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Abstract
We report on ongoing work to apply techniques
of automated theory morphism search to ontology
matching and alignment problems. Such techniques
are able to discover ‘structural similarities’ across
different ontologies by providing theory interpreta-
tions of one ontology into another. In particular,
we discuss two such scenarios: one where the sig-
natures and logics of the component ontologies fit
enough to directly translate one ontology into the
other, called stringent contexts, and one where we
need to lift the ontologies to first-order logic, possi-
bly extended by definitonal axioms introducing ex-
tra non-logical symbols, called conforming contexts.
We also sketch the techniques currently available for
automating the task of finding theory interpretations
in first-order logic and discuss possible extensions.

1 Introduction and Motivation
The problem of finding semantically well-founded correspon-
dences between ontologies, possibly formulated in different
logical languages, is a pressing and challenging problem. On-
tologies may be about the same domain of interest, but may use
different terms; one ontology might go into greater detail than
another, or they might be formulated in different logics, whilst
mostly formalising the same conceptualisation of a domain,
etc. To allow re-use of existing ontologies and to find over-
lapping ‘content’, we need means of identifying these ‘over-
lapping parts’.

Often, ontologies are mediated on an ad-hoc basis. Clearly,
any approach relying exclusively on lexical heuristics or man-
ual alignment is too error prone and unreliable, or does not
scale. As noted for instance by [Meilicke et al., 2008], even
if a first matching is realised automatically using heuristics, a
manual revision of such candidate alignments is still rather dif-
ficult as the semantics of the ontologies generally interacts with
the semantics given to alignment mappings.

A new approach, that we currently explore, is to apply meth-
ods of automated theory interpretation search to the realm of
ontologies. Such methods have been mainly developed for
the application to formalised mathematics, and some of the
techniques are specialised for theories formulated in first-order
logic. Theory interpretations have a long history in mathe-
matics generally, and are probably employed by any ‘working
mathematician’ on a daily basis; the basic idea is the follow-
ing: given two theories T1 and T2, find a mapping of terms of
T1 to terms of T2 (a signature morphism, typically expected

to respect typing) such that all translations of axioms of T1
become provable from T2. If such a theory interpretation is
successfully provided, all the knowledge that has already been
collected w.r.t. T1 can be re-used from the perspective of T2,
using the translation (see [Farmer, 1994] for some examples
from the history of mathematics). In this case, in mathematical
jargon, we might say that T2 carries the structure of T1.

An abundance of notions of context have been studied in
the literature (see e.g. [Serafini and Bouquet, 2004]). We here
propose to use a notion of context, more precisely contextual
interpretation of an ontology, inspired by the notion of theory
interpretation from mathematics, which in practice is used as a
structuring device for mathematical theories.

Certain, very basic structures, are found everywhere in
mathematics. The most obvious example might be group
theory. The basic abstract structure of a group can be re-
interpreted in a more concrete setting, giving the group in ques-
tion additional structure (think of the natural numbers, rings,
vector-spaces, etc.). Re-using the metaphor mentioned above,
we say that an ontology O2 carries the structure of O1, if the
latter can be re-interpreted, by an appropriate translation σ,
into the language of O2 such that all translations of its axioms
are entailed by O2. In this case, informally, we consider the
pair 〈O2,σ〉 a context for O1.

2 Ontology Interpretations and Context
For simplicity and lack of space, we here focus on the case
of ontologies formulated in first-order logic (FOL) or standard
description logics (DLs), and omit some of the technical de-
tails. More precisely, we limit the investigation here to the
case of FOL and to DLs that have a standard translation into
first-order logic (which of course are conservative).

In this setting, given an ontology O, i.e. in the case of DL
a set of Abox, Tbox, and Rbox statements, the signature of
O, denoted Sig(O) is the set of non-logical symbols, i.e. ob-
ject, concept, and role names found in O, i.e. the set of nullary
(constants), unary, and binary (or in general n-ary) predicates,
when seen from the first-order perspective. Given two ontolo-
gies O1,O2, an ontology signature morphism (mop for short)
is any map σ : Sig(O1) → Sig(O2) respecting typing, i.e.
mapping concept names to concept names, role names to role
names, and object names to object names. If such a σ exists,
we call the signatures fitting, written O1 ! O2.

By the logic of O, written L(O), we mean the set of logical
symbols used in O (and thus provided by the underlying DL or
FOL), and by the language of O we mean the set of all well-
formed formulae that can be build from the signature Sig(O)
using the logic L(O).



We distinguish between directly and indirectly interpretable
ontologies. An ontology O1 is directly interpretable into an
ontology O2 if L(O1) ⊆ L(O2) (i.e. the set of logical sym-
bols used in O1 are a subset of those used in O2),1 written
O1 " O2, and Sig(O1),Sig(O2) are fitting, i.e. O1 ! O2.
Otherwise, we call them indirectly interpretable. To illus-
trate this concept, if for instance we haveL(O1) = {∀DL,&} just
using universal restrictions and conjunctions (where the under-
lying DL of O1 is ALC), and L(O2) = {∃FOL,∨} just using
existential quantification and disjunction (where FOL is the
underlying logic), O1 is only indirectly interpretable in O2, be-
cause, although the latter is of course strictly more expressive,
it requires a definition of the logical operators of ALC within
FOL, accomplished via the standard translation into FOL.
The significance of these distinctions can be seen from:

Definition 1 (Canonical Sentence Translation) Let O1,O2
be ontologies, and assume O1 is directly interpretable into
O2. Then every mop σ will, by a straightforward structural
induction over the grammar of that DL (or FOL), yield a
sentence translation σ̂ of the axioms of O1 along σ into the
language of O2.

However, whenever either the logics or the signatures of
the ontologies involved do not directly fit, there are a number
of possible solutions to choose from (we can just extend the
logic in question, we can extend definitionally the signature, or
both).2 We here provide a uniform solution as follows:

Definition 2 (Derived Sentence Translation) Suppose O1 is
only indirectly interpretable in O2. Let λi denote the stan-
dard translation from L(Oi) into FOL, O′i = λi(Oi), and let
S ⊇ Sig(O′2) such that Sig(O′1) ! S for a signature mor-
phism σ̃ such that σ̃|Sig(O′2) = id (this always exists). Let Õ′2
result from O′2 by adding, for each element of S \ Sig(O′2) a
definitional axiom in the language of FOL. By construction,
O′1 " Õ′2. Now, define the derived sentence translation σ̃ as
the canonical sentence translation map in FOL, induced by σ̃.

The situation in Def. 2 is illustrated in Fig. 1. We can now
define the notion of ontology interpretation:

Definition 3 (Stringent Interpretations and Context) Let
O1,O2 be ontologies, suppose O1 is directly interpretable into
O2, and let σ : Sig(O1)→ Sig(O2) be a mop.
σ : O1 → O2 is called a stringent ontology interpretation

(sop) if O2 |= σ̂(O1). In this case, 〈σ,O2〉 is called a stringent
context for O1.

Stringent interpretations cover the case where we can ‘em-
bed’, within the same logic, one ontology into another, thus
‘strictly aligning’ the resp. terminologies. Let us next look at
the more complex heterogeneous case of only indirectly inter-
pretable ontologies.

Definition 4 (Conforming Interpretations and Context)
Let O1,O2 be ontologies, and suppose O1 is only indirectly
interpretable into O2. Let σ be a maximally partial signature

1This is a purely syntactic and somewhat lax definition which we
adopt here only for lack of space; a more elaborate definition would
be defined via a notion of logic translation using e.g. institution co-
morphims, see [Kutz et al., 2008].

2E.g. the OneOf constructor found in many description logics al-
lowing a finite enumeration of the elements of a concept is also ex-
pressible as a disjunction of nominals, and conversely. Such transla-
tions/simulations can be handled by a library of logic translations.

O′1 ................................................
σ̃

! Õ′2
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Figure 1: Ontology Interpretations

morphism, and assume σ̃ : Sig(O′1) → Sig(Õ′2) be a mop in
FOL, where S is the set of additional definitional axioms.
σ̃ : O1 → O2 is called a conforming ontology interpreta-

tion (cop) if Õ′2 |= σ̃(O′1). In this case, 〈σ̃,S,O2〉 is called an
O1-conforming context.
Note that the notion of a conforming context is closely related
to the heterogeneous refinements defined in [Kutz et al., 2008]:
namely, given any O1-conforming context 〈σ̃,S,O2〉, O2 is a
heterogeneous refinement of O1 where the transition from O2

to Õ′2 is not only conservative but in fact definitonal.
Here is an illustrative example from mathematics:
Example 5 (Lattices and Partial Orders) Consider P as the
theory of partial-orders with Sig(P) = {≤} and let L be the
theory of lattices with Sig(L) = {&,,}. These are both first-
order theories, so we have P " L. However, the signatures
obviously do not fit as L has no binary relations, so we have
P -! L. Extend the signature of L by a binary relation symbol
. (which makes the signatures fit by the mapping σ̃ :≤/→.),
and defineS = {∀a, b.a . b↔ a,b = a}. This is a definitional
axiom. It can now be seen that L ∪ S |= σ̃(P), i.e. σ̃ is a cop,
and thus 〈σ̃,S, L〉 is a P-conforming context.
Thus, we may say that lattices carry the structure of partial
orders. It should be obvious that both these theories also define
central structures for ontology design.

3 Automated Discovery of Contexts
The goal of discovering ontology interpretations may be
rephrased as the problem of finding all those ontologies in a
large repository R that could serve as a (stringent or conform-
ing) context for a given ontology O1. More formally, given O1,
we are looking for the sets

{O2 ∈ R | 〈σ,O2〉 stringent context for O1}
and

{O2 ∈ R | 〈σ̃,S,O2〉 conforming context for O1}
In case of ontologies formalised in FOL, this task is unde-

cidable, whereas for ontologies formalised in DL it is gener-
ally decidable. I.e., given the ontologies O1, O2, and a signa-
ture morphism σ from O1 to O2, it is decidable whether the
σ-translated axioms of O1 are entailed by O2. However, the
combinatorial explosion yielded by trying to find all possible
symbol mappings between two given ontologies makes such a
brute force approach unpractical.

To obtain one of the answer sets above in reasonable time
(i.e seconds or minutes), we necessarily have to relax our ini-
tial goal towards an approximation of the set of all possible
contexts for a given ontology. In summary, our approach for



the first-order case3 is based on formula matching modulo an
equational theory—elaborated in detail in [Normann, 2009].
We want to outline this in the following.

Suppose we are given a source ontology O1 and a target
ontology O2, which we assume have been translated to first-
order via the standard translations. In the first step, we nor-
malise each sentence of these ontologies according to a fixed
equational theory. The underlying technique basically stems
from term-rewriting: rewrite rules represent an equational the-
ory such that all sentence transformations obtained through
these rules are in fact equivalence transformations, e.g. such as
¬A & ¬B /→ ¬(A , B). A normal form of a convergent rewrite
system is then the unique representative of a whole equivalence
class of sentences. The goal of normalisation is thus to identify
(equivalent) expressions such as ¬(∃R.A&B

)
and ¬B,∀R.¬A.

In the next step, we try to translate each normalised axiom
ϕ from O1 into O2, i.e. we seek a sentence ψ in O2 and a
translation σ such that σ(ϕ) = ψ. Note that potentially each
axiom can be translated to several target sentences via differ-
ent signature morphisms. To translate all axioms of O1 into
O2, there must be a combination of compatible signature mor-
phisms4 determined from the previous, single sentence match-
ings. This task is also known as (consistent) many-to-many
formula matching. In fact many-to-many formula matching
modulo some equational theory is already applied in automated
theorem proving (ATP) [Graf, 1996]. However, our approach
is different in a crucial aspect: it allows for significant search
speed up. We are normalising all ontologies as soon as they
are inserted into the repository, i.e. not at cost of query time.
Only the normalisation of the query ontology is at query time.
Moreover, the normal forms not just allow for matching mod-
ulo some equational theory, but also enable a very efficient
matching pre-filter based on skeleton comparison. A sentence
skeleton is an expression where all (non-logical) symbols are
replaced by placeholders. E.g., ! . ! , ! is the skeleton
of A . B , C. Obviously, two sentences can only match if
they have an identical skeleton. Since syntactic identity can
be checked in constant time, a skeleton comparison is a very
efficient pre-filter for sentence matching.

All the presented techniques were developed in the context
of formalised mathematics and a tool for the automated dis-
covery of theory interpretations in first-order logic has already
been implemented [Normann, 2009], and is currently being in-
tegrated into the Hets system [Mossakowski et al., 2007]. This
has been used for experiments on a FOL version of the Mizar
library [MizarKB] that contains about 4.5 million formulae dis-
tributed in more than 45.000 theories, and thus is the world’s
largest corpus of formalised mathematics. Experiments where
each theory was used as source theory for theory interpretation
search in the rest of the library demonstrated the scalability
of our approach. On average, a theory interpretation search
takes about one second and yields 60 theory interpretations per
source theory.

4 Discussion and Future Work
Because of the encouraging results in formalised mathematics,
we are currently adopting and modifying these techniques for

3In principle, these methods can be applied to any formalised con-
tent as long as the entailment relation obeys certain properties (as
specified e.g. in entailment systems [Meseguer, 1989]).

4Two signature morphisms are compatible if they translate all their
common symbols equally.

the application in the realm of ontologies. The techniques we
have sketched above are directly applicable to two of the cases
we have discussed: to searching for stringent contexts in the
case where both ontologies are formalised in FOL, and to the
case of conforming context where the logics can be in a DL or
FOL, but where no definitional axioms are required, or where
they are added manually. Automated search of such definitions
is not yet supported.

Of course, there is no guarantee that what is successful for
mathematical theories is equally successful for formal ontolo-
gies, and some of the characteristics and features regularly
found in ontologies are problematic. For instance, ontologies
are often formalised in DL as opposed to first- or higher-order
logics used in formal mathematics. Hence, formal mathemati-
cal theories are in general constituted by much more complex
axioms than formal ontologies (many ontologies have no other
axioms than is-a hierarchies). The lower complexity of ontol-
ogy axioms has the effect that many axioms share the same
skeleton. This makes skeletons a less effective pre-filter, which
means that the reduction of the search space for candidate sig-
nature morphisms will be less significant.

Initial experiments on DL ontologies already suggested
some ideas on how to overcome these problems in future work:
• Interactive search space reduction: the user should be able

to enforce some mappings of non-logical symbols—often
some mappings are explicitly intended.
• Exploitation of the decidability of DLs.
• Specialised normal forms designed for various DLs.
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