
1

XML Data Management

 6. XPath 1.0 Principles

Werner Nutt

XPath Expressions and
the XPath Document Model

•  XPath expressions are evaluated over documents
•  XPath operates on an abstract document structure

 (essentially the same as DOM)
•  Documents are trees with several types of nodes,

the most important of which are
–  element nodes
–  attribute nodes
–  text nodes

There are other node types (namespaces, comments, etc.),
which we ignore in this lecture

The Recipes Example (DTD)

 <!ELEMENT recipes (recipe*)>
 <!ELEMENT recipe (title, ingredient+, preparation, nutrition)>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT ingredient (ingredient*, preparation?)>
 <!ATTLIST ingredient

 name CDATA #REQUIRED
 amount CDATA #IMPLIED
 unit CDATA #IMPLIED>

 <!ELEMENT preparation (step+)>
 <!ELEMENT step (#PCDATA)>
 <!ELEMENT nutrition EMPTY>
 <!ATTLIST nutrition

 calories CDATA #REQUIRED
 fat CDATA #REQUIRED>

<recipes>
 <recipe>
 <title>Zuppa Inglese</title>
 <ingredient name="egg yolks" amount="4"/>
 <ingredient name="milk" amount="2.5" unit="cup"/>
 <ingredient name="Savoiardi biscuits" amount="21"/>
 <preparation>
 <step>Warm up the milk in a sauce pan.</step>
 <step>In a large bowl beat the egg yolks with the sugar.</step>
 </preparation>
 <comment>Refrigerate for at least 4 hours.</comment>
 <nutrition calories="612" fat="49"/>
 </recipe>
</recipes>

A Recipe Document

Document Nodes Are Ordered

Document order

•  Element e1 is “before” e2 if the opening tag of e1 occurs
before the opening tag of e2

•  Element e is “before” its attributes
 (order on attributes is implementation dependent, but most often

 attributes are ordered according to their occurrence)

•  The attributes of e are “before” the child elements of e

•  If e1 is “before” e2, then all attributes of e1 are “before” all
attributes of e2

Reverse document order is document order backwards

Expressions

There are two kinds of expressions, returning either
•  a set of nodes (= “node sets”), or
•  a value (i.e., number, string, boolean)

Mechanism:
•  specify node sets
•  compute values from node sets
•  use values in conditions that further constrain a node set

Example: //recipe/nutrition[@calories > 1000]

The Basic Mechanism for Specifying Node Sets:
Location Steps

A location step
•  goes in some direction (i.e., along some “axis”)
•  leads to a node with a certain property

Properties can be specified by node tests and
zero or more predicates.

Node tests test for
•  node types: e.g., element (“*”), text (“text()“),
•  element or attribute names

Syntax: <axis>::<test>[<pred1>]...[<predN>]

Location Steps: Examples

•  descendant::*
 all descendant elements

•  following-sibling::ingredient

 all “ingredient” siblings following in document order

•  following::text()

 all following text nodes

•  @*

 all attributes

Location Steps: Examples (cntd.)

•  @amount
 all “amount” attributes

•  descendant::ingredient[@amount=1.5]
 all descendant elements with name “ingredient”

 where the attribute “amount” has the value 1.5

•  descendant::ingredient[position()=2]
 the second descendant element with name “ingredient”

•  descendant::*[self::ingredient][2]
 same as above

Steps Can be Combined to Paths

A path has a starting point, which can be
•  the root of the document tree: "/“

•  a “current node”

Example: /descendant::recipe[1]
 /child::ingredient[@unit="tablespoon"]

 /@name

“ / “ has two meanings:

•  “the root” at the beginning of a path

•  step concatenation

Semantics of Steps and Paths (1)

•  A step leads from a node (the “context node”)
to a set of nodes (which may be empty)

•  For any node n, and axis α, there is the set of

nodes reachable from n via α,

 denoted as Rα(n)

 (The definition of reachable nodes for an axis α is
 more or less as one would expect. More later on.)

Semantics of Steps and Paths (2)

Consider a step S = α ::<test>[<pred>]

•  If S starts from a node n , then it returns

the set S(n) of all nodes in Rα(n) that satisfy
–  the test and
–  the predicate

•  The set S(n) is the context for each node in the set.

A path P is a sequence of steps
 P = S1/S2/…/Sn

A path defines a set of nodes P(n) as follows:

•  If P consists of a single step S, then P(n) = S(n)

•  If P is a combined path P = P0/S, then
 P(n) = Union of all S(n0) where n0 in P0(n)

•  The context of a result node is determined
by the last step

Semantics of Steps and Paths (3)

•  child the children of the context node
•  descendant all descendants (children, children’s

 children, ...)

•  parent the parent (empty if at the root)

•  ancestor all ancestors from the parent to the root

•  self the context node itself

•  following-sibling siblings to the right

•  preceding-sibling siblings to the left

Axes in XPath

•  following all following nodes in the document,
 excluding descendants

•  preceding all preceding nodes in the
 document, excluding ancestors

•  attribute the attributes of the context node

•  namespace namespace declarations in the
 context node

•  descendant-or-self the union of descendant and self

•  ancestor-or-self the union of ancestor and self

Axes in XPath (cntd.)

Axes in XPath (cntd.)

Axes in XPath
(cntd.)

What should be the meaning of
 /descendant::recipe[last()]
 /preceding::recipe[2] ?

Forward axes: child, descendant, following-sibling, following

Reverse axes: ancestor, preceding-sibling, preceding

•  By default, the ordering of a node set is document order.

•  If a node set has been obtained by a step along a reverse
axis, it is in reverse document order.

Ordering of Axes

Testing by node type:
•  text() character data nodes

•  comment() comment nodes

•  processing-instruction()
 processing instruction nodes

•  node() all nodes (not including attributes and
 namespace declarations)

Testing by node name (for elements and attributes):

•  recipe nodes with the name “recipe”

•  * any element (*) or attribute node (@*)

Node Tests

What is the meaning of

•  /descendant::text() ?

•  /descendant::* ?

•  /descendant::node() ?

•  /descendant::*/@amount ?

•  /descendant::*/@* ?

Node Tests (Exercises)

There are shorthands for moving along the descendant
and the child axis

•  // means /descendant-or-self::node()/

•  /recipes means /child::recipes

•  /* means /child::*

•  /node() means /child::node()

•  . means self::node()

•  .. means parent::*

Shorthands

•  What is the difference between //* and //. ?

•  What is the result of

 //*[2] ?

 //self::*[2] ?

 //*[2]/self::* ?

•  //* means /descendant-or-self::node()/child::*

 Is this different from /descendant::* !

 Why?

Shorthands: Exercises

•  Predicates are expressions of type boolean,
 although they do not always look like that ...

•  A predicate filters a node-set by evaluating
the predicate expression on each node in the set with
–  that node as the context node,

–  the size of the node-set as the context size, and

–  the position of the node in the node-set wrt. the axis
ordering as the context position.

•  Predicates can be combined with and, or, and not()

 Expressions that are not boolean are cast to boolean

Predicates

•  Casting of node sets to boolean

–  true, if the set is nonempty

–  false otherwise

•  Example:

 /descendant::ingredient[@unit]

means:

 ingredients having a unit attribute

Casting of Node Sets (1)

Casting of nodes to string

•  Every text node has a string as its content

•  Every element node has a string content:

–  the strings occurring in the node and its descendants,

–  concatenated in document order

•  Every attribute node has a string value

 (which may be empty)

Casting of Node Sets (2)

Casting of nodes to number

•  Interpret the string value as a number

•  If not possible, value is NaN (= "not a number")

Casting of node sets to string, number, or boolean

•  Take the value of the first node

 wrt to document order

Casting of Node Sets (3)

•  XPath has explicit casting functions for the value types

boolean, string, and number

•  Essentially, they work as one would expect.

–  Note: an integer in a predicate is interpreted as

referring to the position of the context node

•  Examples:

–  string(true) = "true“, string(0) = "0“

–  number(false) = 0, number(true) = 1,

–  number("123") = 123, number("sugar") = NaN

Casting Between Values

–  boolean(0) = false, boolean(2) = true,
boolean(NaN) = false

–  boolean("") = false, boolean("false") = true

What is the meaning of
•  /descendant::recipe/title["Ricotta Pie"] ?

And what about
•  /descendant::recipe/title[self::*="Ricotta Pie"] ?

Casting Between Values (cntd.)

•  Things become more complicated if a node set is involved in
an equality:

 <node set> = <value>

 means:

 “The <node set> contains some node
 that has the value <value> after casting.”

•  Similarly, the test
 <node set 1> = <node set 2>
succeeds if

 “There is a node1 in <node set 1>, node2 in <node set 2>
 s.t. the string content of node1 and node2 is equal”

Equalities

Examples

•  “Recipes where sugar is one of the ingredients”

 /descendant::recipe[ingredient/@name = "sugar"]

•  “Recipes with some ingredient other than sugar”

 /descendant::recipe[ingredient/@name != "sugar"]

•  “Recipes where sugar is the only ingredient”

 /descendant::recipe[not (ingredient/@name != "sugar")]

What is the meaning of
/descendant-or-self::*

 [descendant-or-self::node() = "Zuppa Inglese"] ?

What of

/descendant-or-self::*
 [descendant-or-self::* = "Zuppa Inglese"] ?

And what about

/descendant-or-self::node()
 [descendant-or-self::node() = "Zuppa Inglese"] ?

Exercise

•  XPath has built-in functions returning numbers, e.g.

position() the position of the context node in the

 current node set

last() the number of elements in the current node set

•  With numbers and numeric functions one can build up

arithmetic expressions

 2, 2 * 2, last() div 2, last() -1, last() - position()

Arithmetic Expressions

•  A predicate that contains only a numeric expression,

e.g.,

 [last() -1] ,

is a shorthand for a position predicate, e.g.,

 [position() = last() -1] .

•  Otherwise, numbers are cast to boolean.

Exercise: What is the meaning of

 //*[2 and ingredient] ?

Arithmetic Expressions

•  The aggregation functions count and sum are applied to
node sets and return numbers.

–  The count result is always a number.

–  The sum result is only a number if every node in the
argument set can be cast as a number.

•  Aggregation functions in a predicate
refer to the current node set.

•  Functions min, max, and avg do not exist in XPath
 (but in XQuery)

Aggregation Functions

What is the meaning of

•  sum(/descendant::ingredient
 [@unit="cup" and @amount]/@amount) ?

•  //recipe[count(ingredient) > 5] ?

•  //recipe[count(.//ingredient) > 5] ?

Examples

An expression can be:

•  a constant, e.g. "..."

•  a function call: function(arguments)

•  a boolean expression: or, and, =, !=, <, >, <=, >=
 (standard precedence, all left associative)

•  a numerical expression: +, -, *, div, mod

•  a node-set expression: using location paths
 and “ | ” (set union)

XPath Expressions: Summary

•  Expressions have a type: node-set (set of nodes),
boolean (true or false), number (floating point), or
string (text)

•  Coercion/casting may occur at function arguments and
when expressions are used as predicates.

•  Functions are evaluated using the context.

XPath Expressions: Summary

•  Node-set functions:
–  last() returns the context size

–  position() returns the context position

–  count(node-set) number of nodes in node-set

–  name(node-set) string representation of first
 node in node-set

–  id(ID) returns element with id ID

•  String functions:

–  string(value) type cast to string

–  concat(string, string, ...) string concatenation

Core function library (1)

•  Boolean functions:
–  boolean(value) type cast to boolean
–  not(boolean) boolean negation
–  contains(string, substring) substring test
–  starts-with(string, prefix) prefix test

•  Number functions:
–  number(value) type cast to number
–  sum(node-set) sum of number value of

 each node in node-set

Core function library (2)

The Family DTD

<!DOCTYPE family [
 <!ELEMENT family (person)*>
 <!ELEMENT person (name)>
 <!ELEMENT name (#PCDATA)>
 <!ATTLIST person
 id ID #REQUIRED
 mother IDREF #IMPLIED
 father IDREF #IMPLIED
 children IDREFS #IMPLIED>
]>

A Family Document
<family>
 <person id="lisa" mother="marge" father="homer">
 <name> Lisa Simpson </name>
 </person>
 <person id="bart" mother="marge" father="homer">

 <name> Bart Simpson </name>
 </person>
 <person id="marge" children="bart lisa">
 <name> Marge Simpson </name>
 </person>
 <person id="homer" children="bart lisa">
 <name> Homer Simpson </name>
 </person>
</family>

41

Family Exercise

•  Return the children of Marge.

•  Return the names of the children of Marge.

•  Return the father of the children of Marge.

•  Write XPath queries that ask for the following over the
Recipes document:

–  The titles of all recipes, returned as strings.

–  The titles of all recipes that use olive oil.

–  The titles of all recipes that do not use olive oil.

–  The amount of sugar needed for Zuppa Inglese.

–  The recipes that have an ingredient in common with
Zuppa Inglese.

Exercises

–  The number of recipes in the document.
–  The last step in preparing Zuppa Inglese.

–  The average fat content per recipe.

–  The recipes with less than average fat content.

–  The titles of recipes that have no compound
ingredients.

–  The titles of recipes where all top level ingredients are
compound.

–  The titles of recipes that have only non-compound
ingredients.

Exercises (cntd.)

