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Abstract. We propose a formal framework to clarify the import of and
the relationship among different notions of similarity. The framework,
borrowing from the general E-connections approach, allows to use mul-
tiple similarity notions in the same system by relating the domain of
discourse to specialized sets of entities even across different logics. In
practice, we start form the assumption that (Leibnizian) relative iden-
tity is the only local form of similarity, and show that more sophisticated
notions can be conceptually understood as the result of transformations
across heterogeneous logics. These transformations, called global similari-
ties, are usually motivated by arguments external to the starting system,
and can be intertwined to generate a prolific family of similarity relations.
We exemplify this framework in the context of shape similarity whose
comprehension motivated our work. Finally, the approach developed in
this paper sets the basis for a general study of similarity as a group of
transformations generated by (primitive) global similarity relations.
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1 Introduction

The search for similarities across objects is pervasive in human thought and rea-
soning, and similarity analysis is a main cognitive tool for the classification of
entities. As Quine puts it, the notions of kind, similarity and resemblance “seem
to be variants or adaptations of a single notion” and “[...] a sense of similarity or
of kinds is fundamental to learning in the widest sense—to language learning, to
induction, to expectation” [18, p. 129]. Since there are different ways in which
things can be said to be similar, similarity analysis makes room for reasoning
according to different perspectives. It thus has a crucial role even in our sci-
entific understanding of the world, as L. R. Goldstone and colleagues observe
“An account of what make problems, memories, objects, and words similar to
one another often provides the backbone for our theories of problem solving,
attention, perception, and cognition.” [6].

In this paper we look at similarity in the domain of objects with spatial
properties, and in particular we focus on shape. Research on shape is carried out
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for a variety of reasons; from mathematical aspects on how to model shape [15]
to qualitative issues on how to describe shape [2], from the neuro-psychological
problem of how the mind processes shape [3] to the computational issues of
shape classification and handling [23], from shape detection [16] to the formal
relationship between shape and aesthetics [1].

These approaches rely on different forms of shape description, approximation
and reduction, which we suggest can be compared if understood as different
applications of shape similarity. Clearly, not all aspects of these approaches can
be taken into account when analysed in terms of similarity but this is not our
concern here. Indeed, our main goal is to find a way to organize and relate
theories of shape via the notion of similarity they embrace. Whatever in these
theories goes beyond similarity will need to be dealt with by specific extensions
of the framework proposed here.

In a nutshell, what we propose is a logical framework based on [12,9] in which
the modelling of each environment for shape similarity is done via codification in
a possible world. We find this strategy suitable to model and compare different
approaches to shape understanding, granularity, classification and recognition
and in agreement with claims that similarity is a cluster of notions rather than a
unitary concept [21]. Although this paper introduces just the basic ideas, without
discussing important details, the rephrasing of well-known approaches to simi-
larity within our framework in Section 3 and the presentation of a paradigmatic
example in Section 4 should suffice to exemplify the flexibility and usefulness of
the framework.

An interesting aspect of our work is the clear-cut distinction, nicely embedded
in the framework, between what we call ontological and epistemic similarities
(see Section 2 for technicalities). This distinction serves to explain why some
similarities are proper of the space where one is working in, e.g., all circles are
similar in Euclidean geometry but not in the domain of shape approximation
where size is relevant. In our view, ontological similarities are the byproduct of
the space definition, i.e., they arise from the structure of the possible world itself
and thus ‘belong’ to the world because of the way it is (we call this also the
natural or canonical similarity of a space). Other forms of similarity need cross-
world relations to be modelled and these relations are motivated by external
considerations, generally related to specific tasks. In this latter case we talk
about epistemic similarity since these similarity forms, although added into the
system, remain motivated by external knowledge.

Finally, it should be clear to the reader that our goal leads us to take a
very general notion of similarity. It is well known that standard formalisations
of similarity are based on some type of equivalence (sub)structure. But which
one? It is undisputed that transitivity is too strong for similarity [7]. Still, most
(formal) work on similarity retains the axiom of reflexivity and often even that
of symmetry. However, in many areas such as e.g. in cognitive science these
postulates are rejected, and therefore all three are given up in general in our
framework. Indeed, a particular example for the failure of symmetry is given by
similarity assessments of shapes (see, e.g., [4]).
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Our approach allows us to be neutral with respect to these constraints when
similarity is modelled across worlds. Indeed, what we call epistemic similarity
is a general form of connection between entities (or classes) living in different
worlds. Taking this approach we are not forced to introduce a reflexive link from
a world to itself (which is needed to model reflexivity in epistemic similarity).
Analogously, if we posit a similarity λ1 from a world W1 to a world W2 (here
understood as picking out the most similar objects in world W2, i.e. the coun-
terparts, see Section 2), there is no constraint to enforce a similarity relation
λ2 from W2 to W1. Furthermore, even if we have a λ2 from W2 to W1, this
does not need to take an entity λ1(a) back to a. That is, we can very well have
λ2(λ1(a)) 6= a, so symmetry of similarity is not enforced either.

The other form of similarity, previously dubbed ontological similarity, is
stronger. Entities are similar in this sense because of the structure of the world
in which they live, and thus reflexivity is enforced by the logical setting. Sym-
metry is not, however. This point is relevant especially when similarity is used
for filtering: when searching for, say, convex shapes, an arbitrary shape A can be
classified as similar to a convex shape B but the opposite does not hold unless
A is convex as well.

2 Counterparts, Cross-World Similarity, and
S-Connection

David Lewis provided the first formal theory of counterparts [14], a two-sorted
first-order theory, whose sorts are objects and worlds, and which has four pred-
icates: W (x) says that x is a world, I(x, y) that x is in the world y, A(x) that
x is an actual object, and C(x, y) that x is a counterpart of y. The postulates
of Lewis’ counterpart theory codify that every object is in one and only one
world, that counterparts of objects are objects, that no two different objects of
the same world can be counterparts of each other, any object is a counterpart
of itself, and that there is a world that contains all and only the actual objects
and which is non-empty.

He described the basic intuition underlying the idea of counterparthood as
follows:

I prefer to say that you are in the actual world and no other, but you
have counterparts in several other worlds. Your counterparts resemble
you closely in content and context in important ways. They resemble
you more closely than do the other things in their worlds. But they
are not really you. For each of them is in his own world, and only you
are here in the actual world. Indeed we might say, speaking casually,
that your counterparts are you in other worlds, that they and you are
the same; but this sameness is no more literal identity than the sameness
between you today and you tomorrow. It would be better to say that your
counterpart are men you would have been, had the world been otherwise.
[14], p. 27–28
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The connection to the standard modal language is obtained by translating
sentences of modal predicate logic to the counterpart theory via the so-called
Lewis translation; for details, see [14].

The general idea of counterpart relations being based on a notion of similarity
across worlds also lies at the heart of similarity-based knowledge representation
as proposed in this paper, and was a major inspiration for the design of ‘modular
languages’ such as E-connections [12], which we discuss next. An overview and
discussion of counterpart-theoretic semantics can be found in [11].

E-Connections as Counterpart Theory. In E-connections, a finite number of
formalisms talking about distinct domains are ‘connected’ by relations between
entities in the different domains, capturing different aspects or representations
of the ‘same object’. For instance, an abstract object o of a description logic L1

can be related via a relation R to its life-span (a set of time points) in a temporal
logic L2 as well as to its spatial extension (a set of points in a topological space,
for instance) in a spatial logic L3. Essentially, the language of an E-connection
is the (disjoint) union of the original languages enriched with operators capable
of talking about the link relations. The possibility of having multiple relations
between domains is essential for the versatility of this framework, the expres-
siveness of which can be varied by allowing different language constructs to be
applied to the connecting relations. A main feature of E-connections is that, sim-
ilar to description logics, they offer an appealing compromise between expressive
power and computational complexity. The coupling between the combined logics
is sufficiently loose for proving general results about the transfer of decidability:
if the connected logics are decidable, then their connection will also be decid-
able. More importantly in our present context, they allow the combination of
heterogeneous logical formalisms without the need to adapt the semantics of the
respective components.

Note that, differently from the disjointness of the formal languages of the
component logics, the requirement of disjoint domains is not essential. What
this boils down to is the following simple fact: while more expressive E-con-
nection languages allow to express various degrees of qualitative identity, for
instance by using number restrictions on links to establish partial bijections,
they lack means to express ‘proper’ numerical trans-module identity. This issue,
clearly, is closely related to the problem of trans-world identity well known from
counterpart theory; we will expand on this below when introducing S-connec-
tions.

For lack of space, we can here only roughly sketch the formal definitions,
but compare [12]: we assume that the languages L1 and L2 of two logics L1

and L2 are pairwise disjoint. To form a connection CE(L1,L2), fix a non-empty
set E = {Ej | j ∈ J} of binary relation symbols. The basic E-connection
language is then defined by enriching the respective languages with operators
for talking about the link relations. A structure

M = 〈W1,W2, EM = (EM
j )j∈J〉,
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Fig. 1. A two-dimensional connection.

whereWi = (Wi, .
Wi) is an interpretation of Li for i ∈ {1, 2} and EM

j ⊆W1×W2

for each j ∈ J , is called an interpretation for CE(L1,L2). Given terms Ci of
logics Li, i = 1, 2, denoting subsets ofWi, the semantics of the basic E-connection
operators 〈·〉1 and 〈·〉2 is

(〈Ej〉1C2)M = {x ∈W1 | ∃y ∈ CM
2 : (x, y) ∈ EM

j }
(〈Ej〉2C1)M = {y ∈W2 | ∃x ∈ CM

1 : (x, y) ∈ EM
j }

Fig. 1 displays the connection of an ontology (classifying shapes according to
various qualities) with a spatial logic that distinguishes shapes by topological
properties, with a single link relation E interpreted as the relation ‘is the spatial
extension of’, i.e. relating abstract objects of the ontology with spatial objects.

As follows from the complexity results of [12], E-connections add substantial
expressivity and interaction to the component formalism.

S-Connections: Similarity-based E-Connections. Research on similarity is
of a rather broad nature, including work in areas such as philosophy and general
cognitive science, (description) logics, bio-informatics, and information retrieval,
among others. Technically, the notion of similarity is closely related to fuzziness,
as [8] discusses. By attaching fuzzy-values to link-relations, we can say that y is
in the spatial extension E(x) of point x with degree p ∈ [0, 1], etc.3

Here, we concentrate on modelling a notion of heterogeneous similarity, i.e.
similarity of objects drawn from conceptually different domains, specified by
means of (heterogeneous) similarity measures which are closely modelled on the
notions of distance functions and metrics. The notion of similarity-based E-con-
nections defined below thus combines the ideas of E-connections [12], distance
logics [13], and similarity logics [19].

We next define the notions of similarity and heterogeneous similarity spaces:
let R+

0,∞ denote the positive real numbers including zero and the symbol ∞
(denoting ‘infinity’), and for i = 1, 2, we set ī = 1 if i = 2 and ī = 2 if i = 1.

3 This natural idea has been studied for instance in the work of Suzuki on graded
accessibility relations [22]. Also, Williamson [24] pursued similar semantic ideas when
developing his propositional logics of clarity.
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The following is a slight generalisation of the definition given in [9] to account
for all similarity measures that appear in the literature, including partiality and
non-reflexive ones.

Definition 1. A similarity space S = 〈S, ∫〉 (sim-space for short) consists of
a set S together with a similarity measure ∫ (read ‘s’), i.e. a partial function
∫ : S × S → R+

0,∞ with dom(∫) ⊆ S × S. If ∫ satisfies ∫(x, x) = 0 for all
〈x, x〉 ∈ dom(∫), it is called reflexive. In case ∀〈x, y〉 ∈ dom(∫) : ∫(x, y) =
0 ⇐⇒ x = y holds, we call ∫ discrete. If ∫ satisfies ∀〈x, y〉 ∈ dom(∫) :
∫(x, y) = ∫(y, x), we call ∫ symmetric, and if it satisfies ∀〈x, y〉, 〈y, z〉, 〈x, z〉 ∈
dom(∫) : ∫(x, y)+∫(y, z) ≥ ∫(x, z), we call it triangular. If ∫ is a total function,
discrete, symmetric and triangular, and∞ 6∈ range(∫), it is also called a metric,
and 〈S, ∫〉 is called a metric space.

Here, ∫(x, y) = 0 means that x is perfectly similar to y. Note that, contrary
to other formal approaches to similarity, closeness in the similarity space (i.e. a
low value of the similarity measure) corresponds to high similarity: this intuition
derives from the spatial interpretation of metric spaces.

However, note that perfect similarity implies identity only in the case of dis-
crete spaces, i.e. that discreteness implies reflexivity but not vice versa. ∫(x, y) <
∫(x, z) means that x is more similar to y than to z, and ∫(x, y) = ∫(x, z) means
that x is equally similar to y and z. Moreover, we say that x is discernibly similar
to y if ∫(x, y) < ∞ and indiscernibly similar otherwise, i.e. if ∫(x, y) = ∞. For
example, suppose as spatial objects you consider convex polygons in the plane
together with circles of different sizes. Now a very simple similarity measure
would, in the case of polygons, compute the difference in the number of vertices
(i.e., the smaller this difference the more similar the polygons are) and, for cir-
cles, compute the difference in diameter (i.e., the smaller that difference the more
similar the circles are). Comparing polygons with circles, however, remains un-
defined (think of circles as having an infinite number of vertices). Then, clearly,
all pairs of polygons (and all pairs of circles) are discernibly similar, whilst all
pairs of a polygon and a circle are indiscernibly similar.

For X,Y ⊆ S sets (rather than just elements), similarity is defined by ex-
tending ∫ as follows:

∫(X,Y ) :=

{
inf{∫(x, y) | x ∈ X, y ∈ Y, 〈x, y〉 ∈ dom(∫)}, if dom(∫) ∩X × Y 6= ∅
∞, otherwise

If in fact the minimum exists for all non-empty sets X and Y , S is also called
a min-space, compare [19]. Clearly, whenever a space is finite, it is a min-space;
this obviously is the case in many practical applications.

In general, a space can be equipped with several similarity measures, some
of which can be epistemic in the sense of Section 1. But in particular, we assume
that the basic underlying ontology and logic of a given space, i.e. what the logic
‘quantifies over’ (used here in the sense of [17]), defines a corresponding natural
or canonical similarity space. Here, the canonical similarity measure is
given by relative identity, i.e. by measuring the number of shared properties
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available in a given logical language (in the sense of Leibniz; see, e.g., [11]),
and therefore in particular always satisfies reflexivity. Canonical similarity is
ontological in the sense discussed in Section 1.

When relating different sets of objects, e.g. shapes as topological objects, as
objects in Euclidean or projective space etc. (see Section 4), the above definitions
need to be adapted. For simplicity, we here restrict our attention to the case of
only two such sets.

Definition 2. A (2-dim) heterogeneous similarity space (hsim-space for
short) is a quadruple H = 〈S1,S2, ∫21 , ∫12 〉 consisting of, for i = 1, 2, sim-spaces
Si = 〈Si, ∫i〉, and heterogeneous similarity measures, which are partial func-
tions ∫ īi : Si × Sī 7→ R+

0,∞. H is het-symmetric if whenever 〈x, y〉 ∈ dom(∫21 )

and 〈y, x〉 ∈ dom(∫12 ) we have ∫21 (x, y) = ∫12 (y, x). It is het-triangular if for all
x, z ∈ Si and y ∈ Sī we have ∫ īi (x, y)+∫ i

ī
(y, z) ≥ ∫i(x, z) (for i = 1, 2), whenever

all measures are defined.

In the heterogeneous case, perfect similarity now means that x ∈ S1 and y ∈
S2 are indistinguishable from the perspectives of both heterogeneous similarity
measures, ∫21 and ∫12 , i.e., that ∫21 (x, y) = ∫12 (y, x) = 0. Note that the notion
of discrete similarity measure makes no immediate sense in the heterogeneous
case as (numerical) identity is typically not available. However, the notion can
be ‘simulated’ by replacing identity with an independently defined notion of
trans-module identity, ‘equalising’ cross-domain elements whilst respecting the
similarity measures.

Counterparts in S-Connections. Note that, in this setting, the problems
of transworld identity and counterparthood can be neatly separated: transworld
identity may be taken to be synonymous with perfect similarity as defined above.
Counterparthood understood as maximal similarity is a looser notion, and may
be explicated by the following principle (see [5]).

For x ∈ Si and y ∈ Sī, y is a counterpart of x only if nothing in Sī is
more similar to x as it is in Si than is y as it is in Sī.

We take this principle as the defining criterion for counterparthood in similarity
spaces:

Definition 3 (Counterparts). Let H = 〈S1,S2, ∫21 , ∫12 〉 be a hsim-space. We
call bī ∈ Sī an ī-counterpart of ai ∈ Si if ∫ īi (ai, bī) = inf{∫ īi (ai, b) | b ∈
Sī} < ∞, which we also write as Cpīi(ai, bī). This gives us two relations: Cpīi ⊆
Si × Sī, i = 1, 2. Moreover, for X ⊆ Si, we denote by Cpīi(X) the set {y ∈ Sī |
∃x ∈ X.Cpīi(x, y)}.

Note that counterparts thus defined may or may not exist, and if they exist may
or may not be unique. Moreover, bī may be an ī-counterpart of ai without ai
being an i-counterpart of bī; counterparthood is directional. Although counter-
parts need not be unique, in applications it is often desirable to select amongst
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the elements with maximal similarity a unique element, according to certain ex-
ternal criteria. We here solve this problem by incorporating into the structures
an explicit choice function selecting a counterpart.

Definition 4 (Counterpart choice). A hsim-space with choice is a triple
〈H, λ1, λ2〉, where H = 〈S1,S2, ∫21 , ∫12 〉 is a hsim-space, and, for i = 1, 2, λi :

Si −→ Cpīi(Si) are (partial) choice functions such that, for all x ∈ Si, λi(x) ⊆
Cpīi(x) is a singleton if Cpīi(x) 6= ∅, and undefined otherwise.

Of course, often the λi are uniquely determined by the similarity measures ∫ īi ,
in which case we call λi a deterministic choice function.

Apart from the elements with maximal similarity, i.e. the counterparts, it is
also of interest to be able to refer to elements of a foreign domain that are similar
to some degree (i.e. discernibly similar). This can be achieved by simulating the
notion of link relation from E-connections as follows:

Definition 5 (Link-relation). Given a hsim-space H = 〈S1,S2, ∫21 , ∫12 〉, we de-
fine the induced link relations E1

H, E
2
H, EH ⊆ S1×S2 by setting, for all x ∈ S1

and y ∈ S2:

E1
H(x, y) ⇐⇒ ∫21 (x, y) <∞;

E2
H(x, y) ⇐⇒ ∫12 (y, x) <∞;

EH(x, y) ⇐⇒ min
(
∫21 (x, y), ∫12 (y, x)

)
<∞(= E1

H ∪ E2
H).

Intuitively, the relation EH(x, y) holds if x and y are discernibly similar from
at least one ‘viewpoint’, and Ei

H(x, y) holds if x and y are discernibly similar
from the point of view of ∫ īi . This way we can recover standard E-connections
as shown in [9]. A basic logic for these semantic structures was also introduced
in [9], but we omit the details here and instead focus on informally studying
examples that can be modelled within this framework.

3 Approaches to Similarity and S-Connections

In this part, we classify in S-Connections some traditional approaches to simi-
larity.

Goldstone and colleagues list four classes of models that have been used
to formalise similarity. These are dubbed (see [6] for further information and
references): geometric, feature-based, alignment-based, and transformational.

The geometric models take as input similarity judgments like “A is 90%
similar to B” or “A is more similar to B than to C”. The model represents
similarity among entities by selecting a solution of the set of constraints given
by the similarity judgments. The solution associates each entity (an individual
or a class) to a point (an individual) in the world, say WG, which is typically a
vector space (applications to non-linear manifolds exist also).

In our framework these judgments are modelled as constraints on primitive
similarity relations. Given a relation Sim, a judgment “A is 90% similar to B”
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is formalised in WG as, say, ∫(A,B) = 0.1 (recall that 0 stands for perfect
similarity). Comparative judgments like “A is more similar to B than to C”,
are modelled by direct comparison, i.e. ∫(A,B) < ∫(A,C). In general, the goal
of geometrical models is to systematise similarity information in order to allow
further analysis of this kind of data. For this reason, in our framework one would
typically work within a single possible world whose language is driven by the
provided types of judgments.

Note that geometrical models are here classified as generating ontological
similarities since the judgments are taken as primitive elements of the worldWG.
This conclusion is justified by the fact that one looks at what is assumed within
that world and the outcome of these assumptions on similarity are ontological
consequences of what that world takes to exist. In order to see a geometrical
model as a case of epistemic similarity, one should introduce a world Wi for
each similarity judgment (or group of them), a new world W ′

G, and introduce
cross-world relations ∫21 with Wi = S1 and W ′

G = S2. These relations embed
all the given constraints into W ′

G which is thus equivalent to the single world
WG we discussed earlier. However, since W ′

G is now collecting those constraints
indirectly via cross-world relations, the similarity relation ∫ ′G of W ′

G is now an
example of epistemic similarity.

The feature-based models characterise similarity in terms of a feature-match-
ing process. Entities are represented as a collection of features and similarity is
established by weighting common and distinctive features. In our framework,
this is modelled in a single possible world WF where the language has all the
needed properties to model the entities’ features (a feature can correspond to a
property or to a combination of these). Differently from the geometrical case,
here the similarity relation ∫ is not primitive but defined by the formulas used
in feature-based approaches (generally a linear combination of the common and
distinctive properties). For instance, in a world including property Ang (having
an angle), Str (having a straight border), Cir (being a circle) and Pol (being
a polygon) we can define different similarity relations ∫F1

, ∫F3
, . . . to the result

that a sector of a circle is similar to a polygon and not to a circle according
to ∫F1 , vice versa if we use ∫F2 , and is similar to both if we use ∫F3 . Of course,
if other relations are available in the language, like in a metric space, one can
further refine the similarity based, say, on the proportion between length of
the radius and the sector angle. Feature-based models are typically systems of
ontological similarity: the similarities arising within these models are built out
of information purely contained in each world structure WF .

The third traditional approach to similarity is based on alignment models.
In these models, comparison requires to determine how elements and properties
correspond to, or align with, one another. For instance, we can associate red in
the world of colours to danger in the commonsense world. Then, a further asso-
ciation of red to fire would lead to state a similarity in the commonsense world
between fire and danger. The alignment model approach allows also to contex-
tualise some judgments or features and is particularly suited when epistemic
connections, i.e. cross-world relations like in the red-danger example, are used.
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Basically, positively aligned features are crucial to increase similarity, negatively
aligned features are used to decrease similarity, and non-aligned features can be
ignored (the presence of features of one entity that cannot be aligned at all with
features of another can be considered also). Clearly, alignment models generate
what we called epistemic similarities.

Finally, transformational models in our framework enhance the similarity re-
lationships across different worlds by adding a new parameter to measure com-
plexity. Cross-world relations of form ∫ īi are indeed now weighted with ‘transfor-
mation complexity’ values. A cross-world relation that is complex has a minor
impact on the definition of ∫ in the wordWT than a simpler cross-world relation.
Usually complexity of transformations can be established in different terms, e.g.,
one can look at the combinatorics of basic similarity transformations like rota-
tion, scaling, reflexion, convex-hull generation, topological transformation etc.
Being a generalisation of the alignment approach, transformational models are
also classified as modelling epistemic similarities.

4 S-Connection of Euclidean and Projective Geometry

We have seen in Section 3 how general approaches and uses of shape similarity
can be reformalised in our framework. This is not always trivial though: whilst
approaches like [3] are naturally reconstructed, more involved uses of similarity
like [23] and [10] are more demanding.

In this last section we describe a different example to show how we can use the
framework to compare and integrate different similarity relations. In accordance
with the goals of this paper, we do not dwell upon formalisation details.

Assume we have a worldWE capturing Euclidean geometry, and a worldWP

for Euclidean projective geometry (the world of 3D polygons). The ontological
similarity relations ∫E of SE and ∫P of SP agree on the common subset of poly-
gons, and there is a natural relation EH of perfect similarity between polygons
in WE and polygons in WP .

The problem of evaluating shape-based matching and retrieval algorithms
for (generally 3D) polygonal models has led to the Princeton Shape Benchmark
(PSB), a framework to compare 3D shape matching algorithms [20]. The PSB
provides a mechanism to specify partitions of the 3D models in classes that can
be as generic as “animals”, “flying creatures”, “birds” and “birds in a flying pose”.
Multiple classifications are possible and thus can be averaging, e.g. “roughly
spherical”. Let us call WPSB the world of PSB with its predicates for the classes.

In our framework, the different shape matching algorithms are seen as ‘im-
plicit’ definitions of cross-world similarity relations: a cross-world relation E1

H
goes from the world of polygons WP (partially instantiated by the PSB data-
base of 3D models) to the partitions in the WPSB world in agreement with the
classification provided by the associated algorithm.

From the theoretical viewpoint, the PSB system implements a similarity
graph with initial node the world WE of actual shapes, connected to WP via
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Fig. 2. The Princeton Shape Benchmark as S-Connection.

some approximation algorithm. WP is then the source of a series of similarity
links ending into WPSB. The explication of the algorithms’ steps would reveal a
network of worlds that are positioned midway betweenWP andWPSB. A further
link connects directly WE to WPSB to model the shape classification developed
by the PSB organisers and that is at the base of the algorithms’ evaluation.

A typical evaluation by the PSB system would end up with a judgment of type
“method X is better for this type of object and method Y is better for that type of
object, etc” [20]. With our framework, we can now motivate and systematise the
PSB classification by comparing the classifications in the midway worlds. One
can thus understand where the actual grouping happens and the corresponding
computational cost, so to have a better view of the tradeoff between quality of
shape classification and efficiency of the procedure. But more importantly, one
can see the role of each similarity transformation used by each algorithm, how
these transformations impact on the result if applied at an earlier or later stage,
and finally it becomes possible to establish the best strategy to combine them
in order to optimise the system.
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