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Abstract. The theory of conceptual blending has been applied
very successfully in cognitive science to explain the process of con-
cept generation. In previous work, we have shown a formalisation
and implementation of conceptual blending that is borrowing tech-
niques from logic, ontological engineering, and algebraic specifica-
tion. However, so far our attempts (and similar approaches in the
literature) have been reconstructive; that is they show how a particu-
lar concept (e.g., houseboat) can be ‘discovered’ by computationally
blending two carefully selected input spaces (e.g, a house and a boat)
and a suitable base. This paper describes an attempt to take the next
step and automate the concept generation based on a database of in-
put spaces. Particularly, we attempt to create monsters from a library
of animals formalised as OWL ontologies.

1 Introduction

Conceptual blending in the spirit of Fauconnier and Turner oper-
ates by combining two input ‘conceptual spaces’, construed as rather
minimal descriptions of some thematic domains, in a manner that
creates new ‘imaginative’ configurations [Fauconnier and Turner,
2003; Turner, 2014]. A classic example for this is the blending of the
concepts house and boat, yielding as most straightforward blends the
concepts of a houseboat and a boathouse, but also an amphibious ve-
hicle. These examples illustrate that, typically, the blended spaces in-
herit some features from either space and combine them to something
novel. The blending of the input spaces involves a base space, which
contain shared structures between both input spaces. The structure in
the base space is preserved in the blended space (the blendoid).

Goguen defines an approach that he terms algebraic semiotics in
which certain structural aspects of semiotic systems are logically for-
malised in terms of algebraic theories, sign systems, and their map-
pings [Goguen, 1999]. In Goguen and Harrell [2010], algebraic semi-
otics has been applied to user interface design and conceptual blend-
ing. Algebraic semiotics does not claim to provide a comprehensive
formal theory of blending – indeed, Goguen and Harrell admit that
many aspects of blending, in particular concerning the meaning of
the involved notions, as well as the optimality principles for blend-
ing, cannot be captured formally. However, the structural aspects can
be formalised and provide insights into the space of possible blends.
The formalisation of these blends can be formulated using the alge-
braic specification language OBJ3 [Goguen and Malcolm, 1996].

In Hois et al. [2010]; Kutz et al. [2012, 2014], we have presented
an approach to computational conceptual blending, which is in the
tradition of Goguen’s proposal. In these earlier papers, we suggested
to represent the input spaces as ontologies (e.g., in the OWL Web
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Ontology Language2). We moreover presented how the Distributed
Ontology Language (DOL) can be used to specify conceptual blends
with the help of blending diagrams. These diagrams encode the rela-
tionships between the base space and the (two or more) input spaces.
These blending diagrams can be executed by Hets, a proof manage-
ment system. Hets is integrated into Ontohub,3 an ontology reposi-
tory which allows users to manage and collaboratively work on on-
tologies. DOL, Hets, and Ontohub provide a powerful set of tools,
which make it easy to specify and computationally execute concep-
tual blends.

In this paper, we will discuss how we utilised DOL, Hets, and
Ontohub in an attempt to build a prototype system that automates
concept invention. The goal is to make the step from a reconstructive
approach, where computational conceptual blending is illustrated by
blending one concept (e.g., houseboat) with the help of some care-
fully selected input spaces (e.g, a house and a boat) to a system that
autonomously selects two (or more) ontologies from a repository in
Ontohub and attempts to blend them in a way that meets some given
requirements. Within the extensive literature on conceptual blending,
few attempts have been made at a (more or less) complete automation
of the blending process, notable exceptions include Goguen and Har-
rell [2010], Pereira [2007], Li et al. [2012], and Veale et al. [2000];
Veale [2012].

In our experiment we use a repository of ontologies about animals as
input spaces and try to blend them into monsters. In the next section,
we are going to discuss the underlying model of our approach and
how we simplified it in our prototype implementation. Finally, we
summarise our initial results and discuss future work.

2 The Approach
We follow a variation of Goguen’s approach to computational con-
ceptual blending, which has been proposed within the COINVENT
research project (see Figure 1 and www.coinvent-project.
eu) and summarised by Marco Schorlemmer. In the next sections
we discuss the various elements of this revised blending approach
which we will refer to as the Schorlemmer model. Details of this
revised model have not been published elsewhere so far, but the gen-
eral background of the approach can be found in Schorlemmer et al.
[2014].

2.1 (Weakened) Input Spaces
In this model there are two (or more) input spaces I1 and I2, which
are in our case represented as OWL ontologies. These ontologies are
2 With ‘OWL’ we refer to OWL 2 DL, see http://www.w3.org/TR/
owl2-overview/

3 www.ontohub.org



randomly selected from a repository of animal ontologies in Onto-
hub. These ontologies are not ‘fine-tuned’ for a particular blend, but
represent some features of types of animals, in particular their habi-
tat, their diet, and some anatomical information (see Figure 2). The
goal is that in the future we will be able to easily both increase the
depth of information that is provided in the animal ontologies as well
as add new ontologies covering additional organism.

Class: Tiger
SubClassOf: Mammal
SubClassOf: Carnivore
SubClassOf: has_habitat some Jungle
SubClassOf: has_body_shape some QuadrupedShape
SubClassOf: has_part some Fang
SubClassOf: has_part exactly 4 Claw
SubClassOf: has_part exactly 1 Tail
SubClassOf: covered_by some Hair

Class: Viper
SubClassOf: Reptile
SubClassOf: Carnivore
SubClassOf: has_habitat some

(Grasslands or Wetlands or Rocks)
SubClassOf: has_body_shape some SnakeShape
SubClassOf: has_part only (not Leg)
SubClassOf: has_part some PoisonFang
SubClassOf: covered_by some Scales

Figure 2. Input space example

The Schorlemmer model differs from the model proposed in
Goguen and Harrell [2010] by introducing an extra step: the ontolo-
gies I1 and I2 are not blended directly, but are first weakened to
two theories I1∗ and I2∗ (see Figure 1). There are different strate-
gies that can be used to generate the weaker theories from the input
ontologies; the only constraint is that input ontologies logically en-
tail their weakened counterparts. The purpose of this extra step is to
remove some of the information from the input spaces that is unde-
sired for the blend. There are several reasons why such a step might
be necessary. Firstly, when blending a concept from a given ontol-
ogy, typically large parts of the ontology are in fact off-topic. Logi-
cally speaking, when extracting a module for the concept in question,
large parts of the ontology turn out to be logically irrelevant (mod-
ule extraction is typically based on conservative extensions, see e.g.
Konev et al. [2008]). Secondly, when running the blend it may be-
come obvious that the blendoid preserved too many properties from
the input spaces. In this case, weakening the input spaces will lead to
a better result.

We will discuss these issues in more detail below in the context of
evaluation.

2.2 Base and Interpretations

The weakened input ontologies I1∗ and I2∗ are used to generate
the base ontology. The base ontology is identifying some structure
that is shared across I1∗ and I2∗. Or, to put it differently, the base
ontology contains some theory, which can be found in both the input
spaces, but it abstracts from the peculiarities of the input spaces and
generalises the theory in some domain-independent way.

From the perspective of the workflow the base ontology is a more
general theory that is generated from the (weakened) input ontolo-
gies. From a logical point of view, there exist two interpretations
which embed the base ontology into I1∗ and I2∗. (In Figure 1 these
are represented by the thinly dotted connectors between the base and
I1∗ and I2∗.) These interpretations are a key element to make the
automatic blending process work (see next section).

2.3 The Blend
The ontologies I1∗ and I2∗ together with the base ontology and the
two interpretations that connect the base to I1∗ and I2∗ determine
the blendoid. Informally, what happens is that the blendoid is a dis-
joint union of I1∗ and I2∗, where the shared structure from the base
is identified.4

For example, assume one of our input ontologies is about tigers
and the other about vipers. I1∗ and I2∗ are weakened versions of
these input ontologies, where only some of the properties of tigers
and vipers, respectively, are included. If the base ontology is empty,
then the resulting blendoid consists of a theory that contains both
tigers and snakes, but nothing is blended. If the base ontology identi-
fies the tiger with the viper, the blendoid will be a monster that com-
bines all the features of tigers and vipers that have been preserved in
I1∗ and I2∗; e.g. you may get a tiger with a forked tongue and scales
instead of hair. A different base may identify the viper with the tail of
the tiger, in that case the resulting blend may consist of a tiger whose
tail has eyes and poisonous fangs.

2.4 Background Knowledge and Requirements
To make the Schorlemmer model work in practice, the background
knowledge and requirements have to play an essential role. Figure 1
represents a static view of how two input spaces are blended. How-
ever, since there are a vast number of potential blends, most of which
are poor, computational concept blending is an iterative process. In
each cycle, a new blendoid is created, and is evaluated against on-
tological constraints, i.e. a set R1 of axioms drawn from (common
sense) background knowledge and with which a blendoid should not
be in conflict, as well as a set R2 of consequence requirements,
i.e. a collection of desired entailments a blendoid should yield. If
the blendoid is rejected according to these criteria, the next cycle is
started with different weakened input spaces and/or a different base.
Ideally, the results of the evaluation is supposed to guide the changes
in the next cycle. We will discuss the role of evaluation in more detail
below.

2.5 Our Initial Implementation
For the purpose of our experiment we created a small library of on-
tologies of animals, describing some of their anatomy, their habitats,
and their diets. Further, we developed several ontologies that con-
tained background information. All ontologies were written in OWL
Manchester Syntax.

In order to automate the blending process as modelled in Figure 1,
we had to provide the following functionality: given two selected
ontologies from the repository, repeat the following steps until the
blend is successful:

(i) weaken the input spaces and generate I1∗ and I2∗,
(ii) create the base ontology and the interpretations that link the base

to I1∗ and I2∗,
(iii) execute the blend and generate the blendoid, and
(iv) evaluate the blendoid.

Weakening the input space. For the purpose of the initial imple-
mentation we wrote a simple script that removes some axioms in an
OWL file. The script preserves the declaration of classes, individuals,

4 Technically, the blendoid is the co-limit of the underlying diagram. For the
formal details see Adámek et al. [1990] and Kutz et al. [2012].
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Figure 1. The core Schorlemmer model for computational blending enriched with evaluation and background layers



and properties (thus, the signature of the ontology is not changed).
The selection of the axioms that are deleted is randomised.

Generating the base ontology. For the purpose of an initial imple-
mentation we are currently working with a very simplified approach,
where the bases consist basically of the shared signature of I1∗ and
I2∗, which allows for trivial interpretations from the base. The only
exception is the class Monster, which is mapped to the animals within
the input spaces. E.g., Monster in the base ontology is mapped to the
input ontologies I1∗ and I2∗, namely to Tiger and Viper, respec-
tively.5 Figure 3 shows the complete base and both interpretations
for our running example.

ontology base =
ObjectProperty: has_habitat
ObjectProperty: has_body_shape
ObjectProperty: has_part
ObjectProperty: covered_by
Class: Carnivore
Class: Monster

interpretation base2Viper: base to viper =
Monster |-> Viper

interpretation base2Tiger: base to tiger =
Monster |-> Tiger

ontology monsterblend =
combine base2Viper, base2Tiger

Figure 3. Base and Interpretations

While this approach works, it limits the number of interesting
blends severely. E.g., in our example of blending Tiger with Viper,
the approach allows blendoids like a tiger with poisonous fangs and
scales, but no tigers with a viper-like tail, because this would require
the base to identify the tail of the tiger with the snake. This, however,
can be easily obtained by allowing more complex base mappings.

Running the Blend. Hets provides the capability to run the blend.
Technically, this is a colimit computation, a construction that ab-
stracts the operation of disjoint unions modulo the identification of
certain parts specified by the base and the interpretations, as dis-
cussed in detail in Goguen [2003]; Kutz et al. [2010, 2012].

Figure 4 shows an example of a blendoid that is derived from the
input spaces in Figure 2 with a weakening of both input spaces. In
this case the monster inherits most of the tiger qualities, but it has
poisonous fangs and is (partially) covered by scales.

Class: Monster
SubClassOf: Carnivore
SubClassOf: has_part some PoisonFang
SubClassOf: covered_by some Scales
SubClassOf: Mammal
SubClassOf: has_habitat some Jungle
SubClassOf: has_body_shape some QuadrupedShape
SubClassOf: has_part some Fang
SubClassOf: has_part exactly 4 Claw
SubClassOf: has_part exactly 1 Tail
SubClassOf: covered_by some Hair

Figure 4. Example Blendoid

5 This approach presupposes that the same terminology is used consistently
across the animal ontologies. However, since the ontologies were all devel-
oped in-house, this was not an issue.

Evaluation. Hets integrates a number of theorem prover and con-
sistency checkers. We used Pellet and Darwin for the evaluation of
the blendoids.

We evaluate blendoids both by considering its internal consistency
and by looking for potential clashes with our background knowledge.
For this purpose we use DOL to specify a new ontology that com-
bines a blendoid with the background knowledge. This combined
ontology is evaluated for logical consistency via Hets. The reason
why the background knowledge is essential here is that the detec-
tion of problems often requires more information than is contained
within the blendoid. To return to our example about tigers and vipers,
assume the input spaces in Figure 2 were weakened and that I1∗ con-
tains the information that tigers have four claws, and I2∗ contains the
information that vipers have no legs. In this case, the resulting blend
will be a leg-less monster with claws. Without the additional back-
ground knowledge that claws are part of legs, it is impossible for a
consistency checker to detect the inconsistency.

One requirement for a good blendoid is that it needs to combine
information from both input spaces. In other words, if the informa-
tion in the blendoid is contained in one of the input ontologies, then
the blendoid is not a good conceptual blend. Since our approach in-
volves a weakening of the input ontologies, it may happen that one
of the ontologies is weakened so extremely that it does not contribute
anything significant to the blendoid.

Often, a blending process is done with certain requirements in
mind. E.g., in our example we may look for monsters that have four
appendages. These requirements can be stated in DOL as proof obli-
gations that have to be proven from the blendoid together with the
background knowledge.

3 Discussion and Future Work
Our prototype implementation works in the sense that the system
creates monsters by blending two animals. It works, in spite of the
fact that two essential components of the blending model are handled
quite bluntly:

(i) the base space is fixed to the shared signatures of the weakened
input spaces and, thus, trivial; and

(ii) the weakening of the input spaces does not utilise the results of
the evaluation, but happens randomly.

We here focused on making the workflow work, while accepting
that some modules within the workflow are trivialised. Future work
includes refining such a workflow, and of course using more sophis-
ticated methods for its various parts.

Firstly, regarding the generation of the base ontology, we are plan-
ning to use heuristic-driven theory projection (HDTP) as outlined in
Martinez et al. [2011]; Schwering et al. [2009]. Taking I1∗ and I2∗

as input theories, HDTP applies anti-unification techniques to gen-
eralise the input ontologies to a more general theory. So far, HDTP
has been implemented for a sorted version of FOL. To make it work
in our context, we are going to need to support OWL directly (the
preferred approach) or reduce OWL anti-unification to FOL anti-
unification (e.g. via using a logic translation first and then a theory
projection).

Secondly, regarding weakening of theories, we particularly plan to
use the idea of ‘amalgams’ as proposed in Ontañón and Plaza [2010].

Thirdly, regarding revision of inconsistent blendoids, a number of
tools and approaches are available to be employed in this context,
amongst them: non-monotonic reasoning, in particular belief revi-
sion [Alchourrón et al., 1985], and ontology debugging techniques,



in particular for OWL [Kalyanpur et al., 2005]. Indeed, ontology de-
bugging techniques are readily available via the OWL API.6

Concerning the latter, a promising idea is to interactively gen-
erate competency questions (cf. Grüninger and Fox [1995]; Ren
et al. [2014]) from justifications for inconsistencies [Kalyanpur et al.,
2007]. Here, a user can steer the generation of new blends by reject-
ing certain ways to fix an inconsistent blendoid. A similar debugging
workflow has recently been proposed by Shchekotykhin et al. [2014],
although only for the debugging of single inconsistent ontologies. In
the case of blending, such approaches need to be adapted to a revision
procedure covering networks of ontologies, where several ontologies
(i.e. input and base ontologies) as well as the mappings between them
are subject to revision.

While our system works, it often does not produce very good mon-
sters. Interestingly, the limitations of the results are not (or only in-
directly) caused by the fixing of the base space or the randomised
weakening of the input spaces. For example, consider the result of
the blend of a shark and a horse in Figure 5. The monster in this
ontology has fins and a tail, it is a herbivore and lives in some grass-
lands.

Class: Monster
SubClassOf: Herbivore
SubClassOf: has_habitat some Grassland
SubClassOf: has_part some Fin
SubClassOf: has_part exactly 1 Tail

Figure 5. Poor Blendoid

The ontology in Figure 5 illustrates several typical weaknesses of
the blendoids that are generated by our system. First, the ontology
does not provide any information about what kind of a monster it is
and what shape it has. Both input spaces contained this information
(e.g,. a horse is a mammal with the shape of a quadruped). Since
our system removes axioms until it finds a blendoid that is consistent
with the background knowledge, often information is removed that
is not causing any inconsistency, leading to very weak ontologies. In
this case, the existence of fins is the only information that remains
from the shark ontology.

This issue would be partially addressed by choosing a weaken-
ing strategy that utilises the results of the evaluation process to se-
lectively remove axioms. However, the more general point is that
humans expect a description of a monster to answer certain infor-
mation – like “What does it look like?” And many blendoids that
are produced by the system do not contain the expected information.
This can be fixed by encoding additional requirements, which are
used during the evaluation process. E.g., one could add the following
proof obligation:

Monster SubClassOf:
has_body_shape some BodyShape

This obligation ensures that any successful blendoid will contain the
information about the shape of the monster, but leaves open which.

Another reason why the blendoid in Figure 5 may be considered
to be not a very impressive specimen is that it is not particularly
scary. It is a herbivore living on grasslands; for all we know it may
be a cow with a fin on the back. Again, the issue is that when humans
perform conceptual blending they are guided by implicit assumptions
about the nature of the result they are expecting. If we are expecting
monsters to be scary, then this leads to additional requirements. In
particular, a monster is only scary if it is has the disposition to attack

6 See http://owlapi.sourceforge.net

people, and it is only able to do that if it has anatomical features that
enable such attacks; e.g., claws or fangs or venomous stings.

Our framework allowed us to encode this information in the back-
ground ontology and add the additional requirement that the monster
is supposed to be scary. As a result, the background ontology became
several times as long and significantly more complex than the animal
ontologies themselves.

So our main conclusion is that the blending framework performs
relatively well, in spite of the shortcomings of some of its compo-
nents. However, to get blendoids that a human would consider as
interesting, one needs to encode a lot of the background knowledge
and implicit requirements, which humans take for granted when they
perform blends. Without such additional information the system can-
not evaluate the candidate blendoids properly.
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