Recursion

• Recursion is a fundamental programming technique that can provide an elegant solution to certain kinds of problems.

• Chapter 12 focuses on:
 – thinking in a recursive manner
 – programming in a recursive manner
 – the correct use of recursion
 – recursion examples
Recursive Thinking

• A *recursive definition* is one which uses the word or concept being defined in the definition *itself*

• When defining an English word, a recursive definition is often not helpful

• But in other situations, a recursive definition can be an appropriate way to express a concept

• Before applying recursion to programming, it is best to practice thinking recursively
Recursive Definitions

• Consider a list of numbers:

 24, 88, 40, 37

• A list can be defined as follows:

 A List is a: number
 or a: number comma List

• That is, a List is defined to be a single number, or a number followed by a comma followed by a List

• The concept of a List is used to define itself
Recursive Definitions

- The recursive part of the LIST definition is used several times, terminating with the non-recursive part:
Peano's def. of Natural Numbers

• The following two axioms define the natural numbers
 – 0 is a natural number
 – For every natural number \(n \), \(S(n) \) – the successor of \(n \) - is a natural number

• The number 1 can be defined as \(S(0) \), 2 as \(S(S(0)) \) (which is also \(S(1) \)), and, in general, any natural number \(n \) as \(S^n(0) \)

• The next two axioms define their properties:
 – For every natural number \(n \), \(S(n) = 0 \) is false. That is, there is no natural number whose successor is 0
 – For all natural numbers \(m \) and \(n \), if \(S(m) = S(n) \), then \(m = n \). That is, \(S \) is an injection.
Infinite Recursion

- All recursive definitions **have to have** a non-recursive part called the *base case*

- If they didn't, there would be **no way to terminate** the recursive path

- For instance:

 A *List* is a: number comma *List*

- Such a definition would cause *infinite recursion*

- This problem is similar to an infinite loop
Quiz

What is printing the program described in this flowchart?
Factorial – Iterative version

```java
public int itFactorial (int n) {
    int m = 1, f = 1;
    while (m < n) {
        ++m;
        f = f * m;
    }
    return f;
}
```
Recursive Definition: Factorial

• N!, for any positive integer N, is defined to be the product of all integers between 1 and N inclusive

\[N! = N \times (N-1) \times (N-2) \times \ldots \times 2 \times 1 \]

• This definition can be expressed recursively as:

\[1! = 1 \]

\[N! = N \times (N-1)! \]

• A factorial is defined in terms of another factorial

• Eventually, the base case of 1! is reached
Recursive Factorial

5!
5 * 4!
4 * 3!
3 * 2!
2 * 1!
1

120
24
6
2
1

Copyright © 2012 Pearson Education, Inc.
Quick Check

Write a recursive definition of $f(n) = e^n$, where $n \geq 0$.
Quick Check

Write a recursive definition of $f(n) = e^n$, where $n \geq 0$.

\begin{align*}
e^0 &= 1 & f(0) &= 1 \\
e^n &= e \cdot e^{n-1} & f(n) &= e \cdot f(n-1)
\end{align*}

In this way you can compute e^n by just using multiplications.
Quick Check

Write a recursive definition of
\[f(n) = 5 \times n \]
where \(n > 0 \).
Quick Check

Write a recursive definition of

\[f(n) = 5 \times n \]

where \(n > 0 \).

\[
\begin{align*}
5 \times 1 & = 5 \\
5 \times n & = 5 + (5 \times (n-1))
\end{align*}
\]

\[
\begin{align*}
f(1) & = 5 \\
f(n) & = 5 + f(n-1)
\end{align*}
\]
Quick Check

Write a recursive definition of \(f(n) = \frac{(n+1)n}{2} \), where \(n > 0 \).
Quick Check

Write a recursive definition of $f(n) = (n + 1)n/2$, where $n > 0$.

$f(1) = 1$

$f(n+1) = (n + 2)(n + 1)/2 = (n + 1)n/2 + 2(n+1)/2$
 $= f(n) + (n + 1)$
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
private class SliderListener implements ChangeListener {
 private int red, green, blue;

 // Gets the value of each slider, then updates the labels and the color panel.
 public void stateChanged (ChangeEvent event) {
 red = rSlider.getValue();
 green = gSlider.getValue();
 blue = bSlider.getValue();

 rLabel.setText("Red: " + red);
 gLabel.setText("Green: " + green);
 bLabel.setText("Blue: " + blue);

 colorPanel.setBackground(new Color(red, green, blue));
 }
}
Recursive Programming

- A **recursive method** is a method that **invokes** itself

- A recursive method must be structured to handle both the **base case** and the **recursive case**

- Each call to the method sets up a **new execution environment**, with new parameters and local variables

- As with any method call, when the method completes, control returns to the method that invoked it (which may be an earlier invocation of itself).
Sum of 1 to N

- Consider the problem of computing the sum of all the numbers between 1 and any positive integer N.
- This problem can be recursively defined as:

\[
\begin{align*}
\sum_{i=1}^{N} i &= N + \sum_{i=1}^{N-1} i \\
&= N + (N-1) + \sum_{i=1}^{N-2} i \\
&= N + (N-1) + (N-2) + \sum_{i=1}^{N-3} i \\
&\quad \vdots \\
&= N + (N-1) + (N-2) + \cdots + 2 + 1
\end{align*}
\]
• The summation could be implemented recursively as follows:

```java
// This method returns the sum of 1 to num
public int sum (int num)
{
    int result;

    if (num == 1)
        result = 1;
    else
        result = num + sum (num-1);

    return result;
}
```
public int sum (int num)
{
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum (num-1);
 return result;
}
Recursive Programming

• Note that just because we can use recursion to solve a problem, doesn't mean we should

• We usually would not use recursion to solve the summation problem, because the iterative version is easier to understand

• However, for some problems, recursion provides an elegant solution, often cleaner than an iterative version (e.g. Fibonacci)

• You must carefully decide whether recursion is the correct technique for any problem
Quiz

• Write a recursive method that computes the factorial of a non-negative int number n: factorial(0) = 1, factorial(n) = n * factorial(n-1)
Factorial

```java
public int factorial(int n) {
    if (n == 0)
        return 1;
    return n * factorial(n-1);
}
```

```
factorial(4)
  factorial(3)
    factorial(2)
      factorial(1)
        factorial(0)
          return 1
          return 1*1 = 1
          return 2*1 = 2
          return 3*2 = 6
          return 4*6 = 24
```
Indirect Recursion

• A method invoking itself is considered to be *direct recursion*

• A method could invoke another method, which invokes another, etc., until eventually the original method is invoked again

• For example, method \(m_1 \) could invoke \(m_2 \), which invokes \(m_3 \), which in turn invokes \(m_1 \) again

• This is called *indirect recursion*, and requires all the same care as direct recursion

• It is often more difficult to trace and debug
Indirect Recursion
Quiz

L is the left propagation and R is the right propagation:

• \(L(n) = L(R(n-1)) \)
• \(R(n) = R(L(n-1)) \)
• \(L(1) = R(1) = k \)

• For which values of \(k > 0 \), \(L(n) \) and \(R(n) \) terminate for all \(n > 0 \)?
Quiz

L is the left propagation and R is the right propagation:
• \(L(n) = L(R(n-1)) \)
• \(R(n) = R(L(n-1)) \)
• \(L(1) = R(1) = k \)

• For which values of \(k > 0 \), \(L(n) \) and \(R(n) \) terminate for all \(n > 0 \)?
• **Only \(k=1 \)** (and \(L \) and \(R \) are constant functions = 1)
• In fact, if \(k=2 \) then:
 – \(L(2) = L(R(1)) = L(2) \) infinite loop
• If \(k = 3 \) then:
 – \(L(3) = L(R(2)) = L(R(L(1))) = L(R(3)) = L(R(2)) \) infinite loop
• If \(k = 4 \) …
Exercise

• Implement a class Chap12 that contains the right and left (static) methods described before and test that there is an infinite loop if k>1
public class Chap12 {

 private final static int K = 1;

 public static int right(int n) {
 System.out.println("right");
 if (n == 1)
 return K;
 return right(left(n-1));
 }

 public static int left(int n) {
 System.out.println("left");
 if (n == 1)
 return K;
 return left(right(n-1));
 }

 public static void main(String[] args) {
 System.out.println(right(2));
 }
}
Quiz

• What does the following recursive function return?
 Try it when the parameter s is your name.

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```
Quiz

- What does the following recursive function return?

```java
public String mystery(String s) {
    int N = s.length();
    if (N <= 1)
        return s;
    String a = s.substring(0, N/2);
    String b = s.substring(N/2, N);
    return mystery(b) + mystery(a);
}
```

The reverse of the input string.
Trace

```
return "nhoj"

mystery("john")

return "oj"

mystery("jo")

return "j"

mystery("j")

return "o"

mystery("o")

return "h"

mystery("h")

return "n"

mystery("n")
```
Mathematical Induction

• Recursive programming is directly related to *mathematical induction*, a technique for proving facts about discrete functions.

• Proving by mathematical induction that a statement involving an integer N is true for all N involves two steps:

 – **The base case**: to prove the statement true for some specific value or values of N (usually 0 or 1).

 – **The induction step**: assume that a statement is true for all positive integers **less** than N, then use that fact to prove it true for N.
Proof by Induction Example

• Prove that:
 – \(1 + 2 + 3 + 4 + \ldots + N = (N+1)N/2\)

• **Base case:**
 – \(1 = (1+1)1/2\) TRUE

• **Induction step:**
 – Assume that it is true for \(N-1\)
 • \(1+ \ldots + (N-1) = N(N-1)/2\)
 – Then:
 • \(1+ \ldots + (N-1) + N = N(N-1)/2 + N\)
 • \(= (N^2 – N + 2N)/2\)
 • \(= (N^2 + N)/2 = (N + 1) N /2\) Q.E.D.
Without using Induction

- Prove that:
 - \(1 + 2 + 3 + 4 + \ldots + N = S_n = (N+1)N/2 \)

- \((1 + 2 + 3 + 4 + \ldots + N) + (1 + 2 + 3 + 4 + \ldots + N) = 2S_n\)
- \((1 + 2 + 3 + 4 + \ldots + N) + (N + (N-1) + \ldots + 1) = 2S_n\)
- \((1 + N) + (2 + N-1) + (3 + N-2) + \ldots + (N + 1) = 2S_n\)
- \(N(N+1) = 2S_n\)
- \(S_n = (N+1)N/2\)
Quiz

• Consider the fibonacci sequence:
 – $f(0) = 0$, $f(1) = 1$, $f(n) = f(n-1) + f(n-2)$
 – 0, 1, 1, 2, 3, 5, 8, 13, ..

• Prove by induction that:
 – For all $n > 0$, $f(3n)$ is even
Quiz

• Consider the fibonacci sequence:
 – f(0) = 0, f(1) = 1; f(n) = f(n-1) + f(n-2)
 – 0, 1, 1, 2, 3, 5, 8, 13, ..

• Prove by induction that:
 – For all n > 0, f(3n) is even

• Base case n=1
 – f(3) = 2 TRUE

• Induction step
 – if f(3n) is even we must prove that f(3(n+1)) is even
 – f(3(n+1)) = f(3n+2) + f(3n+1) = f(3n+1) + f(3n) + f(3n+1) = 2f(3n+1) + f(3n) THIS is EVEN
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?
Recursion can be inefficient

```c
int fibonacci(int n) {
    if (n < 2)
        return n;
    return fibonacci(n - 1) + fibonacci(n - 2);
}
```

How many calls to `fibonacci` for computing `fibonacci(5)`?

```
f(5)  f(4)  f(3)  f(2)  f(2)  f(1)  f(1)  f(0)  f(1)  f(0)  f(1)  f(0)  f(1)  f(0)
```

15 calls
Trace

```
return 5
return 3
f(5)
return 2
f(3)
return 1
f(2)
return 1
f(1)
return 0
f(0)
return 1
f(1)
return 0
f(0)
```
Iterative version of Fibonacci

```c
int itFibonacci(int n) {
    int result = 0, prec = 1;
    for (int i = 1; i <= n; i++) {
        result += prec;  // f(i) = f(i-1) + f(i-2)
        prec = result - prec;  // f(i-1) = f(i) - f(i-2)
    }
    return result;
}
```

\[f(0) = 0, f(1) = 1, f(2) = 1, \ldots, f(n) = f(n-1) + f(n-2) \]

0, 1, 1, 2, 3, 5, 8, 13, \ldots
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Maze Traversal

- We can use recursion to find a path through a maze
- From each location, we can search in each direction
- The recursive calls keep track of the path through the maze
- The **base case** is an **invalid** move or **reaching the final destination**

- See MazeSearch.java
- See Maze.java
public class MazeSearch
{
 //--
 // Creates a new maze, prints its original form, attempts to
 // solve it, and prints out its final form.
 //--
 public static void main (String[] args)
 {
 Maze labyrinth = new Maze();

 System.out.println (labyrinth);

 if (labyrinth.traverse (0, 0))
 System.out.println ("The maze was successfully traversed!");
 else
 System.out.println ("There is no possible path.");

 System.out.println (labyrinth);
 }
}
public class MazeSearch {
 //-------
 // Create labyrinth and attempt to solve it.
 //-------
 public static void main (String[] args) {
 Maze labyrinth = new Maze();
 System.out.println(labyrinth);
 if (labyrinth.traverse(0, 0)) System.out.println("The maze was successfully traversed!");
 else System.out.println("There is no possible path.");
 System.out.println(labyrinth);
 }
}
public class Maze
{
 private final int TRIED = 3;
 private final int PATH = 7;

 private int[][] grid = {
 {1,1,1,0,1,1,0,0,0,1,1,1,1},
 {1,0,1,1,0,1,1,1,1,0,0,1},
 {0,0,0,1,0,1,0,1,0,1,0,0},
 {1,1,1,0,1,1,1,0,1,0,1,1,1},
 {1,0,1,0,0,0,1,1,1,0,0,1},
 {1,0,1,1,1,1,1,1,0,1,1,1,1},
 {1,0,0,0,0,0,0,0,0,0,0,0,0},
 {1,1,1,1,1,1,1,1,1,1,1,1,1},
 };

 continued
public boolean traverse (int row, int column)
{
 boolean done = false;

 if (valid (row, column))
 {
 grid[row][column] = TRIED; // this cell has been tried

 if (row == grid.length-1 && column == grid[0].length-1)
 done = true; // the maze is solved — base case
 else
 {
 done = traverse (row+1, column); // down
 if (!done)
 done = traverse (row, column+1); // right
 if (!done)
 done = traverse (row-1, column); // up
 if (!done)
 done = traverse (row, column-1); // left
 }

 if (done) // this location is part of the final path
 grid[row][column] = PATH;
 }

 return done;
} // continued
private boolean valid (int row, int column) {
 boolean result = false;

 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)
 {
 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 {
 result = true;
 }
 }

 return result;
}
public String toString ()
{
 String result = "\n";

 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }

 return result;
}
Quiz

- Trace the calls to traverse() for the maze row0=11, row1=01
Trace

traverse(0, 0)

return true

return false

traverse(1, 0)

traverse(0, 1)

return true

traverse(1, 1)

return true
Quiz

• More elaborated trace the calls to traverse() and valid() for the maze row0=11, row1=01
Towers of Hanoi

• The *Towers of Hanoi* is a puzzle made up of three vertical pegs and several disks that slide onto the pegs.

• The disks are of varying size, initially placed on one peg with the largest disk on the bottom with increasingly smaller ones on top.
Towers of Hanoi

• The goal is to move all of the disks from one peg to another

• Under the following rules:
 – Move only one disk at a time
 – A larger disk cannot be put on top of a smaller one
Towers of Hanoi

Original Configuration

Move 1

Move 2

Move 3

Target
Towers of Hanoi

Move 4

Move 5

Move 6

Move 7 (done)
Recursive Solution

• To solve a N-tower
 1. Solve the (N-1)-tower: move the (N-1)-tower in the middle peg
 2. Move the largest disc to target peg
 3. Solve the (N-1)-tower: move the (N-1)-tower from the middle peg to the target peg
Towers of Hanoi

• An iterative solution to the Towers of Hanoi is quite complex

• A recursive solution is much shorter and more elegant

• See SolveTowers.java
• See TowersOfHanoi.java
public class SolveTowers
{

 //-------------------------------
 // Creates a TowersOfHanoi puzzle and solves it.
 //-------------------------------
 public static void main (String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi (4);

 towers.solve();
 }
}
public class SolveTowers {
 public static void main(String[] args) {
 TowersOfHanoi towers = new TowersOfHanoi(4);
 towers.solve();
 }
}

Output
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 3 to 1
Move one disk from 3 to 2
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
Move one disk from 2 to 1
Move one disk from 3 to 1
Move one disk from 2 to 3
Move one disk from 1 to 2
Move one disk from 1 to 3
Move one disk from 2 to 3
public class TowersOfHanoi
{
 private int totalDisks;

 // Sets up the puzzle with the specified number of disks.
 public TowersOfHanoi (int disks)
 {
 totalDisks = disks;
 }

 // Performs the initial call to moveTower to solve the puzzle.
 // Moves the disks from tower 1 to tower 3 using tower 2.
 public void solve ()
 {
 moveTower (totalDisks, 1, 3, 2);
 }

 // continued
```java
private void moveTower (int numDisks, int start, int end, int temp) {
    if (numDisks == 1)
        moveOneDisk (start, end);
    else
    {
        moveTower (numDisks-1, start, temp, end);
        moveOneDisk (start, end);
        moveTower (numDisks-1, temp, end, start);
    }
}

private void moveOneDisk (int start, int end) {
    System.out.println ("Move one disk from " + start + " to " + end);
}
```
public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x-1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?
Trace the recursive calls.

A) 11
B) 8
C) 5
D) 3
E) 24
Quiz

public int mystery(int x, int y) {
 if (x == y) return 0;
 else return mystery(x-1, y) + 1;
}

If the method is called as mystery(8, 3), what is returned?

C) 5

The method computes x - y if x > y. The method works as follows: each time the method is called recursively, it subtracts 1 from x until (x == y) is becomes true, and adds 1 to the return value. So, 1 is added each time the method is called, and the method is called once for each int value between x and y.
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \(x == y\)
B) \(x != y\)
C) \(x > y\)
D) \(x < y\)
E) \(x == 0 && y != 0\)
Quiz

Calling the previous method will result in infinite recursion if which condition below is initially true?

A) \((x == y)\)

B) \((x != y)\)

C) \((x > y)\)

D) \((x < y)\)

E) \((x == 0 && y != 0)\)

If \((x < y)\) is true initially, then the else clause is executed resulting in the method being recursively invoked with a value of \(x - 1\), or a smaller value of \(x\), so that \((x < y)\) will be true again, and so for each successive recursive call, \((x < y)\) will be true and the base case, \(x == y\), will never be true.
Quiz
What does the following method compute? Assume the method is called initially with \(i = 0 \)

```java
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```
Quiz

What does the following method compute? Assume the method is called initially with $i = 0$

```java
public int mystery(String a, char b, int i) {
    if (i == a.length()) return 0;
    else if (b == a.charAt(i))
        return mystery(a, b, i+1) + 1;
    else return mystery(a, b, i+1);
}
```

The number of times char b appears in String a. The method compares each character in String a with char b until i reaches the length of String a. 1 is added to the return value for each match.
Outline

Recursive Thinking
Recursive Programming
Using Recursion
Recursion in Graphics
Tiled Pictures

• Consider the task of repeatedly displaying a set of images in a mosaic
 – Three quadrants contain individual images
 – Upper-left quadrant repeats pattern

• The base case is reached when the area for the images shrinks to a certain size

• See TiledPictures.java
// ******************************
// TiledPictures.java Author: Lewis/Loftus
//
// Demonstrates the use of recursion.
// ******************************

import java.awt.*;
import javax.swing.JApplet;

public class TiledPictures extends JApplet {
 private final int APPLET_WIDTH = 320;
 private final int APPLET_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private Image world, everest, goat;

// Loads the images.

public void init()
{
 world = getImage (getDocumentBase(), "world.gif");
 everest = getImage (getDocumentBase(), "everest.gif");
 goat = getImage (getDocumentBase(), "goat.gif");

 setSize (APPLET_WIDTH, APPLET_HEIGHT);
}

// Draws the three images, then calls itself recursively.

public void drawPictures (int size, Graphics page)
{
 page.drawImage (everest, 0, size/2, size/2, size/2, this);
 page.drawImage (goat, size/2, 0, size/2, size/2, this);
 page.drawImage (world, size/2, size/2, size/2, size/2, this);

 if (size > MIN)
 drawPictures (size/2, page);
}

continue
// Performs the initial call to the drawPictures method.
public void paint (Graphics page)
{
 drawPictures (APPLET_WIDTH, page);
}

// Perform the initial call to the drawPictures method.
public void paint(Graphics page) {
 drawPictures(APPLET_WIDTH, page);
}

Applet started.
import javax.swing.JFrame;

public class TiledPicturesApp {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Tiled Pictures");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new TiledPicturesPanel());
 frame.pack();
 frame.setVisible(true);
 }
}

Application version of the previous applet
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.JPanel;

public class TiledPicturesPanel extends JPanel {

 private final int PANEL_WIDTH = 320;
 private final int PANEL_HEIGHT = 320;
 private final int MIN = 20; // smallest picture size

 private BufferedImage world, everest, goat;

 continue
public TiledPicturesPanel() {
 try {
 world = ImageIO.read(new File("world.gif"));
 everest = ImageIO.read(new File("everest.gif"));
 goat = ImageIO.read(new File("goat.gif"));
 } catch (IOException e) {
 }
 setPreferredSize(new Dimension(PANEL_WIDTH, PANEL_HEIGHT));
}

continue
public void drawPictures(int size, Graphics page) {
 page.drawImage(everest, 0, size / 2, size / 2, size / 2, this);
 page.drawImage(goat, size / 2, 0, size / 2, size / 2, this);
 page.drawImage(world, size / 2, size / 2, size / 2, size / 2, this);

 if (size > MIN) {
 drawPictures(size / 2, page);
 }
}

public void paintComponent(Graphics page) {
 super.paintComponent(page);
 drawPictures(PANEL_WIDTH, page);
}

Fractals

- A *fractal* is a geometric shape made up of the same pattern repeated in different sizes and orientations.

- The *Koch Snowflake* is a particular fractal that begins with an equilateral triangle.

- To get a higher order of the fractal, the sides of the triangle are replaced with angled line segments.

- See [KochSnowflake.java](#).

- See [KochPanel.java](#).
import javax.swing.JFrame;

public class KochSnowflakeApp {

 public static void main (String[] args) {
 JFrame frame = new JFrame("Kock Snowflake");
 frame.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new KochMainPanel());
 frame.pack();
 frame.setVisible(true);
 }
}
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class KochMainPanel extends JPanel implements ActionListener {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 440;

 private final int MIN = 1, MAX = 9;

 private JButton increase, decrease;
 private JLabel titleLabel, orderLabel;
 private KochPanel drawing;
 private JPanel tools;

 continue
public KochMainPanel()
{
 tools = new JPanel();
tools.setLayout (new BoxLayout(tools, BoxLayout.X_AXIS));
tools.setPreferredSize (new Dimension (PANEL_WIDTH, 40));
tools.setBackground (Color.yellow);
tools.setOpaque (true);

titleLabel = new JLabel ("The Koch Snowflake");
titleLabel.setForeground (Color.black);

 increase = new JButton (new ImageIcon ("increase.gif"));
increase.setPressedIcon (new ImageIcon ("increasePressed.gif"));
increase.addActionListener (this);

 decrease = new JButton (new ImageIcon ("decrease.gif"));
decrease.setPressedIcon (new ImageIcon ("decreasePressed.gif"));
decrease.addActionListener (this);
orderLabel = new JLabel ("Order: 1");
orderLabel.setForeground (Color.black);

tools.add (titleLabel);
tools.add (Box.createHorizontalStrut (40));
tools.add (decrease);
tools.add (increase);
tools.add (Box.createHorizontalStrut (20));
tools.add (orderLabel);

drawing = new KochPanel (1);

add (tools);
add (drawing);

setPreferredSize (PANEL_WIDTH, PANEL_HEIGHT);
}
public void actionPerformed (ActionEvent event) {
 int order = drawing.getOrder();

 if (event.getSource() == increase)
 order++;
 else
 order--;

 if (order >= MIN && order <= MAX)
 {
 orderLabel.setText ("Order: " + order);
 drawing.setOrder (order);
 repaint();
 }
}
```java
public void actionPerformed(ActionEvent event) {
    int order = drawing.getOrder();
    if (event.getSource() == increase) {
        order++;
    } else {
        order--;
    }
    if (order >= MIN && order <= MAX) {
        orderLabel.setText("Order: "+order);
        drawing.setOrder(order);
        repaint();
    }
}
```
Koch Snowflakes

\[\langle x_5, y_5 \rangle \]

\[= \sqrt{3}/6 \times |P_5 - P_1| \]

\[\langle x_4, y_4 \rangle \]

\[\langle x_3, y_3 \rangle \]

\[\langle x_2, y_2 \rangle \]

\[\langle x_1, y_1 \rangle \]
import java.awt.*;
import javax.swing.JPanel;

class KochPanel extends JPanel {
 private final int PANEL_WIDTH = 400;
 private final int PANEL_HEIGHT = 400;

 private final double SQ = Math.sqrt(3.0) / 6;

 private final int TOPX = 200, TOPY = 20;
 private final int LEFTX = 60, LEFTY = 300;
 private final int RIGHTX = 340, RIGHTY = 300;

 private int current; // current order
public void drawFractal (int order, int x1, int y1, int x5, int y5, Graphics page)
{
 int deltaX, deltaY, x2, y2, x3, y3, x4, y4;

 if (order == 1)
 page.drawLine (x1, y1, x5, y5);
 else
 {
 deltaX = x5 - x1; // distance between end points
 deltaY = y5 - y1;

 x2 = x1 + deltaX / 3; // one third
 y2 = y1 + deltaY / 3;

 x3 = (int) (((x1+x5)/2 + SQ * (y1-y5))); /* tip of projection*/
 y3 = (int) (((y1+y5)/2 + SQ * (x5-x1)));

 }

 continue
}
continue

x4 = x1 + deltaX * 2/3; // two thirds
y4 = y1 + deltaY * 2/3;

drawFractal (order-1, x1, y1, x2, y2, page);
drawFractal (order-1, x2, y2, x3, y3, page);
drawFractal (order-1, x3, y3, x4, y4, page);
drawFractal (order-1, x4, y4, x5, y5, page);
}
}

//---
// Performs the initial calls to the drawFractal method.
//---
public void paintComponent (Graphics page)
{
 super.paintComponent (page);

 page.setColor (Color.green);

 drawFractal (current, TOPX, TOPY, LEFTX, LEFTY, page);
drawFractal (current, LEFTX, LEFTY, RIGHTX, RIGHTY, page);
drawFractal (current, RIGHTX, RIGHTY, TOPX, TOPY, page);
}
continue
public void setOrder (int order)
{
 current = order;
}

public int getOrder ()
{
 return current;
}
Summary

• Chapter 12 has focused on:
 – thinking in a recursive manner
 – programming in a recursive manner
 – the correct use of recursion
 – recursion examples
Exercise

- Write a recursive definition of a valid Java identifier (see Chapter 1). Imagine that a letter is either a letter of the English alphabet or $ or _
Exercise

• Write a recursive definition of a valid Java identifier (see Chapter 1). Imagine that a Letter is either a letter of the English alphabet or $ or _

A Java-Identifier is a: Letter

or a: Java-Identifier followed by a Letter

or a: Java-Identifier followed by a digit
Exercise

• Write a recursive definition of $i \times j$ (integer multiplication), where $i > 0$.

• Define the multiplication process in terms of integer addition.
 – For example, 4×7 is equal to 7 added to itself 4 times.
Exercise

• Write a recursive definition of $i \times j$ (integer multiplication), where $i > 0$.

• Define the multiplication process in terms of integer addition.
 – For example, 4×7 is equal to 7 added to itself 4 times.

• $1 \times j = j$
• $i \times j = j + (i-1) \times j$ for $i > 1$
Exercise

• Modify the method that calculates the sum of the integers between 1 and N shown in this chapter. Have the new version match the following recursive definition:
 – The sum of 1 to N is the sum of 1 to \((N/2)\) plus the sum of \((N/2 + 1)\) to N.

• Trace your solution using an N of 7.
Exercise

public int sum(int n1, int n2) {
 int result;
 if (n2 - n1 == 0) {
 result = n1;
 } else {
 int mid = (n1 + n2) / 2;
 result = sum(n1, mid) + sum(mid + 1, n2);
 }
 return result;
}
Trace

```
sum(1,7)
  /   \
sum(1,4)  sum(5,7)
 /     /     /
sum(1,2) sum(3,4) sum(5,6)
 /   /   /   /
sum(1,1) sum(3,3) sum(5,5) sum(7,7)
```

sum(2,2) sum(4,4) sum(6,6)
Exercise

• Write (another) recursive method to reverse a string.

• Use the following String methods
 – charAt(int n) : char
 – substring(int beginIndex, int endIndex) : String

• Implement a procedure that concatenates the last character of the input string with the reverse of the string composed by the first N-1 characters of the string (N is the length of the string).
Exercise

public String reverse(String text) {
 String result = text;
 if (text.length() > 1)
 result = text.charAt(text.length() - 1) +
 reverse(text.substring(0, text.length() - 1));
 return result;
}
Tower of Hanoi

• Produce a chart showing the number of moves required to solve the Towers of Hanoi puzzle using the following number of disks: 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10

• Write a recursive definition of the formula giving $\text{Moves}(n)$, the number of moves required to solve the Hanoi tower of n disks
Solution

<table>
<thead>
<tr>
<th>Disks</th>
<th>Moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>63</td>
</tr>
<tr>
<td>7</td>
<td>127</td>
</tr>
<tr>
<td>8</td>
<td>255</td>
</tr>
<tr>
<td>9</td>
<td>511</td>
</tr>
<tr>
<td>10</td>
<td>1023</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Moves}(1) &= 1 \\
\text{Moves}(n) &= \text{Moves}(n-1) + 1 + \text{Moves}(n-1)
\end{align*}
\]
Kock Snowflake

• How many line segments are used to construct a Koch snowflake of order N? Produce a chart showing the number of line segments that make up a Koch snowflake for orders 1 through 7.

• Give the general formula $\text{Segments}(n) = ?$
Solution

<table>
<thead>
<tr>
<th>Order</th>
<th>Segments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>$4 \times 3 = 12$</td>
</tr>
<tr>
<td>3</td>
<td>$4 \times 4 \times 3 = 48$</td>
</tr>
<tr>
<td>4</td>
<td>$4 \times 4 \times 4 \times 3 = 192$</td>
</tr>
<tr>
<td>5</td>
<td>$4 \times 4 \times 4 \times 4 \times 3 = 768$</td>
</tr>
<tr>
<td>6</td>
<td>$4 \times 4 \times 4 \times 4 \times 4 \times 3 = 3072$</td>
</tr>
<tr>
<td>7</td>
<td>$4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 3 = 12288$</td>
</tr>
</tbody>
</table>

Segments$(1) = 3$

Segments$(n) = \text{Segments} \ (n-1) \times 4$

Segments$(n) = 3 \times 4^{n-1}$
Exercise

• Give the value of mistery2(3):

```java
public static String mistery2(int n) {
    if (n <= 0)
        return "";
    return mistery2(n - 3) + n + mistery2(n - 2) + n;
}
```
Trace

misery2(3)

return ""+3+"1"+3 = "3113"

misery2(0)

return ""

misery2(-2)

misery2(-1)

misery2(1)

return ""+1+""+1
Exercise

- Criticize the following recursive function:

```java
public static String mistery3(int n) {
    String s = mistery3(n - 3) + n + mistery3(n - 2) + n;
    if (n <= 0)
        return "";
    return s;
}
```