XML Data Management

6. XPath 1.0 Principles

Werner Nutt

XPath Expressions and
the XPath Document Model

« XPath expressions are evaluated over documents

« XPath operates on an abstract document structure
(essentially the same as DOM)

 Documents are trees with several types of nodes,
the most important of which are

— element nodes
— attribute nodes
— text nodes

There are other node types (namespaces, comments, etc.),
which we ignore in this lecture

The Recipes Example (DTD)

<IELEMENT recipes (recipe*)>
<I[ELEMENT recipe (title, ingredient+, preparation, nutrition)>
<IELEMENT title (#PCDATA)>
<IELEMENT ingredient (ingredient*, preparation?)>
<IATTLIST ingredient

name CDATA #REQUIRED

amount CDATA #IMPLIED

unit CDATA #IMPLIED>
<IELEMENT preparation (step+)>
<I[ELEMENT step (#PCDATA)>
<IELEMENT nutrition EMPTY>
<IATTLIST nutrition

calories CDATA #REQUIRED

fat CDATA #REQUIRED>

<recipes>

<recipe> A Recipe Document

<title>Zuppa Inglese</title>
<ingredient name="egg yolks" amount="4"/>
<ingredient name="milk" amount="2.5" unit="cup"/>
<ingredient name="Savoiardi biscuits" amount="21"/>
<preparation>
<step>Warm up the milk in a sauce pan.</step>
<step>In a large bowl beat the egg yolks with the sugar.</step>
</preparation>
<comment>Refrigerate for at least 4 hours.</comment>
<nutrition calories="612" fat="49"/>
</recipe>
</recipes>

Document Nodes Are Ordered

Document order

 Element e is “before” e2 if the opening tag of e1 occurs
before the opening tag of e2

« Element e is “before” its aftributes

(order on attributes is implementation dependent, but most often
attributes are ordered according to their occurrence)

 The attributes of e are “before” the child elements of e

 If e1is “before” e2, then all attributes of e1 are “before” all
attributes of e2

Reverse document order is document order backwards

Expressions

There are two kinds of expressions, returning either
* a set of nodes (= “node sets”), or

* a value (i.e., number, string, boolean)

Mechanism:

« specify node sets

« compute values from node sets

« use values in conditions that further constrain a node set

Example: //recipe/nutrition[@calories > 1000]

The Basic Mechanism for Specifying Node Sets:
Location Steps

A location step
e goes in some direction (i.e., along some “axis”)
* leads to a node with a certain property

Properties can be specified by node tests and
Zero or more predicates.

Node tests test for
* node types: e.g., element (“*7), text (“text ()"),
 element or attribute names

Syntax: <axis>: :<test>[<predl>]...[<predN>]

Location Steps: Examples

descendant: : *

all descendant elements

following-sibling: :ingredient

all “ingredient” siblings following in document order

following: : text ()

@*

all following text nodes

all attributes

Location Steps: Examples (cntd.)

@amount

all “amount” attributes

descendant: :ingredient[@amount=1.5]

all descendant elements with name “ingredient”
where the attribute “amount” has the value 1.5

descendant: :ingredient[position () =2]

the second descendant element with name “ingredient

descendant: :*[self: :ingredient] [2]

same as above

7

Steps Can be Combined to Paths

A path has a starting point, which can be
 the root of the document tree: "/*

 a “current node”

Example: /descendant: :recipe[1l]
/child: :ingredient[Qunit="tablespoon"]

/@name

“ / " has two meanings:

« “the root’ at the beginning of a path

» step concatenation

Semantics of Steps and Paths (1)

« A step leads from a node (the “context node”)
to a set of nodes (which may be empty)

« For any node n, and axis a, there is the set of
nodes reachable from n via q,

denoted as R, (n)

(The definition of reachable nodes for an axis a is
more or less as one would expect. More later on.)

Semantics of Steps and Paths (2)

Consider a step S = a ::<test>[<pred>]

e If S starts from a node n, then it returns
the set S(n) of all nodes in R,(n) that satisfy

— the test and
— the predicate

* The set S(n) is the context for each node in the set.

Semantics of Steps and Paths (3)

A path P is a sequence of steps
P=S,/S,/...IS,
A path defines a set of nodes P(n) as follows:
« If P consists of a single step S, then P(n) = S(n)
« If P is a combined path P = P,/S, then
P(n) = Union of all S(n,) where n, in P,(n)
* The context of a result node is determined
by the last step

Axes In XPath

child the children of the context node
descendant all descendants (children, children’s

children, ...)
parent the parent (empty if at the root)
ancestor all ancestors from the parent to the root
self the context node itself

following-sibling siblings to the right
preceding-sibling siblings to the left

Axes in XPath (cntd.)

following

preceding

attribute

Namespace

descendant-or-self

ancestor-or-self

all following nodes in the document,
excluding descendants

all preceding nodes in the
document, excluding ancestors

the aftributes of the context node

namespace declarations in the
context node

the union of descendant and self

the union of ancestor and self

Axes in XPath (cntd.)

ancestor

=
P -

xes In XPath

- -
- o TSSE e >,
r -~ - LY
Bty ~. ancestor—or—self
L4 , ~ L 8
i ' 5 b
i F g 1
n ’ £y .
f Ry
e LY .l
; ancestor - .
1
‘ L]
‘ .
1
| Ie™
1 - TR .y
lL . ‘~~
l‘ -~ ‘\
T ’ -
s o ~
1 s -
f. r \\
- 1 '
\\ d \ I %
e : ‘\
] . *
parert ;. ‘ [following '«
z; i ! kS
r‘/, ‘ A
- ' .
2 .
r L)
7 \. 21
e R . == following—
=
~~h ‘,".. \\ 7
~ » 4
\e” > 7 \w_‘ \\ \
'o"/ ‘\~ \\ Y > .
e TR > ibling
- ~
g‘\\ e e e e me
-
_____ . - — - - - ‘\ \\
- - R - ~
~— % - - H~\\\ \\
— e B ~
l‘\ LY
‘Ll \ﬁ
l" “~
1

e (RN

e

(Y
id
R 2R gy
TR i 7
O r,
\\‘ ’
b 7
NS ,
R
N
30
e R Y
\""

~ T ~eea_____. descerdant

--

"*-._._descendant-or-self ___-~-"

Ordering of Axes

What should be the meaning of

/descendant: :recipe[last ()]

/preceding: :recipe[2] ?

Forward axes: child, descendant, following-sibling, following

Reverse axes: ancestor, preceding-sibling, preceding

* By default, the ordering of a node set is document order.

« If a node set has been obtained by a step along a reverse
axis, it is in reverse document order.

Node Tests

Testing by node type:
+ text() character data nodes
« comment() comment nodes

e processing-instruction()
processing instruction nodes

* node() all nodes (not including attributes and
namespace declarations)

Testing by node name (for elements and attributes):

* recipe nodes with the name “recipe”

*

. any element (*) or attribute node (@*)

Node Tests (Exercises)

What is the meaning of

e /descendant::text() ?
 /descendant::* ?

« /descendant::node() ?

« /descendant::*/@amount ?

 /descendant::*/@* ?

Shorthands

There are shorthands for moving along the descendant
and the child axis
c // means /descendant-or-self::node()/

« /recipes means /child:recipes

o /* means /child::*
 /node () means /child::node()
¢ . means self::node()

¢ .. means parent:”

Shorthands: Exercises

* What is the difference between //* and //. ?
* What is the result of

[I*[2] ?

[[self::*[2] ?

II*[2)/self::* ?
* /[* means /descendant-or-self::node()/child::*

Is this different from /descendant::* !

Why?

Predicates

* Predicates are expressions of type boolean,
although they do not always look like that ...

« A predicate filters a node-set by evaluating
the predicate expression on each node in the set with

— that node as the context node,
— the size of the node-set as the context size, and

— the position of the node in the node-set wrt. the axis
ordering as the context position.

* Predicates can be combined with and, or, and not()

Expressions that are not boolean are cast to boolean

Casting of Node Sets (1)

« (Casting of node sets to boolean
— true, if the set is nonempty
— false otherwise

 Example:
/descendant::ingredient[@unit]
means:

ingredients having a unit attribute

Casting of Node Sets (2)

Casting of nodes to string

« Every text node has a string as its content

* Every element node has a string content.
— the strings occurring in the node and its descendants,
— concatenated in document order

» Every attribute node has a string value

(which may be empty)

Casting of Node Sets (3)

Casting of nodes to number

 Interpret the string value as a number

* If not possible, value is NaN (= "not a number”)

Casting of node sets to string, number, or boolean

 Take the value of the first node

wrt to document order

Casting Between Values

« XPath has explicit casting functions for the value types
boolean, string, and number

« Essentially, they work as one would expect.

— Note: an integer in a predicate is interpreted as

referring to the position of the context node
 Examples:
— string(true) = "true®, string(0) = "0"
— number(false) = 0, number(true) = 1,

— number("123") = 123, number("sugar") = NaN

Casting Between Values (cntd.)

— boolean(0) = false, boolean(2) = true,
boolean(NaN) = false

— boolean("") = false, boolean("false") = true

What is the meaning of
« /descendant::recipe/title["'Ricotta Pie"] ?

And what about
« /descendant::recipeftitle[self.:*="Ricotta Pie"] ?

Equalities

« Things become more complicated if a node set is involved in
an equality:

<node set> = <value>

means.

“The <node set> contains some node
that has the value <value> after casting.”

« Similarly, the test
<node set 1> = <node set 2>
succeeds if
“There is a node1 in <node set 1>, node2 in <node set 2>
s.t. the string content of node1 and node2 is equal”

Examples

* “Recipes where sugar is one of the ingredients”

/descendant::recipe[ingredient/@name = "sugar"]

* "Recipes with some ingredient other than sugar”

/descendant::recipe[ingredient/@name |!= |'sugar”]

* "Recipes where sugar is the only ingredient”

/descendant::recipe[hot [ingredient/@name | !

"sugar")]

Exercise

What is the meaning of

/descendant-or-self::*
[descendant-or-self::node() = "Zuppa Inglese"] ?

What of

/descendant-or-self::*
[descendant-or-self::* = "Zuppa Inglese"] ?

And what about

/descendant-or-self::node()
[descendant-or-self::node() = "Zuppa Inglese"] ?

Arithmetic Expressions

« XPath has built-in functions returning numbers, e.g.

position() the position of the context node in the

current node set

last() the number of elements in the current node set

« With numbers and numeric functions one can build up

arithmetic expressions

2, 27%2, last()div2, last()-1, last()- position()

Arithmetic Expressions

* A predicate that contains only a numeric expression,
e.g.,
last() 11
IS a shorthand for a position predicate, e.g.,
[position() = last() -1] .

 Otherwise, numbers are cast to boolean.

Exercise: What is the meaning of

/[*[2 and ingredient] ?

Aggregation Functions

« The aggregation functions count and sum are applied to
node sets and return numbers.

— The count result is always a number.

— The sum result is only a number if every node in the
argument set can be cast as a number.

« Aggregation functions in a predicate
refer to the current node set.

* Functions min, max, and avg do not exist in XPath
(but in XQuery)

Examples

What is the meaning of

« sum(/descendant::ingredient
[@unit="cup" and @amount]/@amount) ?

 /Irecipe[count(ingredient) > 5] ?

 [Irecipe[count(.//ingredient) > 5] ?

XPath Expressions: Summary

An expression can be:

 aconstant,e.g."..."

a function call: function(arguments)

a boolean expression: or, and, =, =, <, >, <=, >=
(standard precedence, all left associative)

a numerical expression: +, -, *, div, mod

a node-set expression: using location paths
and “ | ” (set union)

XPath Expressions: Summary

« Expressions have a type: node-set (set of nodes),
boolean (true or false), number (floating point), or
string (text)

« Coercion/casting may occur at function arguments and
when expressions are used as predicates.

* Functions are evaluated using the context.

Core function library (1)

 Node-set functions:

— last() returns the context size

— position() returns the context position

— count(node-set) number of nodes in node-set

— name(node-set) string representation of first
node in node-set

— 1d(/ID) returns element with id /D

» String functions:
— string(value) type cast to string

— concat(string, string, ...) string concatenation

Core function library (2)

« Boolean functions:
— boolean(value) type cast to boolean
— not(boolean) boolean negation
— contains(string, substring) substring test
— starts-with(string, prefix) prefix test

« Number functions:

— number(value) type cast to number
— sum(node-set) sum of number value of

each node in node-set

The Family DTD

<!DOCTYPE family |
<!'ELEMENT family (person) *>
<!ELEMENT person (name)>
<!ELEMENT name (#PCDATA) >
<!ATTLIST person

id
mother
father

ID #REQUIRED
IDREF #IMPLIED
IDREF #IMPLIED

children IDREFS #IMPLIED>

1>

A Family Document

{family>
<person 1id="lisa" mother="marge" father="homer">
<name> Lisa Simpson </name>
</person>
<person 1id="bart" mother="marge" father="homer">
<name> Bart Simpson </name>
</person>
<person id="marge" children="bart lisa">
<name> Marge Simpson </name>
</person>
<person id="homer" children="bart lisa">
<name> Homer Simpson </name>
</person>
</family>

41

Family Exercise

* Return the children of Marge.

* Return the names of the children of Marge.

* Return the father of the children of Marge.

Exercises

« Write XPath queries that ask for the following over the
Recipes document:

— The titles of all recipes, returned as strings.

— The titles of all recipes that use olive oil.

— The titles of all recipes that do not use olive oil.
— The amount of sugar needed for Zuppa Inglese.

— The recipes that have an ingredient in common with
Zuppa Inglese.

Exercises (cntd.)

— The number of recipes in the document.

— The last step in preparing Zuppa Inglese.

— The average fat content per recipe.

— The recipes with less than average fat content.

— The titles of recipes that have no compound
iIngredients.

— The titles of recipes where all top level ingredients are
compound.

— The titles of recipes that have only non-compound
iIngredients.

