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1 Motivation

In realistic applications, it is often desirable to integrate different ontologies1

into a single, reconciled ontology. Ideally, one would expect the individual
ontologies to be developed as independently as possible from the rest, and
the final reconciliation to be seamless and free from unexpected results. This
would allow for the modular design of large ontologies and would facilitate
knowledge reuse tasks. Few ontology development tools, however, provide
any support for integration, and there has been relatively little study of the
problem at a fundamental level.

So far, ontology integration problems have been mostly tackled in an ad-
hoc manner, with no clear notion of what to expect from the integrated on-
tology. The result is the adoption of unpredictable techniques as a common
practice, which partially ignore the semantics of the ontologies, and may lead
to undesired results, even if the ontologies to be integrated are widely tested
and understood [6].

We distinguish three basic ontology integration scenarios which capture
some of the common practices in the Ontology Engineering community:

1. Foundational integration: an ontology is integrated with a foundational
(or “upper”) ontology. The foundational ontology describes more gen-
eral terms, and may be domain independent.

2. Broadening integration: two ontologies describing different (and largely
independent) domains are integrated in order to cover a broader subject
matter.

1Throughout this paper, we do not distinguish between ontologies and TBoxes.



3. Deepening integration: two ontologies describing different (and largely
independent) aspects of the same domain are integrated in order to pro-
vide more detailed coverage.

In this paper we define, for each scenario, semantic properties that should
(we believe) be satisfied by the integrated ontology; that is, we specify how
the consequences of the integrated ontology relate to those from its parts.
Next, we specify syntactic constraints on the ontologies to be integrated which
ensure the satisfaction of these properties. These constraints clearly depend
on the DL used in the ontologies, and mainly concern the way the symbols
occurring in the different ontologies (their signatures) are used. Finally, we
discuss whether these constraints are realistic for the scenario, i.e., whether
users could be expected to stick happily to these constraints in order to ensure
that the integrated ontology will satisfy the desired semantic properties.

These issues depend on the integration scenario under consideration, and
are tightly related: if one does not maintain a certain syntactic discipline, then
it is unlikely that the integrated ontology will behave as expected; conversely,
we need to define precisely what it means for the integrated ontology to be
well-behaved in a given scenario, in order to be able to define a suitable dis-
cipline.

In what follows we will discuss, for each of our scenarios, which are the
desirable semantic properties of the integration; define, for some cases, appro-
priate syntactic constrains, and prove that integrations satisfying these con-
straints enjoy the desired semantic properties. This is a first step towards our
goal to gain a deeper understanding of the issues involved in ontology inte-
gration tasks and to provide a well-founded methodology that can be easily
supported in existing ontology development tools.

We assume the reader to be familiar with the basics of description logics
and use, throughout this paper, axiom for any kind of TBox, RBox, or ABox
assertion, and Sig(T ) for the set of concept and roles names in T .

2 Integration Scenarios

Suppose that two ontologies T1, T2 shall be integrated in some application.
The ontologies may be the result of a collaborative ontology development
process and may have been designed in a coordinated way by different groups
of experts, or they may have been simply “borrowed” from the Web. In any
case, we assume that they have both been tested and debugged individually
prior to the integration and, hence, are consistent and do not contain unsatis-
fiable concept names. More precisely, given an ontology T , we call T instan-
tiable if T is consistent and s.t. there is a model I |= T where AI 6= ∅ and
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RI 6= ∅ for all concept names (role names) A (R) in the signature of T .2

In the simplest case, one would construct a reconciled ontology T by sim-
ply taking the union of both. In general, the ontologies T1 and T2 may be
related and share symbols in their signatures Sig(T1) and Sig(T2).3 We will
first identify the semantic properties that T should satisfy in order to capture
the modeling intuitions of each scenario, and then to see which “acceptable”
syntactic restrictions on the Ti make sure that T will behave as expected. The
intuition is simple: the more liberal the syntactic constraints including the
use of shared symbols, the more freedom is given to the modeler, but the less
likely it is that the integrated ontology will behave as expected.

In this Section, we describe and formalize our integration scenarios and ar-
gue, in each case, which properties should be expected to hold in the merged
ontology T . Then we specify, for all but the deepening integration, syntactic
restrictions that guarantee these properties and discuss their usefulness. The
proofs for our initial results are provided in the Appendix.

2.1 Foundational Integration

Often, interoperability between different domain ontologies Tdom and their
data is achieved through the use of a foundational (or “upper”) ontology Tup.
A well designed foundational ontology should provide a carefully conceived
high level axiomatization of general purpose concepts. Foundational ontolo-
gies, thus, provide a structure upon which ontologies for specific subject mat-
ters can be constructed.

A prominent example of an ontology conceived as the integration of a
foundational ontology and a set of domain ontologies is GALEN [7], a large
medical ontology designed for supporting clinical information systems. The
foundational ontology contains generic concepts, such as Process or Substance.
The domain ontologies contain concepts such as Gene or Research Institution,
which are specific to a certain subject matter. The domain ontologies in GALEN
are connected to the foundational ontology through subsumption relations
between concept and role names. For example, Microorganism in the domain
ontology is a subconcept of Organism in the foundational ontology:

Microorganism v Organism

Some prominent ontologies, such as CYC, SUMO and DOLCE have been de-
signed specifically to be used in applications as foundational ontologies. For

2For a logic that is closed under disjoint unions, such as SHIQ, in order to ensure instan-
tiability of T it suffices to check that all the concept and role names in T are satisfiable.

3There may be some previous reconciliation w.r.t. symbols, e.g., to identify different sym-
bols in the two ontologies that have the same intended meaning [6]. This is a separate prob-
lem, often referred to as ontology alignment, which we do not address here.
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example, given a large dataset about chemicals annotated with NCI concepts,
one may want to annotate it semi-automatically with concepts of a different
biomedical ontology. For such a purpose, one may align organic chemicals in
NCI to substances in SUMO using the axiom:

Organic Chemical v Substance.

Similarly, one may want to use a foundational ontology to generalize the roles
of a given domain ontology. For example, a University ontology may use
SUMO to generalize the role writes as follows:

writes v authors

where authors, is defined in SUMO and does not occur in the University on-
tology.

Foundational ontologies, such as, for example, CYC, DOLCE and SUMO,
are well-established ontologies that one does not control and, typically, does
not fully understand. When one of these ontologies is borrowed from the
Web and integrated in an application, it is especially important to make sure
that the merge preserves their semantics. In particular, we shall not allow the
classification tree in Tup to change as a consequence of the merge. This prop-
erty can be conveniently formalized by the notion of a conservative extension
[3].

Definition 1 (Conservative Extensions) The TBox T = T1 ∪ T2 is a conservative
extension of T1 if, for every axiom α in the signature of T1, if T |= α, then T1 |= α.

Clearly, if T is a conservative extension of T1 and T1, T2 are consistent, then
so is T . However, conservativeness is indeed a much stronger condition than
instantiability: even if T is instantiable, new (and probably unintended) sub-
sumptions between (possibly complex) concepts in T1 may still occur as a
consequence of the merge.

In general, it may still be tolerable, and even desirable, to allow new sub-
sumptions to occur in the domain ontology as a consequence of the integra-
tion, and in such a case, T will not be a conservative extension of Tdom.

Also, the notion of a conservative extension is not sufficient to capture all
the intended and unintended consequences. In particular, one would not ex-
pect concept names originally in Tup to be subsumed by concepts originally
in Tdom. In other words, the rôles of the foundational and domain ontolo-
gies should not be inverted after the merge. In contrast, new subsumptions
may and should be entailed between concepts (respectively roles) in Tdom and
concepts (roles) in Tup. For example, since the shared concept Substance is sub-
sumed by SelfConnectedObject in SUMO, it is expected that T = TNCI ∪TSUMO

will entail the subsumption Organic Chemical v SelfConnectedObject, where
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Organic Chemical occurs in NCI, but not in SUMO, whereas SelfConnectedObject
occurs in SUMO, yet not in NCI.

Next, we specify the syntactic restrictions that will ensure these “nice”
properties of T = Tup ∪Tdom. Given the examples, it seems reasonable to limit
the coupling between Tup and Tdom to subsumptions relating concept (role)
names in Tdom and concept (role) names occurring in Tup.

Definition 2 The pair= = 〈Tup, Tdom〉 is f-compliant4 if, given the shared signature
S = Sig(Tup) ∩ Sig(Tdom), concept and role names A, R ∈ S occur in Tdom only in
axioms of the form B v A and S v R respectively, where B, S ∈ Sig(Tdom) \ S.

f-compliance suffices for capturing the coupling between the foundational
and the domain ontologies in GALEN. However, is f-compliance enough
to guarantee our “nice” properties for T = Tup ∪ Tdom? A simple exam-
ple will provide a negative answer: just assume that Tdom contains a GCI of
the form > v A; after the merge, every concept in Tup will be subsumed by
A ∈ Sig(Tdom) and, thus, the foundational ontology does not act as such any-
more.

In order to guarantee our nice properties, we impose an additional safety
condition on Tup and Tdom which is identical to the one introduced in [2] and
which can be checked syntactically, we call this condition localness .

Intuitively, local ontologies contain only GCIs with a limited “global” ef-
fect. Examples of non-local axioms are GCIs that fix the size of the domain
in every model of the ontology (e.g. > v bob), or GCIs that establish the ex-
istence of a “universal” named concept (e.g. > v Car). Examples of local
GCIs are role domain and range, and concept disjointness. And indeed, f-
compliance and localness suffice:

Theorem 1 Let = = 〈Tup, Tdom〉 be f-compliant. If Tdom is a local SHOIQ TBox,
Tup is a SHIQ TBox (not necessarily local), and T = Tup ∪ Tdom is instantiable:

1. T = Tup ∪ Tdom is a conservative extension of Tup.
2. There are no concept names A ∈ Sig(Tup) and B ∈ Sig(Tdom) \ S such that
T |= A v B.

3. There are no role names R ∈ Sig(Tup) and S ∈ Sig(Tdom) \ S such that T |=
R v S.

As desired, the merge is a conservative extension of the foundational on-
tology, and the rôles of the foundational and domain ontologies are preserved
after the merge (Items 2 and 3). Note, however, that f-compliance does not
suffice for ensuring the instantiability of the merge: only if T is consistent
and free from unsatisfiable names the guarantees provided by the theorem

4“f” stands for “foundational”.
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apply. Although instantiability, as opposed to conservative extensions, can
be easily checked using a reasoner, it would indeed be desirable to strengthen
the theorem to ensure the instantiability of T as well. Also, note that localness
certainly is a too restrictive safety condition since it rules out “harmless” GCIs
as well. The investigation of new f-compliance conditions that ensure the in-
stantiability of the integrated ontology and of less strict safety conditions is
the focus of our ongoing work.

2.2 Broadening Integration

In this scenario, an ontology T1 is to be integrated with another T2 that de-
scribes in more detail one or more of the domains that are only touched on
in T1. For example, we may wish to integrate the Wine Ontology [8] with an
ontology describing in more detail the regions in which wines are produced
or the kinds of grapes they contain.

The Wine Ontology illustrates a common pattern: although ontologies
usually refer to a core application domain, they also refer to other secondary
domains that deal with different objects. This modeling paradigm is not only
characteristic of small and medium sized ontologies, but also occurs in large,
high-quality knowledge bases, written by groups of experts. A prominent
example is the NCI Thesaurus [4], a huge ontology covering areas of basic
and clinical science. The core of NCI is focused on genes; other subject mat-
ters described in the ontology include diseases, drugs, chemicals, diagnoses
treatments, professional organizations, anatomy, organisms, and proteins.

In this scenario, concepts in the core application domain can be defined in
terms of concepts in the secondary domains. For example, in the Wine Ontol-
ogy, a Bordeaux is described as a Wine produced in France, where France is
defined in the Regions ontology:

Bordeaux v Wine u ∃producedIn.France

In NCI, the gene ErbB2 is an Oncogene that is found in humans and is asso-
ciated with a disease called Adrenocarcinoma.

ErbB2 v Oncogene u ∃foundIn.Human u ∃associatedWith.Adrenocarcinoma

Concepts in the secondary ontologies, however, do not use the core concepts
in their definitions, i.e. regions are not defined in terms of wines or diseases in
terms of genes. Note, in this connection, that a ‘broadening scenario’ in this
interpretation is closely related to the way ontologies would be integrated
using the framework of E-connections, but is rather mimicking than directly
adopting the syntax and semantics of E-connections [5].

Ontologies following this pattern can evolve by expanding their domain
of discourse with knowledge about new subject matters. For example, we
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may extend the Wine ontology by representing the kinds of dishes each wine
is most appropriate for, or NCI by adding information about useful publi-
cations on cancer research. This evolution process will typically consist of
adding a new “secondary” ontology, either developed by a group of experts,
or borrowed directly from the Web. As a consequence, this ontology should
be “good” as it is, and thus we want to make sure that it will not be affected
by the integration, i.e., we should require T = Tcore∪Tside to be a conservative
extension of Tside.

Furthermore, since we assume Tcore and Tside to cover different aspects of
the world, we require that the merged ontology T does not entail subsump-
tions in any directions between non-shared concept names A ∈ Sig(Tcore) and
B ∈ Sig(Tside). This condition ensures that the ontologies actually describe
different objects.

Let Tcore and Tside be ontologies with signatures Score = Ccore ∪ Rcore and
Sside = Cside∪Rside, let the shared signature S = Score∩Sside contain only con-
cept names, and let Rout ⊆ Rcore be a distinguished subset of roles. Intuitively,
the roles in Rout connect objects in different ontologies. Some concepts in Tcore

are defined in terms of restrictions on these roles; for example, the Bordeaux
wines are related to France via the role producedIn and the ErbB2 oncogenes
with organisms and diseases through the roles foundIn and associatedWith, re-
spectively.

Definition 3 The pair = = 〈Tcore, Tside〉 is b-compliant if: 1) S = Score ∩ Sside =
Ccore ∩Cside, ∅ 6= Rout ⊆ Rcore; 2) for every role inclusion axiom R v S ∈ Tcore,
either both R,S ∈ Rout or both R,S /∈ Rout; 3) for every GCI C1 v C2 ∈ Tcore,
C1, C2 can be generated using the following grammar:

Ci ← A|C uD|¬Ci|∃R.Ci|∃P.A′| ≥ nR.Ci| ≥ nP.A′

where A ∈ Ccore \ Cside, C, D and Ci are concepts generated using the grammar,
A′ ∈ Cside, R /∈ Rol(Rout), and P ∈ Rout.

As a consequence, concept names in Tside can only be used in Tcore through
restrictions on the “outgoing” relations. Condition 2) makes sure that the
hierarchies for the two kinds of roles are disconnected from each other. The
Wine Ontology and the “modules” that can be extracted from NCI [2] are
local and b-compliant.

Theorem 2 Let = = 〈Tcore, Tside〉 be b-compliant. If Tcore is a local SHOIQ TBox,
Tside is a local SHIQ TBox, and T = Tcore ∪ Tside is instantiable, then:

1. T = Tcore ∪ Tside is a conservative extension of Tside.
2. There are no concept names A ∈ Sig(Tcore) \ S and B ∈ Sig(Tside) such that

either T |= A v B, or T |= B v A.
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3. There are no role names R ∈ Sig(Tside) and S ∈ Sig(Tcore) such that T |= R v
S or T |= S v R.

4. There are no role names R ∈ Rout and S ∈ Rcore \Rout such that T |= R v S
or T |= S v R.

As in the foundational scenario, the theorem requires the instantiability (and
thus the consistency) of the merged ontology T .

2.3 Deepening Integration

In this scenario, an ontology T1 is to be integrated with another T2 that de-
scribes a different aspect of the same domain. For example, we may wish to
integrate the Wine Ontology with an ontology that describes wines from the
point of view of a wine producer rather than a wine consumer, or we may
describe cathedrals from the point of view of an architect, a priest or a tourist:

Cathedral v Building

Cathedral v ∃holdsEvent.Mess u ∃hasFunction.Prayer

Cathedral v SightSeeingAttraction u ∃hasDressCode.Proper

Intuitively, each ontology provides a different view of the shared objects. If
we assume that the different views are largely independent, then it seems
reasonable to expect that the integrated ontology will not entail subsump-
tions between concepts from different ontologies that are in not in the shared
signature (e.g., Prayer should not become a sub-concept of Building after the
merge). More formally, given T = T1 ∪ T2 and concept names A, B such that
A ∈ Sig(T1), B ∈ Sig(T2) and A, B /∈ Sig(T1) ∩ Sig(T2), we shall expect that
T 6|= A v B and T 6|= B v A. Also, if we want the integration to be seamless,
the merged ontology T should be, at least, consistent and should not contain
unsatisfiable concept names, although, in general, it may not necessarily be a
conservative extension of both T1 and T2.

In some applications, one may also assume that T1 and T2 present a well-
established body of knowledge about the concepts they share, and hence no
new subsumptions between concept names in the common signature should
be entailed in T . For example, if T1, T2 6|= Cathedral v Church, then T 6|=
Cathedral v Church. However, in other applications, one may assume that the
relationships about shared concepts in both ontologies are largely underspec-
ified, and these new subsumptions constitute precisely one of the goals of the
merge.

Hence this scenario might need to be split into several sub-scenarios. We
are currently identifying new requirements, based on application needs, and
exploring how to provide sensible syntactic counterparts for each case.
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3 Related work and Outlook

So far, the problem of predicting and controlling the consequences of ontol-
ogy integration has been largely overlooked by the Ontology Engineering and
Semantic Web communities. To the best of our knowledge, the problem has
been tackled only, very recently, in [3]. The authors propose a set of reasoning
services based on the notion of conservative extensions and provide decid-
ability and complexity results for the proposed services and for ontologies in
ALC. This work is focused on deciding conservative extensions whereas the
work presented here is focused on providing suitable syntactic restrictions
that guarantee conservative extensions and similar properties.

Complementary to the problem of Ontology Integration is the problem of
Ontology Segmentation, often referred to in the literature as Ontology Modu-
larization and Ontology Partitioning. In [2], the authors presented a method
for automatically identifying and extracting relevant fragments of ontologies
with precise semantic guarantees. The method has been designed for ontolo-
gies that contain information about disjoint subject matters, just as described
in Section 2.2. In particular, the proof of Theorem 2 is implicit in the results
presented in [2].

In this paper, we have formalized three basic scenarios for ontology inte-
gration. In each case, we have identified a set of semantic properties that the
integrated ontology should satisfy and, under certain simplifying assump-
tions, we have shown how these properties can be guaranteed by imposing
certain syntactic constraints on the ontologies to be integrated. However, we
have been very conservative in both the (syntactic) compliance and safety
conditions (localness) in the scenarios.

In the future, we aim at investigating how these can be relaxed in each
case without losing the nice properties of the integrated ontology. We expect
that our results will constitute the basis for a new methodology for ontology
integration that is both well-founded and understandable to modelers, and
that can be supported by ontology editors: so far, all notions of compliance
and safety are decidable and can be checked syntactically.

References

[1] F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of Description Logics
and Abstract Description Systems. Journal of Artificial Intelligence Research
(JAIR), 16:1–58, 2002.

[2] B. Cuenca-Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and
Web Ontologies. In Proc. of KR-2006, 2006.

9



[3] S. Ghilardi, C. Lutz, and F. Wolter. Did I Damage My Ontology? A Case
for Conservative Extensions in Description Logics. In Proc. of KR-2006,
2006.

[4] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler.
The National Cancer Institute’s Thesaurus and Ontology. J. of Web Seman-
tics, 1(1), 2003.

[5] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of Ab-
stract Description Systems. Artificial Intelligence, 1(156):1–73, 2004.

[6] N. Noy. Semantic Integration: A Survey on Ontology-based Approaches.
SIGMOD Record, 2004.

[7] A. Rector. Modularisation of Domain Ontologies Implemented in De-
scription Logics and Related Formalisms, including OWL. In Proceedings
of FLAIRS 2003, 2003.

[8] M.K. Smith, C. Welty, and D.L. McGuinness. OWL Web Ontology Lan-
guage Guide. W3C Recommendation, 2004.

A Preliminaries and Notation

In the following, by a (background) logic L we shall mean just one of the
description logics SHIQ or SHOIQ. A logic L comes with a signature SL =
CSL ∪ RSL , where CSL is a set of concept names, and RSL is a set of role
names. Generally, by a signature S = CS ∪ RS we mean any (mostly finite)
set of concept and role names.

The set CSL may have a subset ISL ⊆ CSL of nominals (whenL is SHOIQ).
Usually, when the logic L is clear from the context, we will refer to such sets
just as S, CS, etc. Thus, the signature Sig(α) (respectively Sig(T )) of an axiom
α (respectively a TBox T ) denotes the set of concept and role names occur-
ring in it. Given a background logic L and a signature S, we use ConL(S) and
RolL(S) to denote the set of concepts and roles respectively that can be con-
structed in the logic L using only concept and role names in S. Again, if the
logic L is clear from the context, we usually use simply Con(S) and Rol(S).
Moreover, let Sub(T ) (Sub(C)) denote the set of sub-concepts (defined in the
usual way) occurring in a TBox T (concept C).

B Local Ontologies

In order to assess the “globality” of a GCI, we introduce the notion of a domain
expansion.
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Definition 4 (Domain Expansion) Let I = (∆I , .I) and J = (∆J , .J ) be inter-
pretations such that:

1. ∆J = ∆I ∪∇, where ∇ is a non-empty set disjoint with ∆I ;

2. AJ = AI for each concept name;

3. RJ = RI for each role name.

We say that J is the expansion of I with ∇.

Intuitively, the interpretation J is identical to I except for the fact that it con-
tains some additional elements in the interpretation domain. These elements
do not participate in the interpretation of concepts or roles. The following
question naturally arises: if I is a model of T , is J also a model of T ? Local
ontologies are precisely those whose models are closed under domain expan-
sions.

Definition 5 (Localness ) A concept C is local if, for every interpretation I for C
and every non-empty set ∇ disjoint with ∆I , the expansion J of I with ∇ verifies:

CJ = CI .

Otherwise, we say that C is non-local. For a logic L and a signature S, we denote
by LocalL(S) the set of local concepts that can be constructed in L using only concept
names and roles in S. Again, we usually abbreviate this to Local(S).

Let T be a TBox. We say that T is local if, for every I |= T and every set ∇
disjoint with ∆I , the expansion J of I with ∇ is a model of T .

Thus, local concepts are those whose interpretation remains invariant un-
der domain expansions, and local TBoxes are those whose class of models
is closed under domain expansions. The following theorem establishes the
syntactic counterpart to the notion of localness of a concept:

Theorem 3 Let L be a logic, S its signature, and C a concept in Con(S), then:

• If C is a concept name (including nominals) then C ∈ Local(S).
• If C is of the form ∃R.D or ≥ nR.D then C ∈ Local(S).
• If C of the form D u E then: C ∈ Local(S) iff D ∈ Local(S) or E ∈ Local(S).
• If C of the form ¬D then: C ∈ Local(S) iff D /∈ Local(S).

Furthermore, for every pair of interpretations I,J s.t. J is an expansion of I with
∇, if C /∈ Local(S) then CJ = CI ∪∇.

Using Theorem 3, we can easily find an effective procedure for deciding
localness of a Tbox:
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Theorem 4 Let T be consistent. T is local iff it does not contain a GCI C v D such
that C is non-local and D is local.

Clearly, the problem of deciding whether C ∈ Local(S) for some logic L and
its signature S is polynomial in the length |C| of the concept C. Thus, as a di-
rect consequence of Theorem 4, the problem of deciding whether a consistent
ontology T is local is polynomial w.r.t the size |T | of T .

Proofs of these results are provided in [2].

C Proofs

C.1 Proof of Theorem 1

Let Tdom be a local SHOIQ TBox, Tup a (not necessarily local) SHIQ TBox,
and assume the pair = = 〈Tup, Tdom〉 is f-compliant and that T = Tup ∪ Tdom is
instantiable. We have to show that:

1. T = Tup ∪ Tdom is a conservative extension of Tup.
2. There are no concept names A ∈ Sig(Tup) and B ∈ Sig(Tdom)\S such that
T |= A v B.

3. There are no role names R ∈ Sig(Tup) and S ∈ Sig(Tdom) \ S such that
T |= R v S.

We begin by constructing a special model for T given models for Tup and
T . Let I = (∆I , .I) be an interpretation for Sig(Tup) and J = (∆J , .J ) an
interpretation for Sig(Tup)∪ Sig(Tdom). Since Tup and Tdom are instantiable, and
T is consistent, we can assume that I |= Tup and J |= T , and, w.l.o.g., that
∆I ∩∆J = ∅. Furthermore, since Tup is a SHIQ TBox, the shared signature
S = Sig(Tup)∩Sig(Tdom) can not contain shared nominals, and so the following
construction of the interpretationM = (∆M, .M) for the signature Sig(Tup) ∪
Sig(Tdom) is well-defined:

∆M := ∆I ∪∆J

AM :=

{
AJ ∪ AI A ∈ Sig(Tup)

AJ A ∈ Sig(Tdom) \ S

RM :=

{
RJ ∪RI R ∈ Sig(Tup)

RJ R ∈ Sig(Tdom) \ S
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First note the following. Relative to the signature Sig(Tdom) \ S, the modelM
is a domain expansion of J with ∆I . Thus, by Theorem 3, we immediately
have the following:

(♠) For every concept C ∈ Con(Sig(Tdom) \ S): if C is not local (i.e., CM 6=
CJ ), then CM = CJ ∪∆I .

Next, relative to the signature Sig(Tup), the modelM is the disjoint union
of the two models I and J for Sig(Tup). Therefore, since Tup is a SHIQ ontol-
ogy, I,J |= Tup, and SHIQ is ‘closed’ under the formation of disjoint unions,
we obtain the following:

(♣) For every (complex) concept C ∈ Con(Sig(Tup)): CM = CJ ∪ CI (inde-
pendently of whether C is local or not). Moreover,M |= Tup.

For a proof, compare [1]. We now show thatM is also a model of Tdom, and
therefore of T :

(♦) M |= Tdom.

PROOF OF (♦): Since Tdom is an f-compliant SHOIQ ontology, we have ax-
ioms of the following forms:

• C v D with C, D ∈ Con(Sig(Tdom) \ S): by (♠), CM = CJ if C is local,
and CM = CJ ∪∆I if C is non-local, and analogously for D. Since Tdom

is local, a GCI α can only be of one of the following three forms: 1) C, D
local; 2) C local and D non-local; 3) Both C and D are non-local.

In all these cases, since J |= α, it is immediate to verify thatM |= α as
well.

• A v B, where A, B are concept names s.t. A /∈ S and B ∈ S: in this case,
AM = AJ and BM = BI ∪BJ ; since AJ ⊆ BJ , we have that AM ⊆ BM.

• R v S, where R,S ∈ Rol(Sig(Tdom) \ S): in this case, RM = RJ and
SM = SJ , and since RJ ⊆ SJ , we also have RM ⊆ SM.

• P v Q, where P, Q are role names s.t. P /∈ S and Q ∈ S: in this case,
PM = PJ and QM = QI ∪ QJ , and since PJ ⊆ QJ , we also have
PM ⊆ QM.

• Trans(R), where R /∈ RS: then RM = RJ , and so RM is transitive since
RJ is. � (♦)

13



Now, to prove (1), suppose there are concepts C0, D0 ∈ Con(Sig(Tup)) such
that T |= C0 v D0, but Tup 6|= C0 v D0. Let I0 be an interpretation for Sig(Tup)
s.t. I0 6|= C0 v D0, J0 a model of T with ∆I0 ∩∆J0 = ∅, andM0 constructed
from I0, J0 as above. By (♦) and (♣), M0 |= T , and thus M0 |= C0 v D0.
Moreover, by (♣), we have CM0 = CJ0 ∪ CI0 and DM0 = DJ0 ∪ DI0 for all
C, D ∈ Con(Sig(Tup)). But since ∆I0 ∩ ∆J0 = ∅ by construction, CI0

0 6⊆ DI0
0

implies CM0
0 6⊆ DM0

0 . Thus, we encounter a contradiction.

It remains to prove (2) and (3). For (2), suppose that A ∈ Sig(Tup) and
B ∈ Sig(Tdom) \ S. Pick a model I1 that instantiates Tup, i.e., where AI1 6= ∅,
a model J1 of T with ∆I1 ∩ ∆J1 = ∅, and construct a model M1 for T as
above. Then AM1 = AJ1 ∪ AI1 and BM1 = BJ1 . Since ∆I1 ∩∆J1 = ∅, we have
AM1 * BM1 , i.e., T 6|= A v B. (3) is shown analogously. �

C.2 Proof of Theorem 2

Let Tcore be a local SHOIQ TBox, Tside a local SHIQ TBox, and assume the
merged Tbox T = Tside∪Tcore is instantiable (and therefore also Tcore and Tside).
Suppose the pair = = 〈Tside, Tcore〉 is b-compliant. We have to show that:

1. T = Tside ∪ Tcore is a conservative extension of Tside.
2. There are no concept names A ∈ Sig(Tside) and B ∈ Sig(Tcore) \ S such

that T |= A v B or T |= B v A.
3. There are no role names R ∈ Sig(Tside) and S ∈ Sig(Tcore) such that
T |= R v S or T |= S v R.

4. There are no role names R ∈ Rout and S ∈ Rcore \ Rout such that T |=
R v S or T |= S v R.

Analogously to the proof of Theorem 1, we can construct an interpretation
M = (∆M, .M) for the signature Sig(Tcore)∪Sig(Tside) from interpretations I =
(∆I , .I) and J = (∆J , .J ) for, respectively, Sig(Tside) and Sig(Tcore)∪ Sig(Tside),
where I |= Tside, J |= T , and such that ∆I ∩ ∆J = ∅. Also, recall that, by
b-compliance, Sig(Tcore) and Sig(Tside) do not share role names, i.e., S = CS

and RS = ∅. Define the interpretationM as follows:

∆M := ∆I ∪∆J

AM :=

{
AJ ∪ AI A ∈ Sig(Tside)

AJ A ∈ Sig(Tcore) \ S

RM :=

{
RJ ∪RI R ∈ Sig(Tside)

RJ R ∈ Sig(Tcore)

14



Since Tside is a SHIQ Tbox and SHIQ models are closed under the for-
mation of disjoint unions, we have, analogously to Theorem 1:

(♣) For every concept C ∈ Con(Sig(Tside)): CM = CJ ∪ CI (independently
of whether C is local or not). Moreover,M |= Tside.

Call a concept D ∈ Sub(Tcore) b-admissible if it can be constructed in
Sig(Tcore) according to the rules specified by b-compliance. We claim the fol-
lowing:

(♠) Let C ∈ Con(Sig(Tcore)) be b-admissible. If C is local then CM = CJ , and
if C is not local then CM = CJ ∪∆I .

PROOF OF (♠): The proof is by induction on the structure of C as induced by b-
compliance. Note first that, by definition ofM, we have, for concept names A
occuring in Tcore: AM = AJ if A /∈ S, and AM = AJ ∪AI if A ∈ S. Furthermore,
for roles R ∈ Rol(Sig(Tcore)) we have RM = RJ since ∆I ∩∆J = ∅.

A concept name A is b-admissible if A /∈ S. They are local and AM = AJ

holds by definition.
For the induction step, note that the case of Booleans, negation and con-

juntion, can be proved just as in Theorem 1. Thus we give only the case of
existential quantification:

Let C be of the form ∃R.D and b-admissible. Then C is local. By the b-
compliance conditions we have to distinguish two cases:

• R /∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible.

– if D is local then, by induction, DM = DJ , and so CM = CJ ;
– if D is non-local then, by induction, DM = DJ ∪ ∆I . Since RM =

RJ and ∆I ∩ ∆J = ∅, there is no y ∈ ∆I s.t. 〈x, y〉 ∈ RM and so
CM = CJ .

• R ∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible. In this case, D is
a shared concept name A ∈ S, and hence DM = DJ ∪ DI . But since
RM ⊆ ∆J ×∆J , we obtain CM = CJ .

� (♠)
We now show thatM is also a model of Tcore, and therefore of T .

(♦) M |= Tcore.
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PROOF OF (♦): If C v D ∈ Tcore then C and D are b-admissible, and by (♠),
CM = CJ , if C is local, and CM = CJ ∪ ∇, if C is non-local; analogously for
D. Since T is local, we can only have local GCIs in Tcore, and so the proof is as
in Theorem 1. Finally,M obviously verifies the role inclusion and transitivity
axioms in Tcore since there are no shared roles.

� (♦)

Now, to prove (1), we can proceed analogously to Theorem 1 using (♦)
and (♣). In order to prove (2)–(4), we will first show the following claim:

(♥) There exists a model N = (∆N , .N ) of T such that:

∆N := ∆N
1 ∪∆N

2 ; ∆N
1 ∩∆N

2 = ∅; ∆N
i 6= ∅

AN ⊆

{
∆N

1 A ∈ Sig(Tcore) \ S

∆N
2 A ∈ Sig(Tside)

RN ⊆


∆N

1 ×∆N
2 R ∈ Rout

∆N
1 ×∆N

1 R ∈ Rcore \Rout

∆N
2 ×∆N

2 R ∈ Sig(Tside)

PROOF OF (♥): Since T is consistent, there exists an interpretationJ = (∆J , .J )
for Sig(T ) s.t. J |= T . We show that we can construct from J an interpre-
tation N of the desired form such that N |= T . First, take an isomorphic
disjoint copy J ′ = (∆J ′

, .J
′
) of J , i.e., such that λ : ∆J −→ ∆J ′ is a bijective

map, ∆J ∩∆J ′
= ∅, and

x ∈ AJ ⇐⇒ λ(x) ∈ AJ ′

〈x, y〉 ∈ RJ ⇐⇒ 〈λ(x), λ(y)〉 ∈ RJ ′

for all concept names A and role names R in Sig(T ). Now, define the inter-
pretation N as follows:

∆N := ∆J ∪∆J ′
;

AN :=

{
AJ ⊆ ∆J A ∈ Sig(Tcore) \ S

λ(AJ ) ⊆ ∆J ′
A ∈ Sig(Tside)

RN :=


{〈x, λ(y)〉 | 〈x, y〉 ∈ RJ } R ∈ Rout

RJ R ∈ Rcore \Rout

{〈λ(x), λ(y)〉 | 〈x, y〉 ∈ RJ } R ∈ Sig(Tside)
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By construction, N is of the desired form. It remains to be shown that
N |= T . First, since J ′ |= Tside, and the fact that Tside is local and that N is a
domain expansion of J ′ with ∆J relative to the signature Sig(Tside), it follows
that N |= Tside.

We next show that N |= Tcore. We claim the following:

(?) Let C ∈ Con(Sig(Tcore)) be b-admissible. If C is local then CN = CJ , and
if C is non-local then CN = ∆J ′ ∪ CJ .

PROOF OF (?): We proceed by induction on the structure of b-admissible
concepts C ∈ Con(Sig(Tcore)), using the definition of N and the notion of b-
compliance.

Note first that, by definition ofN , we have, for b-admissible concept names
A, A /∈ S, and hence AN = AJ ; also note that A is local and thus the claim
holds. For roles R ∈ Rol(Sig(Tcore)) occuring in b-admissible concepts, we
have RN = RJ if R ∈ Rol(Rcore \ Rout) (including inverse roles) and RN =
{〈x, λ(y)〉 | 〈x, y〉 ∈ RJ } if R ∈ Rout. Note that, if R ∈ Rout, the inverse of R
does not occur in T due to b-compliance.

For the induction step, note that the case of Booleans, negation and con-
juntion, can be proved just as in Theorem 1. Thus we give only the case of
existential quantification: let C be of the form ∃R.D and b-admissible. Then
C is local. By the b-compliance conditions we have to distinguish two cases:

• R /∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible.

– if D is local then, by induction, DN = DJ , and so CN = CJ ;
– if D is non-local then, by induction, DN = DJ ∪ ∆J ′ . Since RN =

RJ and ∆J ∩∆J ′
= ∅, there is no y ∈ ∆J ′ s.t. 〈x, y〉 ∈ RN and so

CN = CJ .

• R ∈ Rout, and D ∈ Con(Sig(Tcore)) is b-admissible. In this case, D is a
shared concept name, and hence DN = λ(DJ ) with λ(DJ ) ⊆ ∆J ′ . But
since RN = {〈x, λ(y)〉 | 〈x, y〉 ∈ RJ } and λ is an isomorphism, it follows
that CN = CJ .

� (?)

Since Tcore is local and contains only GCIs C v D such that C, D are b-
admissible, the proof of N |= Tcore using (?) is almost identical to the proof
of (♦) using (♠) above. Notice also that N obviously satisfies the role inclu-
sion axioms in Tcore. Concerning the transitivity axioms Trans(R), N straigt-
forwardly satisfies them in case R /∈ Rout, and, if R ∈ Rout, we have that
RN = {〈x, λ(y)〉 | 〈x, y〉 ∈ RJ } and ∆J ∩ ∆J ′

= ∅. Thus, if 〈x, λ(y)〉 ∈ RN ,
there is no z ∈ ∆N such that 〈λ(y), z〉 ∈ RN by definition of RN , and conse-
quently N |= Trans(R).

� (♥)

Properties (2)–(4) of Theorem 2 are now a straightforward consequence of
(♥). �17


