RecoXplainer: An Extensible Toolkit for Explainable Recommender Systems

Ludovik Coba, Roberto Confalonieri, Markus Zanker MQ2 Tutorial at AAAI-21

Fakultät für Informatik **UNIDZ** Facoltà di Scienze e Tecnologie informatiche Faculty of Computer Science

Resources

- Web page and slides <u>http://www.inf.unibz.it/~rconfalonieri/aaai21/</u>
- Repository

https://github.com/ludovikcoba/recoxplainer

Outline

- Part I: An introduction to Explainable Recommender Systems
- Part II: RecoXplainer

Outline

- An introduction to Explainable Recommender Systems
 - Explainability/Explainable AI
 - Recommender Systems
 - Explanations in Recommender Systems

Outline

RecoXplainer

- Overview of the Toolkit
- Model-based Explanations
- Post-hoc Explanations
- Evaluation of Explanations
- Hands-on Session

Part I An Introduction to Explainable Recommender **Systems**

Why Explainability?

Al is now used in many high-stakes decision making applications (credit, employment, admission, sentencing).

Most current methods lack "explainability"

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

> by Julia Angwin, Jeff Larson, Sarya Matta and Lauren Kirchner, ProPublica May 23, 2016

O N A SPRING AFTERNOON IN 2014, Brisha Borden was running late to pick up her god-sister from school when she spotted an unlocked kid's blue Huffy bicycle and a silver Razor scooter. Borden and a friend grabbed the bike and scooter and tried to ride them down the street in the Fort Lauderdale suburb of Coral Springs.

Just as the 18-year-old girls were realizing they were too big for the tiny conveyances which belonged to a 6-year-old boy — a woman came running after them saying, "That's my kifs stuff." Borden and her friend immediately dropped the bike and scooter and waited saw:

SHARE

Andrew Thompson

But it was too late — a neighbor Borden and her friend were are items, which were valued at a to

Google's Sentiment Analyzer Thinks Being Gay Is Bad

This is the latest example of how bias creeps into artificial intelligence.

4

Amazon scraps secret AI recruiting showed bias against women

BUSINESS NEWS OCTOBER & 2018 (11) 12 PM (112 DAVE AC

Jeffrey Dastin

Google Som 05

89% of consumers say... "technology companies need to be more transparent"

Technology companies need to comply with GDPR - "Right to Explanation"

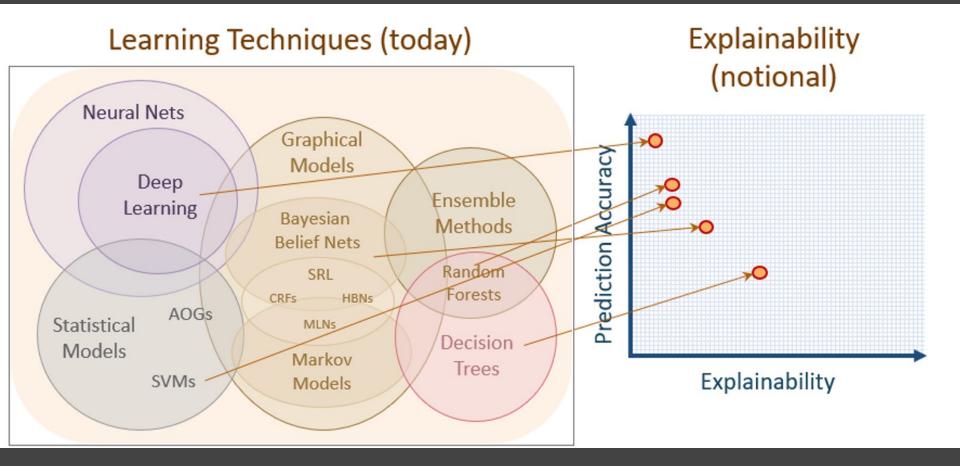
Explainability across industries

ADVERTISING Reputational risk of placing adverts alongside content that doesn't 'fit' the brand

HEALTH 49% of physicians in the US are anxious or uncomfortable with AI

FINANCE Explaining why automated decision-making rejects loan applications

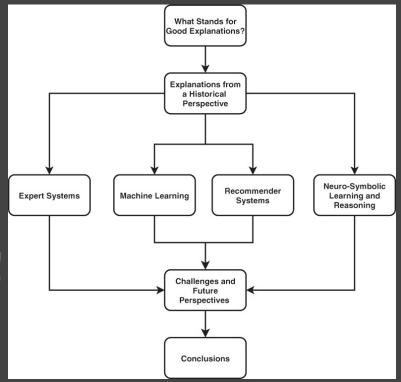
The most effective algorithms are the hardest to explain



Why Explainability is a challenge?

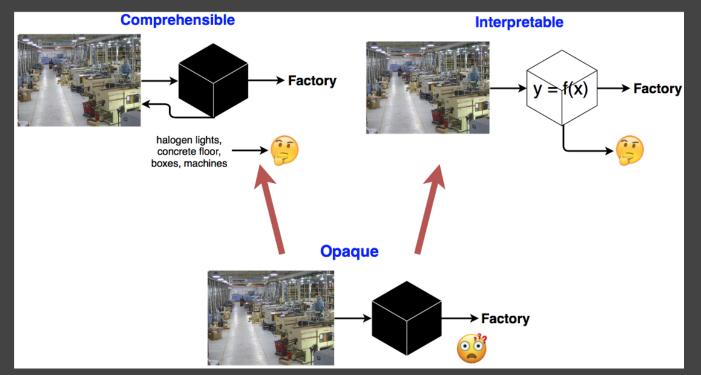
Explainability

- Different notions
- Different requirements
- Plethora of approaches!



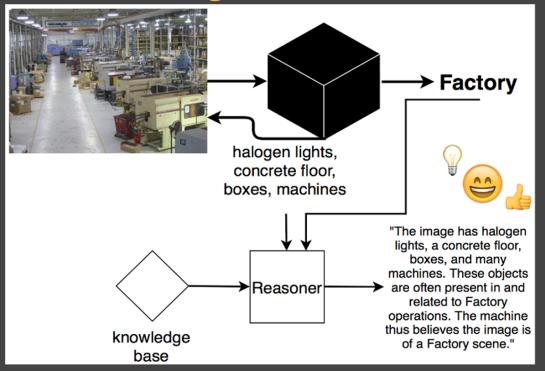
R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold. A historical perspective of explainable artificial intelligence. WIREs Data Mining and Knowledge Discovery, 11(1), 2021. doi: <u>https://doi.org/10.1002/widm.1391</u>

Explainability - Notions



Doran, D., Schulz, S., & Besold, T. R. (2017). What Does Explainable AI Really Mean? A New Conceptualization of Perspectives. 1st International Workshop on Comprehensibility and Explanation in AI and ML Colocated with AI*IA 2017 (Vol. 2071).

Explainability - Notions

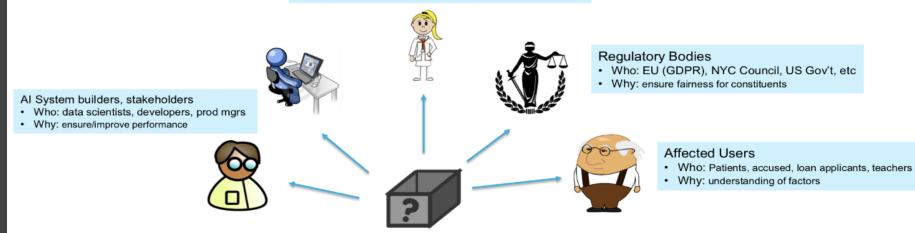


Doran, D., Schulz, S., & Besold, T. R. (2017). What Does Explainable AI Really Mean? A New Conceptualization of Perspectives. 1st International Workshop on Comprehensibility and Explanation in AI and ML Colocated with AI*IA 2017 (Vol. 2071).

Meaningful explanations depend on the stakeholder!

End Users

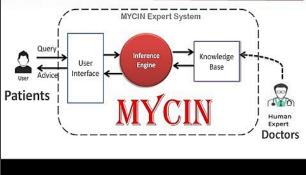
- · Who: Physicians, judges, loan officers, teacher evaluators
- · Why: trust/confidence, insights(?)



XAI – Expert Systems

- Explainable by design
- Explanations as reasoning traces of decision making process

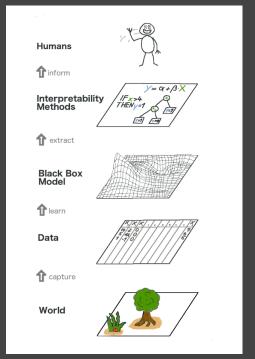
ARTIFICIAL INTELLIGENCE



PREMISE:	(AND (SAME CNTXT GRAM GRAMNEG)
	(SAME CNTXT MORPH ROD)
	(SAME CNTXT AIR ANAEROBIC))
ACTION:	(CONCLUDE CNTXT IDENTITY BACTEROIDES TALLY .6)
IF:	(1) The gram stain of the organism is gramneg,
	(2) The morphology of the organism is rod, and
	(3) The aerobicity of the organism is anaerobic
THEN:	There is suggestive evidence (.6) that
	The identity of the organism is bacteroides

XAI – Machine Learning

- Post-hoc explanations
 Classified by scope and model
 - Local vs Global
 - Specific vs Agnostic



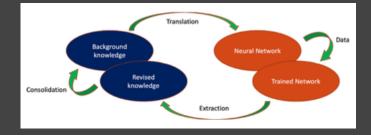
https://www.analyticsvidhya.com/blog/2019/08/decoding-blackbox-step-by-step-guide-interpretable-machine-learning-modelspython/

XAI – Recommender Systems

- White-box vs black-box vs model-based
- Explanations are **goal-oriented** and depend on the **stakeholders**:
 - Persuasive, Trustworthy
 - Efficient, Effective, Satisfying
 - Transparent, Scrutable
- More on this to follow

XAI – Neuro-Symbolic LR

- Explanations as knowledge extraction
- Symbolic and connectionist methods
 - Representation
 - Extraction
 - Reasoning
 - Learning



A Neuro-symbolic Example

- **Trepan**: a knowledge extraction algorithm
- Extracts decision tree as rule-like representation describing global model learned by ANN

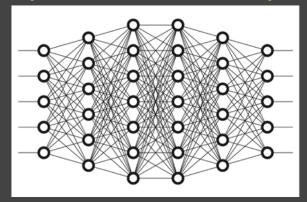
Craven, M. W., & Shavlik, J. W. (1995). Extracting treestructured representations of trained networks. In Neural Information Processing Systems (pp. 24–30). Cambridge, MA: MIT Press.

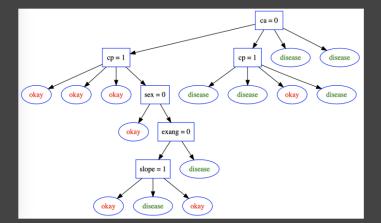
A Neuro-symbolic Example

Oracle (Trained ANN)

Trepan

Explanation

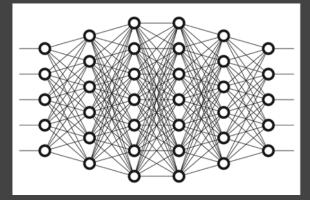




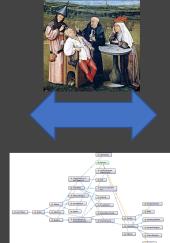
Craven, M. W., & Shavlik, J. W. (1995). Extracting treestructured representations of trained networks. In Neural Information Processing Systems (pp. 24–30). Cambridge, MA: MIT Press.

Trepan Reloaded

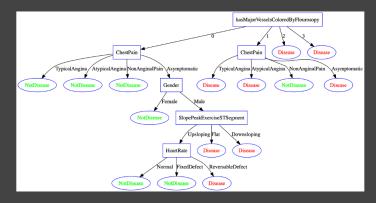
Oracle (Trained ANN)



Trepan Reloaded



Knowledge-aware Explanation



Confalonieri, R., Weyde, T., Besold, T. R., & del Prado Martín, F. M. (2020). Trepan Reloaded: A Knowledge-driven Approach to Explaining Black-box Models. Proceedings of ECAI2020. <u>https://doi.org/10.3233/FAIA200378</u>

Explainable AI (XAI)

• What stands for a (good) explanation?

Expert Systems

Accuracy Adaptability Comprehensibility

Machine Learning

Accuracy Fidelity Causality

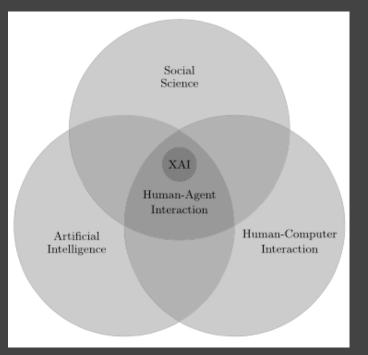
Recommender Systems

Persuasiveness Trustworthiness Efficiency Effectiveness Transparency Scrutability Neuro-symbolic Learning and Reasoning

Accuracy Fidelity Consistency Comprehensibility

XAI - Human-agent Interaction

- Current approaches suffer from "the inmates running the asylum" phenomenon
- Human-understandable
 explanations are:
 - Contrastive
 - Social
 - Selected



T. Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267:1–38, 2019. doi: <u>https://doi.org/10.1016/j.artint.2018.07.007</u>

Human-centric explanations

- Causal
- Contrastive
- Social
- Selective
- Transparent
- Privacy-preserving
- Semantic

R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold. A historical perspective of explainable artificial intelligence. WIREs Data Mining and Knowledge Discovery, 11(1), 2021. doi: <u>https://doi.org/10.1002/widm.1391</u>

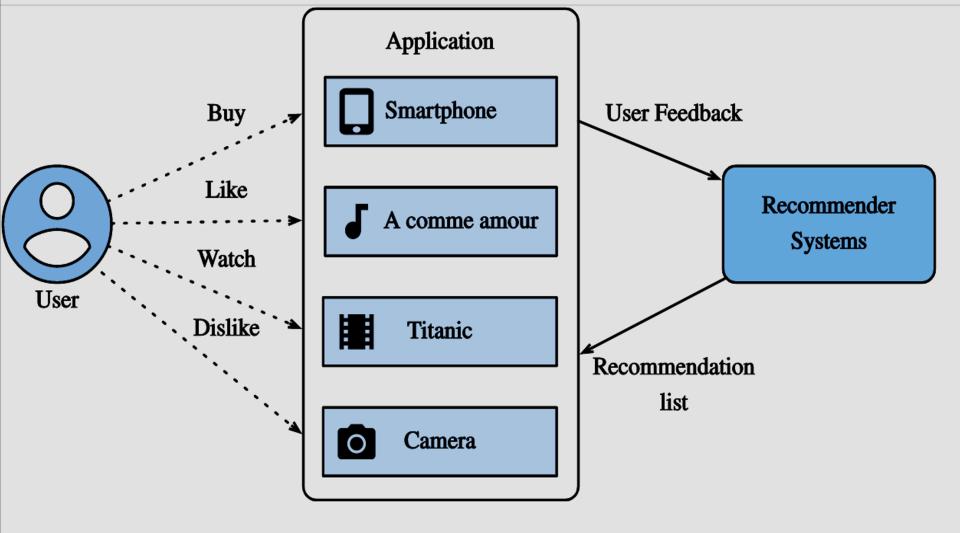
What is a Recommender System?

Problem domain

- Recommendation systems (RecSys) help to match users with items
 - Ease information overload
 - Sales assistance (guidance, advisory, persuasion,...)
- Different system designs / paradigms
 - Based on availability of exploitable data
 - Implicit and explicit user feedback
 - Domain characteristics

RecSys are software agents that elicit the interests and preferences of individual consumers [...] and make recommendations accordingly. They [..] support and improve the quality of the decisions consumers make [..] online.

Xiao and Benbasat, E-commerce product recommendation agents: Use, characteristics, and impact, MIS Quarterly 31 (2007), no. 1, 137–209

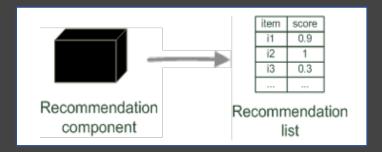


Recommender Systems

- Recommender Systems (RecSys) as a function
- <u>Input</u>
 - User model (e.g. ratings, preferences, demographics, situational context)
 - Items (with or without description of item characteristics)
- <u>Output</u>
 - Relevance score. Used for ranking

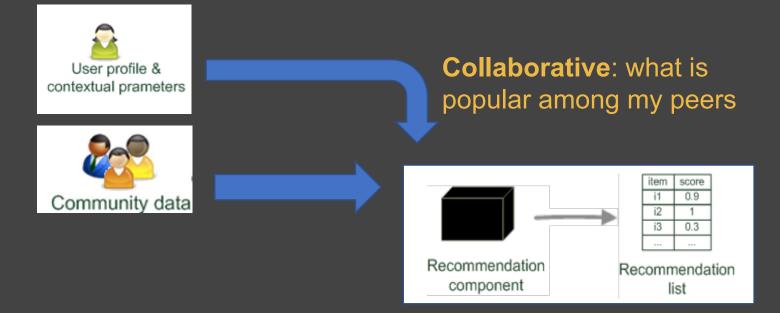
Paradigms of RecSys

Personalized recommendations



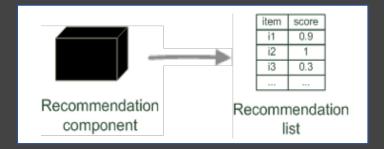
D. Jannach et al., Recommender Systems – An Introduction, Cambridge University Press, 2011

Paradigms of RecSys



Paradigms of RecSys

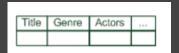
Content-based: show me more of what I liked



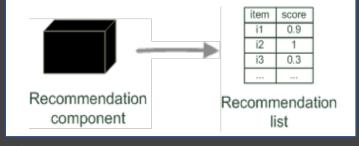
D. Jannach et al., Recommender Systems – An Introduction, Cambridge University Press, 2011

Paradigms of RecSys

Knowledge-based: Tell me what fits based on my needs

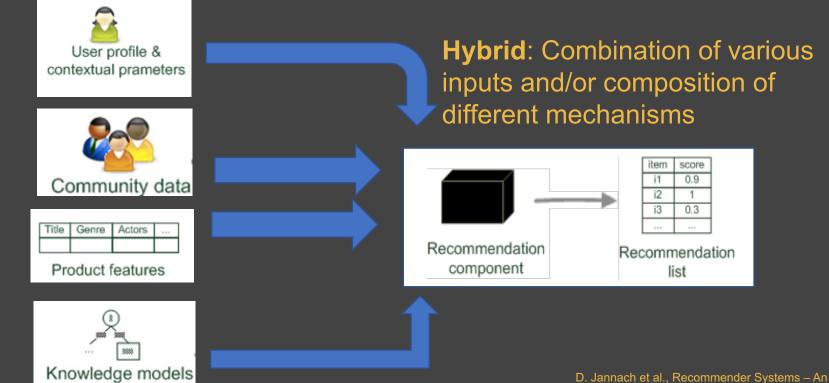


Product features



D. Jannach et al., Recommender Systems – An Introduction, Cambridge University Press, 2011

Paradigms of RecSys



Introduction, Cambridge University Press, 2011

Collaborative Filtering

- Collaborative filtering is the most prominent paradigm
- Approach
 - Use the 'wisdom of the crowd' to recommend items
- Basic idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers, who had similar tastes in the past, will have similar tastes in the future

Collaborative Filtering

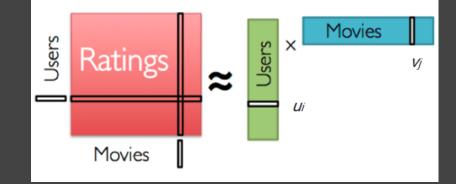
- Input types
 - A matrix of given user-item ratings
 - A sequence user-item interactions
 - Situational context
- Output types
 - A numerical prediction indicating to what degree the current user will like or dislike a certain item
 - A top-N list of recommended items
 - Next item

Memory-based vs model-based

- <u>Memory-based</u>
 - The input is directly used to find neighbors and to make predictions
 - Nearest-Neighbor Methods
 - Scaling problem for real world scenarios
- <u>Model-based</u>
 - Based on a 'model-learning' phase
 - Capture high-level patterns and trends

Algorithms

- Factorization methods
 - Multi-dimensional latent factor space
 - Approximates original rating matrix
- Deep Learning
 - Neural network
 embeddings



Explanations in Recommender Systems

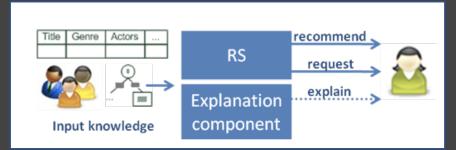
XAI – Recommender Systems

- Model-based vs post-hoc explanations
- Explanations are **goal-oriented** and depend on the **stakeholders**:
 - A **selling agent** may be interested in promoting particular products
 - A **buying agent** is concerned about making the right buying decision

Friedrich, G.; and Zanker, M. 2011. A Taxonomy for Generating Explanations in Recommender Systems. AI Magazine32(3): 90. ISSN 0738-4602.

Explanations in RecSys

 An explanation in RecSys is additional information to explain the system's output following some objectives



Friedrich, G.; and Zanker, M. 2011. A Taxonomy for Generating Explanations in Recommender Systems. Al Magazine32(3): 90. ISSN 0738-4602.

Explanations in RecSys

Form of abductive reasoning

• Given: $KB \models_{RS} i$ (item i is recommended by method RS)

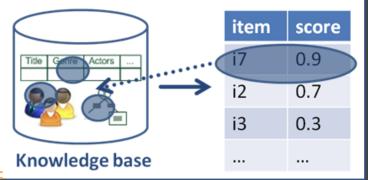
Find $KB' \subseteq KB$ s.t. $KB' \vDash_{RS} i$

• Principle of succinctness

Find smallest subset of $KB' \subseteq KB$ s.t. $KB' \models_{RS} i$ i.e. for all $KB'' \subset KB'$ holds $KB'' \not\models_{RS} i$

• But additional filtering

 What is relevant for deduction, might be obvious for humans



Friedrich, G.; and Zanker, M. 2011. A Taxonomy for Generating Explanations in Recommender Systems. AI Magazine32(3): 90. ISSN 0738-4602.

Ultimate Goal

Useful!

- Justify recommendations in a *human-understandable* way
- But interpretability is not a goal by itself
- Support the goal of the recommender like improved decision support

Goals for Explanations

- Transparency
- Validity
- Trustworthiness
- Persuasiveness
- Effectiveness

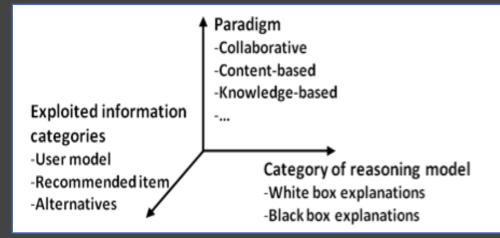
- Efficiency
- Satisfaction
- Relevance
- Comprehensibility
- Education

Tintarev, N.; and Masthof, J. 2015. Explaining recommen-dations: design and evaluation. In Recommender Systems Handbook, 217–253. Boston, MA: Springer US.

Taxonomy for Explanations

Major design dimensions of current explanation components:

- Category of reasoning model
- Paradigm
- Information categories

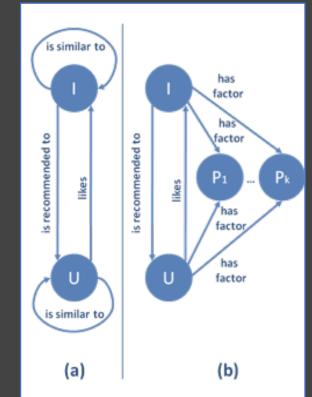


Information categories

- Which information is exploited to derive explanations?
- User model
- Features of the recommended item
- Alternatives

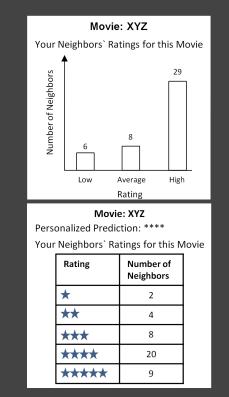
Reasoning paradigm

- Classes of objects
 - Users
 - Items
 - Properties
- N-ary relations between them
- Collaborative Filtering
 - Neighborhood based CF (a)
 - Matrix Factorization (b)



Well-known example

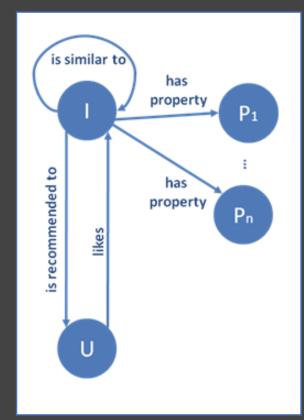
- Best-performing explanation interfaces are based on the ratings of neighbors
- Similar neighbors liked the recommended film. The histogram performed better than the table



J. Herlocker. Explaining collaborative filtering recommendations, Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW '00) (Philadelphia), ACM, 2000, pp. 241–250

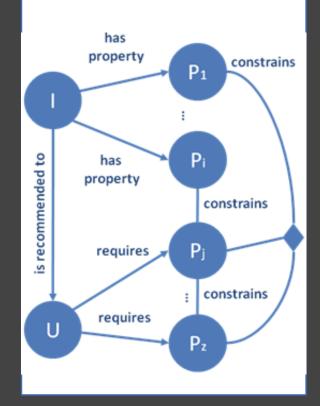
Reasoning paradigm

- Content-based
 - Features/properties characterizing items
 - TF*IDF model
 - Feature-style: explaining based on item features



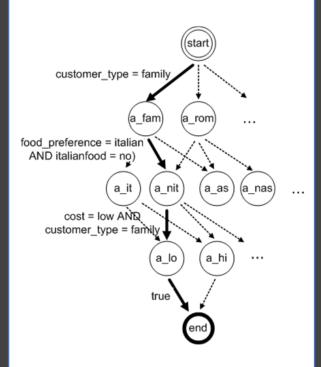
Reasoning paradigm

- Knowledge-based
 - Properties of items
 - User Model
 - Additional mediating domain constraints

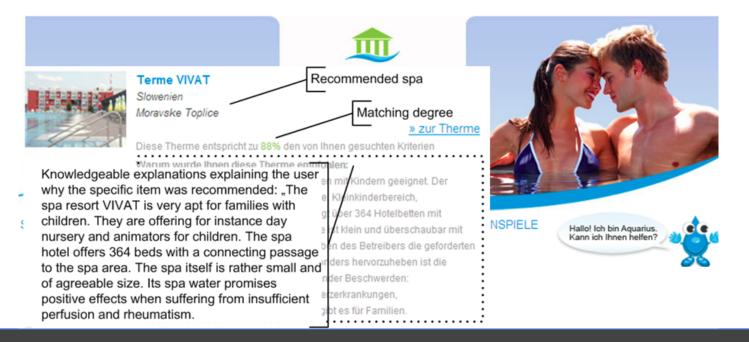


Example

- Layered directed acyclic graph (DAG)
 - U = {customer_type,..}
 - I = {italianfood,..}
 - Nodes represent arguments (canned text)
 - Transition from start to end node not violating domain constraints

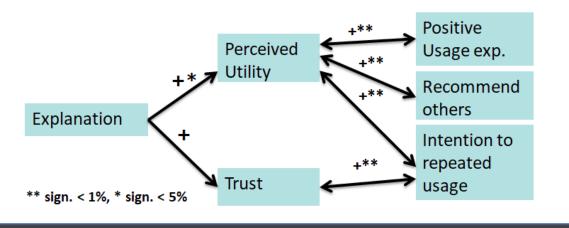


Example



Search platform for spa resorts

Example



 A/B test: knowledgeable explanations increased perceived utility and intention to use

M. Zanker. The influence of knowledgeable recommendations on users' perception of a recommender system, ACM Conference on Recommender Systems (RecSys '12), ACM, 2012, pp. 269–272

Category of reasoning model

White-box or explainable-by-design explanations:

• How did the system derive a recommendation

Black-box or post-hoc explanations:

• What justifies the recommendation in the eyes of its recipient

Model-based explanations: In between the previous two

Explanations in CF

- Explicit recommendation knowledge is not available
- Recommendations based on CF cannot provide arguments as to why a product is appropriate for a customer or why a product does not meet a customer's requirements
 Post-hoc explanations (see later)

Explanation formats

- <u>User-style</u>
 - It provides explanations based on similar users
- <u>Item-style</u>
 - It is based on choices made by users on similar items

This is how **similar users to you** rated this item:

3.7 0 0 0 70 reviews

Excellent	18 %
Very Good	55 %
Average	15 %
Poor	3 %
Terrible	10 %

NETFLIX Home TV Shows Movies Originals Recently Addec Because you liked Archer

Because you added Van Helsing to your list

Because you watched Master of None

Thank you! Questions? Wrapping up

RecoXplainer: a unified, extendable, easy-to-use Python library to develop explainable RecSys

Code available at: <u>https://github.com/ludovikcoba/recoxplainer</u>

Looking for use-cases

Who we are

Dr. Ludovik Coba Iudovik.coba@unibz.it

Dr. Roberto Confalonieri rconfalonieri@unibz.it

Prof. Markus Zanker markus.zanker@unibz.it

Thank you! Questions?