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Abstract

In [8, 6] we introduced a family of ‘modal’ languages intended for
talking about distances. These languages are interpreted in ‘distance
spaces’ which satisfy some (or all) of the standard axioms of metric
spaces. Among other things, we singled out decidable logics of distance
spaces and proved expressive completeness results relating classical and
modal languages. The aim of this paper is to axiomatize the modal
fragments of the semantically defined distance logics of [6] and give a
new proof of their decidability.

1 Introduction

Logics of distance spaces were conceived in [8] and [6] as knowledge rep-
resentation formalisms aimed to bring a numerical, quantitative concept of
distance into the conventional qualitative representation and reasoning. The
logics allow for two kinds of ‘distance expressions.’ First, there are explicit
facts of the form

δ(c1, c2) = a or δ(c1, c2) < a,

saying that the distance between the objects represented by location con-
stants c1 and c2 is equal to a or, respectively, less than a, where a is some
non-negative real number. Second, we have necessity-like operators A≤a

and A>a with the intended meaning ‘everywhere in the neighborhood of
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radius a’ and ‘everywhere outside the neighborhood of radius a,’ and their
‘possibility-like’ duals E≤a and E>a. For example, the formulas

δ(house, college) ≤ 10,

house ∈ A≤7E≤2public transport

mean that the distance between the house and the college is not more than
10 units (say, miles) and that whenever you are not more than 7 miles away
from home, there is a bus stop or a tube station within a distance of 2 miles.

Distance logics are interpreted in so-called distance spaces which are
pairs of the form D = 〈W,d〉, where W is a non-empty set (of points) and
d a function from W ×W into the set R+ (of non-negative real numbers)
satisfying the natural axiom

d(x, y) = 0 iff x = y (1)

for all x, y ∈W . The value d(x, y) is called the distance from the point x to
the point y. The more familiar metric spaces also satisfy two more axioms

d(x, z) ≤ d(x, y) + d(y, z), (2)

d(x, y) = d(y, x) (3)

for all x, y, z ∈W .
The distance logics of [8, 6] were defined purely semantically, which is

usually enough for the purpose of knowledge representation if reasoning algo-
rithms are provided. In this paper we address the logical problem of finding
corresponding axiomatic systems and give a partial solution to the problem
by presenting a Hilbert-style axiomatization of the ‘modal fragments’ of dis-
tance logics (containing no occurrences of predicates like δ(c1, c2) = a and
δ(c1, c2) < a). We confine ourselves with axiomatizing the ‘modal fragment’
since this constitutes that part of our language which is of interest from the
viewpoint of logic.

2 Logics of distance spaces

We begin by introducing a family of propositional languages L(M)
parametrized by subsets M ⊆ R+ of non-negative real numbers that are
assumed to contain 0 and be closed under addition. Let us call such sets of
reals parameter sets.

Definition 1 (syntax). SupposeM ⊆ R+ is a parameter set. The alphabet
of the language L(M) consists of a denumerably infinite list {pi : i < ω}
of propositional variables, the Boolean connectives ∧ and ¬, and two lists
{A≤a : a ∈ M} and {A>a : a ∈ M} of (unary) modal operators depending
on M . The set of well-formed formulas of this language is constructed in
the standard way; it will be identified with L(M).
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Other Booleans as well as the dual modal operators E≤a and E>a are
defined as abbreviations (e.g., E≤ = ¬A≤a¬, E>a = ¬A>a¬). We use lower
case Latin letters p, q, r, . . . to denote propositional variables, lower case
Greek letters χ, ϕ, ψ, . . . to denote formulas, and upper case Greek letters
∆,Σ,Θ, . . . to denote sets of formulas.

Definition 2 (semantics). An L(M)-model is a structure of the form:

B =
〈

W,d, pB

0 , p
B

1 , . . .
〉

, (4)

where 〈W,d〉 is a distance space and the pB
i are subsets of W . The truth-

relation 〈B, w〉 � ϕ, for an L(M)-formula ϕ and a point w ∈ W , is defined
inductively as follows:

• 〈B, w〉 � p iff w ∈ pB;

• 〈B, w〉 � ϕ ∧ ψ iff 〈B, w〉 � ϕ and 〈B, w〉 � ψ;

• 〈B, w〉 � ¬ϕ iff 〈B, w〉 2 ϕ;

• 〈B, w〉 � A≤aϕ iff 〈B, u〉 � ϕ for all u ∈W with d(w, u) ≤ a;

• 〈B, w〉 � A>aϕ iff 〈B, u〉 � ϕ for all u ∈W with d(w, u) > a.

Note that our language contains standard modal operators like

• the universal modality 2ϕ = A≤aϕ ∧ A>aϕ,

• the difference operator Dϕ = E>0ϕ

which allow for the definition of nominals [2, 5].
As usual, a formula ϕ is said to be valid in a model, if it is true at every

point of the model; ϕ is valid in a distance space D, if it is valid in every
model based on D. Finally, ϕ is valid in a class C of models (or distance
spaces), if it is valid in every model (respectively, distance space) of C.

As in [6] we use the following notation:

• D denotes the class of all distance spaces,

• Dtr denotes the class of all distance spaces satisfying (2),

• Dsym denotes the class of all distance spaces satisfying (3), and

• M stands for the class of all metric spaces.

Now, given a parameter set M ⊆ R+, we define the distance logic of D (and
M) as the set MS(M) of all L(M)-formulas that are valid in all distance
spaces. Similarly, MS

t(M) is the logic of Dtr, MS
s(M) is the logic of Dsym,

and MS
m(M) the logic of all metric spaces.
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Proposition 3. The sets MS(M), MS
s(M), MS

t(M) and MS
m(M) are all

normal multi-modal logics.

Proof. Let C be one of the above classes of distance spaces. It easily follows
from the definition of the truth-relation that (i) all propositional tautologies
are valid in C, (ii) the K-axioms A≤a(ϕ → ψ) → (A≤aϕ → A≤aψ) and
A>a(ϕ→ ψ) → (A>aϕ→ A>aψ) are valid in C for any a ∈M , and (iii) that
the rules of substitution, modus ponens and necessitation (i.e., ϕ/A≤aϕ and
ϕ/A>aϕ) preserve validity. 2

3 Axiomatizations

We will now present Hilbert-style axiomatizations of the logics MS(M),
MS

s(M), MS
t(M), and MS

m(M) for any given parameter set M ⊆ R+.
The corresponding axiomatic systems will be denoted by MS(M), MSs(M),
MSt(M), and MSm(M).

We use the expression �aϕ as an abbreviation for A≤aϕ ∧ A>aϕ. Ac-
cordingly, the dual modal operator ♦aϕ is an abbreviation for the formula
E≤aϕ ∨ E>aϕ. (Since A≤a and A>a are both normal modal operators, the
operator �a is normal, as well.)

Let MS(M) be the axiomatic system with the following axiom schemata
and inference rules:

Axiom schemata:

(CL) the axiom schemata of classical propositional calculus

(K′
A≤

) A≤a(ϕ→ ψ) → (A≤aϕ→ A≤bψ) (a, b ∈M, a ≥ b)

(K′
A>) A>a(ϕ→ ψ) → (A>aϕ→ A>bψ) (a, b ∈M, a ≤ b)

(TA≤0) A≤0ϕ→ ϕ

(Tc
A≤0) ϕ→ A≤0ϕ

(U1) �0ϕ→ �aϕ (a ∈M)

(U2) �aϕ→ �0ϕ (a ∈M)

(4�) �aϕ→ �a�aϕ (a ∈M)

(B�) ϕ→ �a♦aϕ (a ∈M)

Inference rules: the inference rules are modus ponens and necessitation
for both A≤a and A>a and every a ∈M , namely

ϕ ϕ→ ψ

ψ
(MP)

ϕ

A≤aϕ
(RN1)

ϕ

A>aϕ
(RN2) (a ∈M)
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The intuitive meaning of the axioms should be clear. We only note that
the operator �a can be regarded as an analogue of the universal modality
of [5].

The following formulas (which will be used in the proof of Theorem 8)
are clearly theorems of MS(M), for any ϕ ∈ L(M):

(Eq�) �aϕ↔ �bϕ (a, b ∈M)

(MoA≤) A≤bϕ→ A≤aϕ (a, b ∈M,a ≤ b)

(MoA>) A>aϕ→ A>bϕ (a, b ∈M,a ≤ b)

(T�) �aϕ→ ϕ (a ∈M)

The proof is left to the reader as an easy exercise.
To axiomatize MS

s(M), MS
t(M), and MS(M), we require four extra

axiom schemata:

(BA≤) ϕ→ A≤aE≤aϕ (a ∈M)

(BA>) ϕ→ A>aE>aϕ (a ∈M)

(Tr1) A≤a+bϕ→ A≤aA≤bϕ (a, b ∈M)

(Tr2) E≤aA>bϕ→ A>a+bϕ (a, b ∈M)

Denote by MSs(M) the extension of MS(M) with schemata (BA≤) and
(BA>); MSt(M) is the extension of MS(M) with schemata (Tr1) and (Tr2);
finally, MSm(M) is obtained by adding all four schemata to MS(M). For
an L(M)-formula ϕ, we write `MS(M) ϕ, `MS

s(M) ϕ, etc. if ϕ is a theorem
of MS(M), MSs(M), etc. To simplify notation, we will usually omit M and
write MS, MSs, `MS ϕ, `MS

s ϕ, etc.

The main result of this paper is the following:

Theorem 4 (completeness). For every L(M)-formula ϕ,

1. `MS ϕ iff ϕ ∈ MS;

2. `MS
s ϕ iff ϕ ∈ MS

s;

3. `
MS

t ϕ iff ϕ ∈ MS
t;

4. `MS
m ϕ iff ϕ ∈ MS

m.

We begin the proof of this theorem by establishing the soundness of the
axiomatic systems.

Lemma 5 (soundness). Let M be any of the axiomatic systems mentioned
in Theorem 4 and M the corresponding logic. Then for every L(M)-formula
ϕ,

`M ϕ implies ϕ ∈ M.
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Proof. (1) Let us start with the system MS and the class of all distance
spaces as intended models. The validity of the generalized K-axioms (K′

A≤
)

and (K′
A>) follows from the semantic definition of the modal operators (in

the case of a = b) and the definition of distance spaces. For suppose that
a > b and 〈B, w〉 � A≤a(ϕ → ψ) ∧ A≤aϕ ∧ E≤b¬ψ. Then there exists a
u ∈W such that d(w, u) ≤ b and 〈B, u〉 2 ψ. But since ≤ is the usual linear
order on R, we have d(w, u) ≤ a, and hence 〈B, u〉 � (ϕ→ ψ) ∧ ϕ, which is
a contradiction. The other K-axiom is considered analogously.

The validity of the remaining axioms follows immediately from the defi-
nitions (note that 〈B, w〉 � �aϕ means that ϕ is valid in B), and it should
be clear that validity is preserved under the inference rules.

(2) Now assume that the distance function d is symmetric and consider
axiom (BA≤). Suppose that 〈B, w〉 2 ϕ → A≤aE≤aϕ. Then 〈B, w〉 � ϕ
and there is a point u with d(w, u) ≤ a such that 〈B, u〉 � A≤a¬ϕ. Since
d is symmetric, we have d(u,w) ≤ a, and hence 〈B, w〉 � ¬ϕ, which is a
contradiction. The validity of axiom schema (BA>) in symmetric distance
spaces is shown in a similar manner.

(3) Suppose that the distance function d satisfies the triangular inequal-
ity (2) and 〈B, w〉 � A≤a+bϕ. Take any points u, v such that d(w, u) ≤ a
and d(u, v) ≤ b. By (2), we have d(w, v) ≤ d(w, u) + d(u, v) ≤ a + b.
Therefore, 〈B, v〉 � ϕ, and so 〈B, w〉 � A≤aA≤bϕ, which shows the valid-
ity of (Tr1) in triangular spaces. To show the validity of (Tr2), assume
that 〈B, w〉 � E≤aA>bϕ, i.e., that there is a u with d(w, u) ≤ a such that
〈B, u〉 � A>bϕ. Take any point v such that d(w, v) > a + b. We then have
a + d(u, v) ≥ d(w, u) + d(u, v) ≥ d(w, v) > a + b, from which d(u, v) > b,
and hence 〈B, w〉 � A>a+bϕ.

(4) The case of metric spaces is a consequence of (1), (2) and (3). 2

To prove completeness, we will use a representation of distance spaces
in the form of relational structures.

4 Frame representation

Let M ⊆ R+ be a parameter set. An M -frame is a structure

f = 〈W, (Ra)a∈M , (Ra)a∈M 〉 (5)

which consists of a set W of possible worlds, henceforth called points, and
two families (Ra)a∈M and (Ra)a∈M of binary relations on W . The intended
meaning of uRav is ‘the distance from u to v is at most a’ and that of uRav
is ‘the distance from u to v is more than a.’ An M -model based on f is a
structure of the form

M =
〈

f, pM

0 , p
M

1 , . . .
〉

,
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where the pM
i are subsets of W . The notions of truth and validity in M -

models and M -frames are standard. For instance,

〈M, w〉 � A≤aϕ iff 〈M, u〉 � ϕ for all u ∈W such that wRau,

〈M, w〉 � A>aϕ iff 〈M, u〉 � ϕ for all u ∈W such that wRau.

The following definition singles out those M -frames that reflect properties
of distance spaces.

Definition 6 (standard frames). An M -frame f of the form (5) is called
D-standard, if it meets the following requirements:

(S1) Ra ∪Ra = W ×W ;

(S2) Ra ∩Ra = ∅;

(S3) if uRav and a ≤ b, then uRbv;

(S3′) if uRav and a ≥ b, then uR
b
v;

(S4) for all u, v ∈W , we have uR0v iff u = v.

A D-standard frame f is called Dsym-standard if it additionally satisfies

(S5) uRav iff vRau;

(S5)′ uRav iff vRau.

A D-standard frame f is Dtr-standard if it satisfies the conditions

(S6) if uRav and vRbw then uRa+bw;

(S7) if uRav and uR
a+b

w then vR
b
w.

A frame satisfying all of these properties is called an M-standard or a metric
frame. We denote by F, Fsym, Ftr, Fmet the classes of D-, Dsym-, Dtr-, and
M-standard frames, respectively.

Observe that if both (S1) and (S2) hold, then (S3) is equivalent to (S3)′,
(S5) is equivalent to (S5)′, and (S7) follows from (S6). The reason why
we need these ‘redundant’ conditions is that (S2) is not definable in our
language, namely we have the following:

Proposition 7. There is no set Φ of L(M)-formulas such that, for all M -
frames f, we would have

f � Φ iff f satisfies condition (S2).

Proof. Suppose otherwise, i.e., f � Φ iff f satisfies (S2), for some set Φ of
L(M)-formulas. The M -frame f1 in the picture below (where a ranges over
M) clearly satisfies (S2), and so f1 � Φ. The depicted map π is obviously a
p-morphism from f1 onto the M -frame f2. Then we must have f2 � Φ, which
is a contradiction because f2 does not satisfy (S2). 2

In fact, f1 satisfies all the properties (S1)–(S7), which means that none of
the classes F, Fsym, Ftr, and Fmet is L(M)-definable.
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5 Completeness

Now, continuing with the proof of Theorem 4, we next show that our ax-
iomatic systems are sound and complete with respect to the classes (of finite
members of) F, Fsym, Ftr, and Fmet. We will combine the standard method
of canonical models and Sahlqvist’s theorem (for details see e.g. [1]) with the
duplication and filtration technique of [6] – which extends the corresponding
technique developed in [3, 4].

Theorem 8 (frame completeness). For every L(M)-formula ϕ we have:

1. `MS ϕ iff for all finite f ∈ F: f � ϕ;

2. `MS
s ϕ iff for all finite f ∈ Fsym: f � ϕ;

3. `
MS

t ϕ iff for all finite f ∈ Ftr: f � ϕ;

4. `MS
m ϕ iff for all finite f ∈ Fmet: f � ϕ.

Proof. (⇒) The soundness part is easy and left to the reader.
(⇐) Let M be any of the axiomatic systems mentioned in the theorem

and M its canonical model based on the canonical frame f. As all axioms
of M are Sahlqvist formulas, by Sahlqvist’s theorem we have f � M. It is
not hard to see that f satisfies all the corresponding properties of M, except
perhaps (S1) and (S2). (For instance, conditions (S3) and (S3)′ are first-
order equivalents of (MoA≤) and (MoA>).)

Suppose now that 0M ϕ. Then there exists a point Θ in f such that
〈M,Θ〉 2 ϕ. Take the submodel MΘ of M generated by Θ. Then clearly
〈MΘ,Θ〉 2 ϕ and the underlying frame fΘ = 〈W, (Ra)a∈M , (Ra)a∈M 〉 of MΘ

satisfies all the properties mentioned above. We claim that fΘ satisfies (S1)
as well. Indeed, by (4�), (B�) and (T�), for every a ∈ M , �a is an S5-
box interpreted by the relation Ra ∪ Ra. It follows that the Ra ∪ Ra are
equivalence relations on W . By (Eq�), we also have

Ra ∪Ra = Rb ∪Rb

for all a, b ∈ M . And since fΘ is rooted, we can conclude that Ra ∪ Ra is
the universal relation on W , i.e., Ra ∪Ra = W ×W , as required.
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It remains to transform MΘ into a finite model M′
Θ which still refutes

ϕ and has all the corresponding properties of M – now including (S2). The
required construction is rather complex: a finite filtration of MΘ is manipu-
lated by duplicating certain points to obtain a finite model validating (S2).
A detailed description of the construction can be found in [6] (Lemmas 16–
17, 26–27). 2

We are in a position now to complete the proof of Theorem 4.

Lemma 9 (completeness). Let M be any of the axiomatic systems men-
tioned in Theorem 4 and M the corresponding logic. Then for every L(M)-
formula ϕ, we have

`M ϕ whenever ϕ ∈ M.

Proof. Suppose otherwise, i.e., ϕ ∈ M but 6`M ϕ. By Theorem 8 we then
have a model refuting ϕ based on a corresponding finite standard M -frame
f. It remains to transform f into a distance space for M which also refutes
ϕ. That this can be done was proved already in [6]. However, in order to
keep the paper reasonably self-contained we repeat the argument for the
case that M = MS and M = MS. Let M =

〈

f, pM
0 , p

M
1 , . . .

〉

be a model
based on a metric frame f such that M 2 ϕ. We need to construct a model
B =

〈

W,d, pB
0 , p

B
1 , . . .

〉

based on a metric space 〈W,d〉 such that B 2 ϕ. Let
γ > 0 be the smallest natural number which is properly greater than any
number in

M0 = {a ∈ R : a appears in ϕ }

and set

M1 = {a1 + . . .+ an < γ : ai ∈M0, n < ω} ∪ {γ} ∪ {0}.

Define, for every pair of points w, v ∈W :

d(w, v) := min{γ, a : a ∈M1 and wRav}.

Since M1 is easily shown to be finite, this defines a function d : W ×W →
M1 ⊂ R+. We claim that 〈W,d〉 is a metric space.

(1) d(w, v) = 0 iff min{γ, a : a ∈M1 and wRav} = 0 iff wR0v iff w = v
by condition (S4).

(2) First, assume d(w, v) = γ. Then for all a ∈ M1 − {γ}: ¬wRav. But
this is the case iff ¬vRaw for all a ∈ M1 − {γ}, by condition (S5). Hence
d(w, v) = γ = d(v, w).

Second, for a 6= γ : d(w, v) = a iff wRav∧∀b < a : ¬wRbv iff vRaw∧∀b <
a : ¬vRbw iff d(v, w) = a by (S5).

(3) We have to show that d(u, v)+d(v, w) ≥ d(u,w). If d(u, v)+d(v, w) ≥
γ the inequality obtains, since d(x, y) ≤ γ for all x, y. Hence we can assume
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that d(u, v) = a, d(v, w) = b for a, b ∈ M1 − {γ} and a + b < γ. Then,
a + b ∈ M1, uRav and vRbw, whence, by condition (S6), uRa+bw, which
implies that d(u,w) ≤ a+ b.

It remains to show that ϕ can be falsified in the metric space 〈W,d〉. To
this end define B =

〈

W,d, pB
0 , p

B
1 , . . .

〉

by putting pB
i = pM

i for all i < ω.
By a straightforward induction one can prove

〈M, w〉 � ψ ⇔ 〈B, w〉 � ψ

for all subformulas ψ of ϕ and all w ∈W . Hence B refutes ϕ. 2

We immediately obtain from Theorem 8 and the proof above:

Corollary 10. All the logics MS, MS
s, MS

t, MS
m have the finite model

property.

It may be also worth noting that as a consequence of Theorem 4, Corol-
lary 10 and the fact (established in [6]) that the satisfiability problem for
L(M)-formulas in finite distance spaces of a given size is decidable we im-
mediately obtain the following:

Theorem 11. All the logics MS(Q+), MS
s(Q+), MS

t(Q+), MS
m(Q+) are

decidable.

Proof. It suffices to observe that all these logics are recursively axiomati-
zable and use Harrop’s theorem (see e.g. [1]). 2

6 Outlook

As was noted in the introduction, logics of distance spaces were introduced
and investigated primarily in view of their possible applications in knowledge
representation and reasoning (for a more detailed discussion see [6]). In this
respect the following directions of research appear to be of special interest:

• So far we have considered arbitrary metric and distance spaces. How-
ever, applications may require more specialised spaces, say, Euclidean
spaces.

• Our decidability results obtained in this paper and in [8, 6] do not
provide ‘practical’ decision procedures required in knowledge repre-
sentation systems.

• Logics of distance spaces reflect only one aspect of possible application
domains. We envisage these logics as components of more complex
many-dimensional representation formalisms involving, for instance,
also logics of time and space (see e.g. [9]). However, to construct such
formalisms with a non-trivial interaction between dimensions, we need
appropriate ‘combination techniques’ preserving good computational
properties of the components (see e.g. [7]).

10



Acknowledgements

The work of M. Zakharyaschev was partially supported by U.K. EPSRC
grant no. GR/R42474/01. The work of O. Kutz and F. Wolter was supported
by DFG grant no. Wo 583/3-1.

References

[1] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University
Press, Oxford, 1997.

[2] M. de Rijke. The Modal Logic of Inequality. Journal of Symbolic Logic,
57:566–584, 1990.

[3] G. Gargov, S. Passy, and T. Tinchev. Modal Environment for Boolean
Speculations. In D. Scordev, editor, Mathematical Logic. Plenum Press,
New York, 1988.

[4] V. Goranko. Completeness and Incompleteness in the Bimodal Base
L(R,−R). In P. Petkov, editor, Mathematical Logic, pages 311–326.
Plenum Press, New York, 1990.

[5] V. Goranko and S. Passy. Using the Universal Modality. Journal of
Logic and Computation, 2:203–233, 1992.

[6] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Za-
kharyaschev. Logics of Metric Spaces. Submitted, (Visit
http://www.informatik.uni-leipzig.de/~wolter.), 2001.

[7] O. Kutz, F. Wolter, and M. Zakharyaschev. Connecting abstract de-
scription systems. In Proceedings of the 8th Conference on Principles
of Knowledge Representation and Reasoning (KR 2002). Morgan Kauf-
mann, 2002. To appear.

[8] H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Semi-
qualitative Reasoning about Distances: A Preliminary Report. In Log-
ics in Artificial Intelligence. Proceedings of JELIA 2000, Malaga, Spain,
pages 37–56, Berlin, 2000. Springer.

[9] F. Wolter and M. Zakharyaschev. Spatio-temporal representation and
reasoning based on RCC-8. In Proceedings of the 7th Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2000), Brecken-
ridge, USA, pages 3–14, Montreal, Canada, 2000. Morgan Kaufman.

11


