
A Roadmap Towards Tuneable Random Ontology
Generation

Pietro Galliani

Free University of Bozen-Bolzano, Italy

SCORE 1:0 Bremen



What is this about?

I Generation of random ontologies (given feature choices)

I For testing and benchmarking purposes

I Using a theoretically justifiable model.

This is a roadmap: no results, just thoughts.



What is this about?

I Generation of random ontologies (given feature choices)

I For testing and benchmarking purposes

I Using a theoretically justifiable model.

This is a roadmap: no results, just thoughts.



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, . . . )

Q: How to test/evaluate them?

A: Ontology repositories!

BAD IDEA!



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, . . . )

Q: How to test/evaluate them?
A: Ontology repositories!

BAD IDEA!



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, . . . )

Q: How to test/evaluate them?
A: Ontology repositories!

BAD IDEA!



Problem 1: Not Enough Ontologies

Ontology repositories are big (OntoHub: 21944 ontologies).
Surely this is enough?

Not really: tools do not work on arbitrary ontologies, but on
ontologies with specific properties (language, size, semantic
features, . . . ).

Also, when using ML techniques over ontologies you often need
lots of data (training/testing/validation, . . . )



Problem 2: Statistically Dependent Features

Suppose that you want to test the effect of ontology size over the
performance of your tool.

Obvious Approach: sample random ontologies of different
dimensions from OntoHub, run your program over them, write
results

Obvious Problem: What if operator depth (or some other
feature) depends on size among your samples?



Problem 2: Statistically Dependent Features

Suppose that you want to test the effect of ontology size over the
performance of your tool.

Obvious Approach: sample random ontologies of different
dimensions from OntoHub, run your program over them, write
results

Obvious Problem: What if operator depth (or some other
feature) depends on size among your samples?



Problem 3: Weird Ontologies Needed

Some tools (e.g. ontology repair, evaluation, . . . ) need to run on
“bad” ontologies.

However, such ontologies are not generally published in repositories
(but see BOG @ JOWO 2018 @ FOIS 2018).

Induce badness (e.g., adding arbitrary axioms)? Sure, but no real
control about features / realism.



What We Propose

Real Repositories

Feature
Analyser

Parameter Distribution

DOL
Specification

(swappable)

Reasoner

(swappable)

user

Ontology
Generator

Random Ontologies

Samples Feature Values

Chosen ParametersRandom Ontology

Typical
Parameters

Ontorator



Main Points

I Identification of features from real ontology repositories via
network analysis and semi-automated methods (no arbitrary
choices);

I Typical Parameters (and parameter distributions) provided
to user, who is however free to change them;

I Language-Agnostic: reasoner and DOL language
specifications are external modules, can be changed.

I Generative Probabilistic Model for generating random
ontology via MCMC-like sampling.



The Competition: LUBM and UOBM

Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: a benchmark for
OWL knowledge base systems.; Ma, L., Yang, Y., Qiu, Z., Xie, G.,
Pan, Y., and Liu, S. (2006). Towards a complete OWL ontology
benchmark.

I Fixed languages (OWL-Lite or OWL DL);

I Mostly fixed TBox Structure;

I Not very tuneable (can change some size parameters, number
of individuals, little else)



The Competition: OTAGen

Ongenae, F., Verstichel, S., De Turck, F., Dhaene, T., Dhoedt, B.,
and Demeester, P. (2008). OTAGen: A tunable ontology generator
for benchmarking ontology-based agent collaboration.

I Truly random ontology generation (not variations on a fixed
one);

I Fairly tuneable;

I Generation algorithm → choice of available parameters, not
vice versa;

I No attempt at statistical verisimilitude (ontologies generated
are not “typical”).



The Competition: Mips Benchmark

Zhang, Y., Ouyang, D., and Ye, Y. (2015). An automatic way of
generating incoherent terminologies with parameters.

I Generates inconsistent ontologies;

I Tuneable, tests shows parameters are relevant for complexity
analysis;

I Special purpose, no statistical verisimilitude.



Conclusion

There is a need for a

1. Tuneable;

2. General-Purpose;

3. Language-agnostic

generator of random ontologies suitable for the testing and
benchmarking of algorithms and tools, based on generative
probabilistic models.

Aside from practical utility, such a tool (and its model) would be a
step towards the integration of statistical and symbolic reasoning.


