A Roadmap Towards Tuneable Random Ontology
Generation

Pietro Galliani

Free University of Bozen-Bolzano, Italy

SCORE 1:0 Bremen



What is this about?

» Generation of random ontologies (given feature choices)

» For testing and benchmarking purposes

> Using a theoretically justifiable model.



What is this about?

» Generation of random ontologies (given feature choices)

» For testing and benchmarking purposes

> Using a theoretically justifiable model.

This is a roadmap: no results, just thoughts.



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, .. .)

Q: How to test/evaluate them?



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, .. .)

Q: How to test/evaluate them?
A: Ontology repositories!



What is this about?

More and more complex algorithms over ontologies (merging,
resolving inconsistencies, evaluating, answering queries, .. .)

Q: How to test/evaluate them?
A: Ontelogyrepeositeriest
BAD IDEA!



Problem 1: Not Enough Ontologies

Ontology repositories are big (OntoHub: 21944 ontologies).
Surely this is enough?

Not really: tools do not work on arbitrary ontologies, but on
ontologies with specific properties (language, size, semantic
features, ...).

Also, when using ML techniques over ontologies you often need
lots of data (training/testing/validation, ...)



Problem 2: Statistically Dependent Features

Suppose that you want to test the effect of ontology size over the
performance of your tool.

Obvious Approach: sample random ontologies of different
dimensions from OntoHub, run your program over them, write
results



Problem 2: Statistically Dependent Features

Suppose that you want to test the effect of ontology size over the
performance of your tool.

Obvious Approach: samplerandom-ontelogies-of-different
dimension om-OntoHub,run—vyour program-over-them —wri

resttts

Obvious Problem: What if operator depth (or some other
feature) depends on size among your samples?



Problem 3: Weird Ontologies Needed

Some tools (e.g. ontology repair, evaluation, ...) need to run on
“bad” ontologies.

However, such ontologies are not generally published in repositories
(but see BOG @ JOWO 2018 @ FOIS 2018).

Induce badness (e.g., adding arbitrary axioms)? Sure, but no real
control about features / realism.



What We Propose

Real Repositories

Random Ontologies

Samples

DOL
Specification

(swappable)

Random Ontology

N\,

Feature
Analyser

ONTORATOR

Ontology
Generator

Feature Values

Reasoner

(swappable)

Chosen Parameters

Parameter Pistribution

i Typical
3 Parameters



Main Points

» ldentification of features from real ontology repositories via
network analysis and semi-automated methods (no arbitrary
choices);

» Typical Parameters (and parameter distributions) provided
to user, who is however free to change them;

» Language-Agnostic: reasoner and DOL language
specifications are external modules, can be changed.

» Generative Probabilistic Model for generating random
ontology via MCMC-like sampling.



The Competition: LUBM and UOBM

Guo, Y., Pan, Z., and Heflin, J. (2005). LUBM: a benchmark for
OWL knowledge base systems.; Ma, L., Yang, Y., Qiu, Z., Xie, G.,
Pan, Y., and Liu, S. (2006). Towards a complete OWL ontology
benchmark.

» Fixed languages (OWL-Lite or OWL DL);
» Mostly fixed TBox Structure;

» Not very tuneable (can change some size parameters, number
of individuals, little else)



The Competition: OTAGen

Ongenae, F., Verstichel, S., De Turck, F., Dhaene, T., Dhoedt, B.,
and Demeester, P. (2008). OTAGen: A tunable ontology generator
for benchmarking ontology-based agent collaboration.

» Truly random ontology generation (not variations on a fixed
one);

> Fairly tuneable;

» Generation algorithm — choice of available parameters, not
vice versa;

» No attempt at statistical verisimilitude (ontologies generated
are not “typical”).



The Competition: Mips Benchmark

Zhang, Y., Ouyang, D., and Ye, Y. (2015). An automatic way of
generating incoherent terminologies with parameters.

» Generates inconsistent ontologies;

» Tuneable, tests shows parameters are relevant for complexity
analysis;

» Special purpose, no statistical verisimilitude.



Conclusion

There is a need for a
1. Tuneable;
2. General-Purpose;

3. Language-agnostic

generator of random ontologies suitable for the testing and
benchmarking of algorithms and tools, based on generative
probabilistic models.

Aside from practical utility, such a tool (and its model) would be a
step towards the integration of statistical and symbolic reasoning.



