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Abstract. We argue for the usefulness of abductive reasoning in the
context of ontologies. We discuss several applicaton scenarios in which
various forms of abduction would be useful, introduce corresponding ab-
ductive reasoning tasks, give examples, and begin to develop the formal
apparatus needed to employ abductive inference in expressive description
logics.

1 Introduction and Motivation

Although the Description Logic and Non-Monotonic Logic communities are still
vastly disjoint, there is a growing consensus in the DL and Semantic Web com-
munities that many interesting application areas emerging from the usage of
DLs as ontology languages will also require, in addition to the mostly deductive
and monotonic reasoning techniques of current systems and the development of
ever more expressive DLs such as the DL SROIQ (11) underlying OWL 1.1,
the adoption of various forms of non-monotonic reasoning techniques, as well
as so called non-standard inferences (3). For instance, recent work trying to in-
tegrate DLs with non-monotonicity includes non-monotonic reasoning for DLs
based on circumscription (4), knowledge integration for DLs using techniques
from propositional inconsistency management with belief update (18), and the
relationship between DL and Logic Programming (19).

A related area of reasoning that is essential for common sense reasoning is the
ability to reason from observations to explanations, and is a fundamental source
of new knowledge, i.e., learning. This mode of reasoning, introduced originally
by Charles Sanders Peirce (21), is traditionally called abduction.

In general, abduction is often understood as a form of backward reasoning
from a set of observations back to a cause. For example, from a set of clues to
a murderer (criminology), a set of symptoms to a disease (medical diagnosis),
or from a malfunction in a system to a faulty part in a system (model-based
diagnosis). I.e., from the observation that B holds, and the fact that A ‘implies’
B (A ‘is a reason for B’/‘is a cause for B’ etc.), infer A.

Within classical logic, this kind of reasoning is a non sequitur inference, called
affirming the consequent. Thus we have to constrain this reasoning in some ways
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and cannot just add this rule to a deductive calculus. There are different con-
straints for abduction, the most common go by the following names, where Γ is
some knowledge base, and A,B are formulae, cf. (2):

1. Consistency: Γ +A 6|= ⊥;
2. Minimality: A is a ‘minimal explanation’ for B;
3. Relevance: A 6|= B;
4. Explanatoriness: Γ 6|= B, A 6|= B.

These criteria can be taken in a pick and choose fashion. For example, we might
want consistent and minimal abduction, but leave the case where B is added
as its own explanation as a limiting case, and thus forsake both, relevance and
explanatoriness. The most fundamental constraint of the above list is consis-
tency. There is basically no definition of abduction in the literature that does
not have the requirement of consistency, unless the inference is left completely
unconstraint as Γ +A |= B, often referred to as plain abduction. The reason for
this requirement is clear. If our formal language is based on classical logic, any
formula A inconsistent with the knowledge base Γ counts as an ‘explanation’ for
every other formula. Thus, giving up consistency leads to a trivialisation of the
notion of ‘explanation’ unless one adopts some form of paraconsistent reasoning.

Abduction as a fundamental form of reasoning next to induction and de-
duction is not per se non-monotonic. It often exhibits, however, non-monotonic
features. For instance, if we only seek for consistent explanations, an explanation
A for B w.r.t the knowledge base Γ ceases to count as an explanation for B once
the KB Γ is extended by information that is inconsistent with A. Unlike deduc-
tion, abduction and induction are ampliative in the sense that they provide more
‘knowledge’ than can be obtained deductively from a given knowledge base.

The relevance of forms of abductive reasoning in the context of the World
Wide Web was noted early on, before the idea of a Semantic Web in the current
sense was even envisioned. Shank and Cunningham write in 1996 (24):

There is an embarrassing lack of research on learning from the World Wide
Web. [. . . ] The learner is an information seeker, not the end point of a com-
municative act. As we move into the information age and are inundated by
increasing volumes of information, the need for reasoning skills – rather than
mastery of a subject matter – is ever more evident. [. . . ]

Traditional models of inductive and deductive inference are simply inade-
quate in conceptualizing the skills necessary to utilize the WWW. On the web
we are seeking omens and clues, diagnosing symptoms and scenarios, etc. In
other words, the inferential basis of learning from the web is largely abductive
(although induction and deduction may also come to the fore at various points
in the information exploration process).

Curiously, however, while abductive reasoning techniques have been intensively
studied in the context of classical, mostly propositional logic, we are aware only
of very little work on abductive reasoning that addresses non-classical logics in
general, and description logics in particular, although, as we argue, the potential
applications are legion.
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We outline the potential use-cases for abduction in the context of ontologies
by discussing several abductive reasoning tasks and examples, and begin to de-
velop the formal apparatus needed to employ abductive inference in expressive
description logics.

2 Preliminaries

Since we intend to capture general abductive reasoning tasks, we will usually not
specify the logic we are dealing with, but just refer to it generically as L, denot-
ing, for instance, DLs such as ALC or SHIQ. Furthermore, since the concept
language etc. is not fixed, we will avoid terms such as general concept inclusion
(GCI) and will not specify the syntactic form of Abox assertions. Instead, we
will rather use the neutral terms Tbox and Abox assertion. Thus, for instance,
by φ(ā) we shall denote an Abox assertion that uses individuals from the tuple
ā = 〈a1, . . . , an〉. Moreover, we will identify a logic L with its language, i.e., with
its set of concept, role, and individual names, and its set of concept constructors,
e.g., conjunction, existential restrictions, etc. Also, we will distinguish between
the source logic L of an abduction problem, and the target logic L′ in which
we seek for solutions, which may or may not be the same. Given a set of asser-
tions ∆, we shall denote by Sig(∆), the signature of ∆, the set of non-logical
symbols (i.e., concept, role, and individual names) used in ∆. Given a logic L,
by |= we always mean the global consequence relation of L, i.e., Γ |= C v D
means that the concept D subsumes C w.r.t. the ontology Γ . Also, the notions
of consistency of a knowledge base, satisfiability of a concept, etc., are standard.

3 Abductive Reasoning Tasks in DL

3.1 Concept Abduction

We start by introducing the most basic abductive reasoning task, that of finding
abductively a concept H that is subsumed by a given (satisfiable) concept C.

Definition 1 (Simple Concept Abduction). Let L be a DL, C a concept
in L, Γ a knowledge base in L, and suppose that C is satisfiable w.r.t. Γ . A
solution to the simple concept abduction problem for 〈Γ,C〉 is any concept
H in L′ such that

Γ |= H v C.

The set of all such solutions is denoted by SSCA(Γ,C).

Note that if L′ as well as C are restricted to concept names, this is just
the problem of building the class tree and picking the concept names being
subsumed by a given concept C, a task readily accomplished by current DL
implementations even for very expressive description logics. However, we might
be interested in finding concepts that are subsumed by a complex concept C.
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Example 1 (Geographical Information System). Assume Γ is an ontology about
geography in Europe, comprising concepts Country etc., nominals France etc. for
specific countries, a role is member of , etc. Suppose your Tbox contains

{France} v ∃is member of .Schengen Treaty

etc., and the Abox contains assertions France : Country etc.
Now, given the concept country u ∃isMemberOf .SchengenTreaty, a solution to
the simple concept abduction problem, maximal w.r.t. v, is the disjunction
France t . . . t Germany, i.e., the set of countries that happen to be members of
the Schengen Treaty.

A variant of plain concept abduction that we call conditionalised concept
abduction, introduced in (5) where it is called concept abduction, is motivated
by the matchmaking problem: in a scenario where we want to match a ‘demand’
D with a ‘supply’ C, we need to find a concept H such that Γ |= C uH v D,
i.e., where H gives the additional assumptions needed to meet the demand.

Definition 2 (Conditionalised Concept Abduction). Let L be a DL, C
and D concepts in L, Γ a knowledge base in L, and suppose that C,D are satis-
fiable concepts w.r.t. Γ . A solution to the conditionalised concept abduction
problem for 〈Γ,C,D〉 is any concept H in L′ such that

Γ 6|= C uH ≡ ⊥ and Γ |= C uH v D.

The set of all such solutions is denoted by SCCA(Γ,C,D).

Clearly, simple concept abduction is the same as conditionalised concept ab-
duction if we choose > for the input concept C and require that solutions H
are consistent with Γ . Put another way, conditionalised concept abduction seeks
(consistent) solutions to an SCA-problem of a specific syntactic form, namely
conjunctions C uH, where C is fixed in advance. Thus, algorithms that can find
solutions to the conditionalised concept abduction problem also solve the simple
concept abduction problem.

In (6), a tableaux algorithm to compute solutions to the conditionalised
concept abduction problem is proposed, and various minimality principles are
discussed. However, only the rather inexpressive DL ALN (which allows only
atomic negation and no disjunctions or existential restrictions) is considered,
and it is not clear how far their techniques extend to more expressive DLs.

Another area where the use of concept abduction has been discussed is the
problem of querying for similar workflow fragments (10), where fragments that
are largely relevant to a user may happen to fall outside a strict subsumption
relationship, and thus a ‘matching of similar concepts’ is sought.

3.2 Abox Abduction

Abox abduction can be understood as a new query answering service, retrieving
abductively instances of concepts (or roles) that would entail a desired Abox
assertion.
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Definition 3 (Abox Abduction). Let L be a DL, Γ a knowledge base in L,
and φ(ā) an Abox assertion in L such that Γ ∪ φ(ā) is consistent. A solution to
the Abox abduction problem for 〈Γ, ā, φ〉 is any finite set SA = {ψi(bi) | i ≤ n}
of Abox assertions of L′ such that

Γ ∪ SA |= φ(ā).

If SA contains only assertions of the form ψ(b̄) with b̄ ⊆ ā, it is called a solip-
sistic solution. The set of all solutions is denoted by SA(Γ, ā, φ), and the set of
all solipsistic solutions by SAS(Γ, ā, φ).

Example 2 (Medical Diagnosis). Consider the problem of diagnosis in medical
ontologies. Suppose there is a disease, called the Shake-Hands-Disease (SHD),
that always develops when you shake hands with someone who carries the Shake-
Hands-Disease-Virus (SHDV). Suppose further your medical ontology Γ contains
roles has symptom, carries virus, has disease, etc., concepts SHD, SHDV Laziness,
Pizza Appetite, Google Lover, etc., and individual names Peter, Paul, Mary, etc.
Further, assume your Tbox contains axioms

∃has disease.SHD v ∃has symptom.(Laziness u Pizza Appetite)
Researcher v ∃has symptom.(Laziness u Pizza Appetite u Google Lover)

∃shake hands.∃carries virus.SHDV v ∃has disease.SHD.

and your Abox contains Mary : ∃carries virus.SHDV.

Now, suppose you observe the fact that

(†) Paul : ∃has symptom.(Laziness u Pizza Appetite).

Then a solipsistic solution to the Abox abduction problem given by (†) is

{Paul : Researcher}.

However, a non-solipsistic solution is also given by

{〈Paul,Mary〉 : shake hands},

which would suggest that Paul has the Shake-Hands-Disease.

3.3 Tbox Abduction

Tbox abduction can be used to repair unwanted non-subsumptions.

Definition 4 (Tbox Abduction). Let L be a DL, Γ a knowledge base in L,
and C, D concepts that are satisfiable w.r.t. Γ and such that Γ ∪ {C v D} is
consistent. A solution to the Tbox abduction problem for 〈Γ,C,D〉 is any
finite set ST = {Gi v Hi | i ≤ n} of Tbox assertions in L′ such that

Γ ∪ ST |= C v D.

The set of all such solutions is denoted by ST(Γ,C,D).
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Example 3 (Debugging). In (23; 12), it is shown how to debug and repair unsat-
isfiable concepts C, respectively, unwanted subsumptions C v D. By computing
all the minimal unsatisfiability preserving sub-TBoxes (MUPS) of an unsatisfi-
able concept, various repair plans are suggested that remove certain GCIs from
a knowledge base Γ resulting in a knowledge base Γ ′ such that Γ ′ 6|= C v D.
Tbox abduction provides a solution to the dual problem: to propose a repair plan
for an unwanted non-subsumption, i.e., the case where a subsumption C v D
is expected by an ontology engineer, but does not follow from Γ as developed
so far. Every (explanatory) solution S to the Tbox abduction problem 〈Γ,C,D〉
provides a finite set of Tbox assertions such that, when added to Γ to obtain
Γ ′, Γ ′ |= C v D.

3.4 Knowledge Base Abduction

Knowledge base abduction generalises both Tbox and Abox abduction, thus in-
terweaves statements about individuals with general axioms, a form of abduction
that is closely related to so-called ‘explanatory induction’ (13).

Definition 5 (Knowledge Base Abduction). Let L be a DL, Γ a knowledge
base in L, and φ an Abox or Tbox assertion such that Γ ∪ {φ} is consistent. A
solution to the knowledge base abduction problem for 〈Γ, φ〉 is any finite set
S = {φi | i ≤ n} of Tbox and Abox assertions such that

Γ ∪ S |= φ.

The set of all such solutions is denoted by SK(φ).

Obviously, if φ is an Abox assertion, any solution to the Abox abduction
problem is also a solution to the knowledge base abduction problem, and similary
if φ is a Tbox assertion, i.e., the following inclusions hold:

SA(φ) ⊆ SK(φ) and ST(φ) ⊆ SK(φ).

In fact, we can sometimes rewrite solutions to an Abox abduction problem into
solutions to an equivalent Tbox abduction problem, and conversely. For instance,
suppose we work in the logic ALCO, comprising nominals. Then an Abox asser-
tion a : C can be equivalently rewritten as the Tbox assertion {a} v C.

Example 4 (More about Mary). Suppose we have the following knowledge base
(with ◦ denoting the composition of roles), using concepts BOS (‘burnt out
syndrome’), BOTeacher (‘burnt out teacher’), etc., consisting of TBox assertions:

BOS ≡ Syndrom u ∃has symptom.(Headache t Depressed)
BOTeacher w Teacher u ∃shows.BOS
Depression ≡ ∃has symptom.Depressed
shows ◦ has symptom v has symptom

and the Abox contains: Mary : Teacher u ∀has symptom.¬Headache.
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Now suppose you observe that: (‡) Mary : ∃has symptom.Depressed. Then, a
simple solipsistic Abox solution to (‡) is given by:

Mary : Depression

This is, however, not very interesting, since it is equivalent to the observation
itself and does not take into account other knowledge that we have of Mary.
The following solution involving both Tbox and Abox statements is much more
informative:

Mary : BOTeacher and BOTeacher v Teacher u ∃shows.BOS

This adds a definition of the concept BOTeacher to the KB, and makes Mary
an instance of this subclass of Teacher.

4 Finding and Selecting Solutions

We now address the two main problem areas associated with abductive reason-
ing, namely the selection of ‘good’ solutions, and the algorithmic problem of
finding solutions. We begin with the selection problem.

4.1 Selecting Solutions

Clearly, the definitions given so far are very general in that they even allow for
inconsistent and trivial solutions, and do not make any explicit restrictions on
the syntactic form of solutions. These are in fact the most common restrictions,
i.e., restrictions concerning the deductive properties of solutions, and restrictions
concerning the syntactic form of solutions. Apart from the definition of creative
solutions, the following is a standard classification often used in connection with
solutions to abductive problems (20; 2):

Definition 6. Let L be a DL, Γ a knowledge base in L, P(Γ, φ) an abductive
problem, and S(P(Γ, φ)) the set of its solutions in language L′. We call solutions:

1. S(P(Γ, φ)) plain
2. SCon(P(Γ, φ)) := {S ∈ S(P(Γ, φ)) | S ∪ Γ 6|= ⊥} consistent
3. SRel(P(Γ, φ)) := {S ∈ S(P(Γ, φ)) | S 6|= φ} relevant
4. SExp(P(Γ, φ)) := {S ∈ SRel(P(Γ, φ)) | Γ 6|= φ} explanatory
5. SCre(P(Γ, φ)) := {S ∈ S(P(Γ, φ)) | Sig(S) 6⊆ Sig(Γ, φ)} creative

If we restrict our attention to consistent solutions, abduction is often seen
as a special form of belief expansion (used here as a technical term in line with
the AGM framework of belief change (1)). This means that a set S(P(Γ, φ)) of
solutions is found and an element ψ ∈ S(P(Γ, φ)) is selected and then added to
the knowledge base. If, however, no consistent solution is found, either φ itself
is added (expansion as the limiting case) or the abduction is declined (failure as
the limiting case).
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Clearly, this is a restrictive view of abduction. Firstly, consistent abduction
cannot challenge our background theory Γ as it never triggers a revision (14).
This, however, is often desirable, for instance in the case where a solution S for
〈Γ, φ〉 is inconsistent but explanatory, and where it is considered important to
have φ as a consequence of the knowledge base. In such a case, we want to revise
Γ such that φ becomes a consequence of it, S is kept, and Γ is modified to Γ ′

such that Γ ′ ∪{S} is consistent. Such a revision can be performed, for instance,
by using abduction together with the techniques of (12). Secondly, our KB Γ
might be inconsistent from the outset. At this point, we might not want an ab-
duction problem P(Γ, φ) to trigger a revision of Γ because, depending on the
way revisions for Γ are performed, this might yield an updated Γ ′ whose modifi-
cation has nothing to do with P(Γ, φ), in which case we might prefer to perform
paraconsistent abductive reasoning, as proposed in (9). Hence, although we can
see applications of abduction challenging Γ and abduction not being restricted
to the lucky, consistent cases, we think that it is dangerous to treat abductively
inferred beliefs equal to knowledge. After all, ‘explanations’ are hypothetical and
abductive inference can be superseded by new information.

Relevant and explanatory solutions impose further conditions on the deduc-
tive properties of solutions. If a solution S is relevant for P(Γ, φ), φ is not already
a logical consequence of S. If S is explanatory, it is guaranteed that φ does not
already follow from Γ , but is only a consequence of Γ together with S.

Another interesting class of solutions are the creative ones—these are ex-
planations that provide a proper extension to the vocabulary of the knowledge
base, and thus add a genuinely new part to the ontology in order to explain,
for example, a given subsumption. Obviously, such extensions are difficult to ob-
tain automatically, but could be obtained semi-automatically via an interactive
ontology revision and refinement process using abductive reasoning.

Further conditions that can be imposed on the class of solutions are:

Syntactic The language L′ in which we seek solutions to an abductive problem
can be restricted in various ways. As in propositional abduction, we can insist,
for example, that solutions have to be conjunctions of concept names or their
negations, or that only a certain subset of the concept constructors of L be used
in solutions. The vocabulary of L′ might also be restricted in such a way that we
can effectively list all finitely many non-equivalent possible solutions, in which
case any abduction problem defined is decidable and solvable by brute force.

Minimality Since in general abductive problems can have infinitely many so-
lutions, the definition of notions of minimality is an important part of abductive
reasoning, allowing to prefer one solution over another. These can be syntactic
notions, such as preferring solutions of a specific form of minimal length, or se-
mantic notions, such as maximality w.r.t. subsumption, which, for the case of
simple concept abduction, is defined as follows: H is a v-maximal solution for
P(Γ,C) if for all concepts E: Γ |= E v C and Γ |= H v E implies Γ |= E v H
(note that different solutions can be incomparable w.r.t. v).

In (15), it is shown that, for the case of abduction in first-order logic, v-
maximal solutions need not exist for a given problem. The same can be shown,
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for instance, for the modal logic S4 (17), and is also true for most DLs. However,
(17) also shows that, when using the local consequence relation, every modal logic
that enjoys the finite model property admits minimal solutions in this sense. We
believe that a similar result can be shown in the context of DLs.

Conservativeness In the context of reasoning with ontologies, a number of fur-
ther restrictions on what constitutes a ‘good solution’ to an abduction problem
can be identified. For example, we might want our solutions to be ‘conservative’
in the sense of ensuring a certain ‘stability’ of the class tree. For instance, if our
ontology comprises both a ‘foundational’ part and a domain ontology, we might
want to require that the foundational part of the class tree remains unchanged
whenever we add new assertions obtained by an abductive process, cf. (7).

4.2 Finding Solutions

The most developed techniques for finding abductive explanations, used mostly
in the area of propositional logic, are based on abductive logic programming
(ALP) and resolution, compare (20; 2; 8) and references therein. The third algo-
rithmic technique employed for finding solutions to abductive problems is based
on semantic tableaux, and builds on the simple idea that, in order to obtain a so-
lution S for a problem P(Γ, φ), every “tableau for Γ ∪{¬φ}” needs to be “closed
by S”. In the context of ontology reasoning with its highly developed and opti-
mised tableaux based reasoning methods, the integration of abductive reasoning
techniques into existing algorithms seems the most promising approach.

The work that is most directly relevant to pursue this line of research further
is (16), which studies the use of tableaux for abduction in the context of first-
order logic using ‘reversed skolemization’, (17), which adapts the techniques
developed in (16) to propositional modal logics, and (22), which restricts the
notion of satisfaction in first-order logic in order to effectively use tableaux for
computing solutions to abductive problems formulated in first-order logic, a task
that has traditionally been considered impenetrable simply for the reason that
satisfiability in first-order logic is undecidable.

5 Outlook

To summarise, abductive reasoning in the context of ontologies is highly relevant
from an application point of view, but represents an almost entirely open research
area, including

– The identification of interesting syntactic restrictions on solutions.
– The definition of appropriate notions of minimality.
– The identification of restrictions on solutions, specifically motivated by rea-

soning with ontologies.
– The identification of DLs that admit tableaux-based reasoning techniques

for abduction, and the study of their computational complexity.
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