int order = drawing.getOrder();
 if (event.getSource() == increase)
 order++;
 else
 order--;
 if (order >= MIN && order <= MAX) {
 orderLabel.setText("Order: "+ order);
 drawing.setOrder(order);
 repaint();
 }
}

Applet started.

Copyright © 2012 Pearson Education, Inc.
Koch Snowflakes

$\langle x_1, y_1 \rangle$ \hspace{5cm} $\langle x_5, y_5 \rangle$

Becomes

$\langle x_1, y_1 \rangle$ \hspace{5cm} $\langle x_4, y_4 \rangle$ \hspace{5cm} $\langle x_3, y_3 \rangle$

$\langle x_2, y_2 \rangle$ \hspace{5cm} $\langle x_2, y_2 \rangle$ \hspace{5cm} $\langle x_2, y_2 \rangle$

$\langle x_1, y_1 \rangle$ \hspace{5cm} $\langle x_1, y_1 \rangle$ \hspace{5cm} $\langle x_1, y_1 \rangle$

$= \sqrt{3/6} \cdot |P_5 - P_1|$

Copyright © 2012 Pearson Education, Inc.
public class KochPanel extends JPanel {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 400;
 private final double SQ = Math.sqrt(3.0) / 6;
 private final int TOPX = 200, TOPY = 20;
 private final int LEFTX = 60, LEFTY = 300;
 private final int RIGHTX = 340, RIGHTY = 300;

 private int current; // current order
//--- draws the fractal recursively. The base case is order 1 for
// which a simple straight line is drawn. Otherwise three
// intermediate points are computed, and each line segment is
// drawn as a fractal.
//--
public void drawFractal(int order, int x1, int y1, int x5, int y5,
 Graphics page) {
 int deltaX, deltaY, x2, y2, x3, y3, x4, y4;

 if (order == 1)
 page.drawLine(x1, y1, x5, y5);
 else
 {
 deltaX = x5 - x1; // distance between end points
 deltaY = y5 - y1;

 x2 = x1 + deltaX / 3; // one third
 y2 = y1 + deltaY / 3;

 x3 = (int) ((x1+x5)/2 + SQ * (y1-y5)); // tip of projection
 y3 = (int) ((y1+y5)/2 + SQ * (x5-x1));

 continue
 }
continue

 x4 = x1 + deltaX * 2/3; // two thirds
 y4 = y1 + deltaY * 2/3;

 drawFractal (order-1, x1, y1, x2, y2, page);
 drawFractal (order-1, x2, y2, x3, y3, page);
 drawFractal (order-1, x3, y3, x4, y4, page);
 drawFractal (order-1, x4, y4, x5, y5, page);
}

//--
// Performs the initial calls to the drawFractal method.
//--
public void paintComponent (Graphics page)
{
 super.paintComponent (page);

 page.setColor (Color.green);

 page.setColor (Color.green);

 drawFractal (current, TOPX, TOPY, LEFTX, LEFTY, page);
 drawFractal (current, LEFTX, LEFTY, RIGHTX, RIGHTY, page);
 drawFractal (current, RIGHTX, RIGHTY, TOPX, TOPY, page);
}

continue
continue

//---
// Sets the fractal order to the value specified.
//---
public void setOrder (int order)
{
 current = order;
}

//---
// Returns the current order.
//---
public int getOrder ()
{
 return current;
}
}
Summary

- Chapter 12 has focused on:
 - thinking in a recursive manner
 - programming in a recursive manner
 - the correct use of recursion
 - recursion examples