
1

XML Data Management

3. Document Type Definitions (DTDs)

Werner Nutt

based on slides by Sara Cohen, Jerusalem

Document Type Definitions

•  Document Type Definitions (DTDs)
impose structure on an XML document

•  Using DTDs, we can specify
what a "valid" document should contain

•  DTD specifications require more than being well-formed,
e.g., what elements are legal, what nesting is allowed

•  DTDs have limited expressive power,
e.g., one cannot specify types

What is This Good for?
•  DTDs can be used to define special languages of XML,

i.e., restricted XML for special needs

•  Examples:
–  MathML (mathematical markup)
–  SVG (scalable vector graphics)
–  XHTML (well-formed version of HTML)
–  RSS ("Really Simple Syndication", news feeds)

•  Standards can be defined using DTDs,
for data exchange and special applications

 now, often replaced by XML Schema

Alphabet Soup

HTML XML

SGML

MathML RSS

XHTML

Example: MathML
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE math PUBLIC "-//W3C//DTD MathML 2.0//EN"

"http://www.w3.org/Math/DTD/mathml2/mathml2.dtd">
<math>
 <mrow>
 <msup>
 <mi>x</mi>
 <mn>2</mn>
 </msup>
 <mo>⁢</mo>
 <mi>y</mi>
 </mrow>
</math>

Example: SVG
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="250px" height="250px"
 xmlns="http://www.w3.org/2000/svg">
 <g fill="red">
 <text font-size="32" x="45" y="60">
 Hello, World!
 </text>
 </g>
 <g fill="blue">
 <text font-size="32" x="50" y="90">
 Hello, World!
 </text>
 <text font-size="32" x="58" y="98">
 Hello, World!
 </text>
 </g>
</svg>

Address Book DTD

•  Suppose we want to create a DTD
 that describes legal address book entries

•  This DTD will be used to exchange
 address book information between programs

•  How should it be written?

•  What is a legal address?

Example: An Address Book Entry

<person>

 <name>Homer Simpson</name>

 <greet>Dr. H. Simpson</greet>

 <addr>1234 Springwater Road</addr>

 <addr>Springfield USA, 98765</addr>

 <tel>(321) 786 2543</tel>

 <fax>(321) 786 2544</fax>

 <tel>(321) 786 2544</tel>

 <email>homer@math.springfield.edu</email>

</person>

mixed telephones
and faxes

at least
one email

as many address
lines as needed

at most one greeting

exactly one name

Specifying the Structure

How do we specify exactly what must appear
in a person element?

•  A DTD specifies for each element the permitted content

•  The permitted content is specified by a

 regular expression

•  Our plan:
–  first, regular expression defining the content of person
–  then, general syntax

What’s in a person Element?

Exactly one name,
 followed by at most one greeting,
 followed by an arbitrary number of address lines,
 followed by a mix of telephone and fax numbers,
 followed by at least one email.

Formally:

name, greet?, addr*, (tel | fax)*, email+

regular
expression

What’s in a person Element? (cntd)

 name, greet?, addr*, (tel | fax)*, email+

name = there must be a name element

greet? = there is an optional greet element
 (i.e., 0 or 1 greet elements)

name, greet? = the name element is followed
 by an optional greet element

addr* = there are 0 or more address elements

What’s in a person Element? (cntd)

 name, greet?, addr*, (tel | fax)*, email+

tel | fax = there is a tel or a fax element

(tel | fax)* = there are 0 or more repeats of tel or fax

email+ = there are 1 or more email elements

What’s in a person Element? (cntd)

 name, greet?, addr*, (tel | fax)*, email+

Does this expression differ from:

name, greet?, addr*, tel*, fax*, email+

name, greet?, addr*, (fax|tel)*, email+

name, greet?, addr*, (fax|tel)*, email, email*

name, greet?, addr*, (fax|tel)*, email*, email

a element a

e1? 0 or 1 occurrences of expression e1

e1* 0 or more occurrences of expression e1

e1+ 1 or more occurrences of expression e1

e1,e2 expression e2 after expression e2

e1|e2 either expression e1 or expression e2

(e) grouping

#PCDATA parsed character data (i.e., after parsing)

EMPTY no content

ANY any content

(#PCDATA | a1 | … | an)* mixed content

Element Content Descriptions

addressbook as Internal DTD
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE addressbook [
 <!ELEMENT addressbook (person*)>
 <!ELEMENT person (name, greet?, address*,
(fax | tel)*, email+)>

 <!ELEMENT name (#PCDATA)>
 <!ELEMENT greet (#PCDATA)>
 <!ELEMENT address(#PCDATA)>
 <!ELEMENT tel (#PCDATA)>
 <!ELEMENT fax (#PCDATA)>
 <!ELEMENT email (#PCDATA)>
]>

Exercise

Requirements
•  A country must have a name as the first node.
•  A country must have a capital city as the following node.
•  A country may have a king.
•  A country may have a queen.

What about the following?

<!ELEMENT country (name,capital?,king*,queen)>

Exercise

Requirements for binary trees

•  A node has two children,

which can be nodes or leaves

•  A leaf contains text.

Exercise

Requirements:

•  A country must have

–  a president or
–  a king or
–  a king and a queen or
–  a queen.

Let’s Validate This

E.g., as an internal DTD!

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE country[

 <!ELEMENT country

 (president | king | (king,queen) | queen)>

 <!ELEMENT president (#PCDATA)>

 <!ELEMENT king (#PCDATA)>

 <!ELEMENT queen (#PCDATA)>

]>

<country><king>Luis</king></country>

 What’s the problem?
How can we fix it?

The Error

20

Deterministic DTDs

SGML requires that a DTD is deterministic, that is,
 when parsing a document, a parser only needs
 to look at the next element to know
at which point it is in the regular expression

Is this DTDs deterministic?

 <!ELEMENT a ((b,c) | (b,d))>

Try <a><d/> !

Can we fix this one?

1-step
lookahead

Deterministic DTDs
E Deterministic Content Models (Non-Normative)

 As noted in 3.2.1 Element Content, it is required that content models
in element type declarations be deterministic. This requirement is for
compatibility with SGML (which calls deterministic content models
"unambiguous"); XML processors built using SGML systems may flag
non-deterministic content models as errors.
 For example, the content model ((b, c) | (b, d)) is non-deterministic,
because given an initial b the XML processor cannot know which b in
the model is being matched without looking ahead to see which
element follows the b. In this case, the two references to b can be
collapsed into a single reference, making the model read (b, (c | d)).
An initial b now clearly matches only a single name in the content
model. The processor doesn't need to look ahead to see what follows;
either c or d would be accepted.
 …

 From: Extensible Markup Language (XML) 1.0 (Fifth Edition)

 W3C Recommendation 26 November 2008

Research Questions
What are research questions to ask about
non-deterministic and deterministic DTDs?

1.  Is there an algorithm to check
whether a DTD is (non-)deterministic?

2.  Is there an algorithm running in polynomial time?
(Or is this problem NP-hard?)

3.  What is the exact runtime of the best algorithm?
4.  Is there for every (nondeterministic) DTD

an equivalent deterministic DTD?

Answers by Anne Brüggemann-Klein (1993):
1) yes, 2) yes, 3) quadratic for DTDs, linear for expressions,
4) yes, but it may be exponential in the size of the input

Exercise: Payments

Requirements:
•  Customers at the till may pay with a combination

of credit cards and cash.
•  If cards and cash are both used the cards must come first.
•  There may be more than one card.
•  There must be no more than one cash element.
•  At least one method of payment must be used.

Task:
•  Construct a deterministic DTD

 with the elements card and cash

Attributes

How can we define the possible attributes of
elements in XML documents?

General Syntax:
<!ATTLIST element-name
 attribute-name1 type1 default-value1
 attribute-name2 type2 default-value2
 …
 attribute-namen typen default-valuen>

Example:

<!ATTLIST height dim CDATA "cm">

Attributes (cntd)

<!ATTLIST element-name
 attribute-name1 type1 default-value1
 … >

type is one of the following:

… there are more possibilities (e.g., ENTITY or NMTOKEN),
which we don’t discuss)

CDATA character data (i.e., the string as it is)

(en1 | en2 | …) value must be one from the given list
ID value is a unique id

IDREF value is the id of another element
IDREFS value is a list of other ids

Attributes (cntd)

<!ATTLIST element-name
 attribute-name1 type1 default-value1
 … >

default-value is one of the following:

value default value of the attribute

#REQUIRED attribute must always be included
in the element

#IMPLIED attribute need not be included

#FIXED value attribute value is fixed

Example: Attributes

<!ELEMENT height (#PCDATA)>

<!ATTLIST height
 dimension (cm|in) #REQUIRED
 accuracy CDATA #IMPLIED
 resizable CDATA #FIXED "yes"
>

Typical usage:
 xmlns CDATA #FIXED "http://spam.com"

Usage:
Need not appear in the doc,
will be automatically added by the XML processor

Specifying ID and IDREF Attributes

<!DOCTYPE family [
 <!ELEMENT family (person)*>
 <!ELEMENT person (name)>
 <!ELEMENT name (#PCDATA)>
 <!ATTLIST person
 id ID #REQUIRED
 mother IDREF #IMPLIED
 father IDREF #IMPLIED
 children IDREFS #IMPLIED>
]>

Specifying ID and IDREF Attributes (cntd)

Attributes mother and father

 are references to IDs of other elements
However,
•  those elements are not necessarily person elements
•  the mother attribute is not necessarily

 a reference to a female person

 References to IDs have no type!

ID, IDREF, and IDREFS in a Document
<family>
 <person id="lisa" mother="marge" father="homer">
 <name> Lisa Simpson </name>
 </person>
 <person id="bart" mother="marge" father="homer">

 <name> Bart Simpson </name>
 </person>
 <person id="marge" children="bart lisa">
 <name> Marge Simpson </name>
 </person>
 <person id="homer" children="bart lisa">
 <name> Homer Simpson </name>
 </person>
</family>

Consistency of ID and IDREF
Attribute Values

•  If attributes are declared as ID
 their associated values must all be distinct
 (no confusion)
That is, no two ID attributes can have the same value

•  If an attribute is declared as IDREF

 the associated value must exist as the value of some
ID attribute (no dangling "pointers")

•  Similarly for all the values of an IDREFS attribute

Which parallels do you see to relational databases?

Is this Legal?

<family>
 <person id="superman" mother="lara" father="jor-el">
 <name> Clark Kent </name>

 </person>

 <person id="kara" children="laura" >

 <name> Linda Lee </name>
 </person>
</family>

Relational Keys vs. IDs in DTDs

•  Relational keys may be multi-valued,
 while IDs are always single-valued

 enroll (sid: string, cid: string, grade:string)

•  A db relation may have multiple keys,
 while an element can have at most one ID

•  A foreign key points always to tuples of the same relation,
 while an IDREF can point to arbitrary elements

•  Every db relation has a schema (which defines keys),
 while XML data may come w/o a DTD (XML schema)

34 Due to Wenfei Fan, U Edinburgh

Adding a DTD to a Document

•  A DTD can be internal
–  the DTD is part of the document file

•  … or external
–  the DTD and the document are on separate files

•  An external DTD may reside
–  in the local file system (where the document is)

–  in a remote file system (reachable using a URL)

Connecting a Document with its DTD

•  Internal DTD:

 <?xml version="1.0"?>

 <!DOCTYPE db [<!ELEMENT ...> …]>

 <db> ... </db>

•  DTD from the local file system:
 <!DOCTYPE db SYSTEM "schema.dtd">

•  DTD from a remote file system:
 <!DOCTYPE db SYSTEM

 "http://www.schemaauthority.com/schema.dtd">

Connecting a Document with its DTD

Combination of external and internal DTD

 <?xml version="1.0"?>

 <!DOCTYPE db SYSTEM "schema.dtd"

 [

 <!ATTLIST db vendor CDATA #REQUIRED >

 …

]

 >

 <db> ... </db> internal
subset

DTD Entities

Entities are XML macros. They come in four kinds:

•  Character entities: stand for arbitrary Unicode characters,
like: <, ; , & , ©, …

•  Named (internal) entities: macros in the document,
can stand for any well-formed XML, mostly used for text

•  External entities: like named entities, but refer to
a file with with well-formed XML

•  Parameter entities: stand for fragments of a DTD
 … and are referenced in a DTD

Character Entities
Macros expanded when the document is processed.

Example: Special characters from XHTML1.0 DTD

<!ENTITY mdash "—"> <!-- em dash, U+2014 ISOpub -->
<!ENTITY lsquo "‘"> <!-- left single quotation mark,
 U+2018 ISOnum -->
<!ENTITY copy "©"> <!-- copyright sign,

 U+00A9 ISOnum -->

Can be specified in decimal (above) and in hexadecimal, e.g.,

	
<!ENTITY mdash "—"> (x stands for hexadecimal)

Named Entities

Declared in the DTD (or its local fragment, the “internal subset”)

•  Entities can reference other entities
•  … but must not form cycles (which the parser would detect)

Example:
 <!ENTITY d "Donald">
 <!ENTITY dd "&d; Duck">

Using dd in a document expands to

 Donald Duck

External Entities
Represent the content of an external file.
Useful when breaking a document down into parts.

Example:

 <?xml version="1.0" encoding="utf-8"?>
 <!DOCTYPE book SYSTEM book.dtd
 [
 <!ENTITY chap1 SYSTEM "chapter-1.xml">
 <!ENTITY chap2 SYSTEM "chapter-2.xml">
 <!ENTITY chap3 SYSTEM "chapter-3.xml">
]>
 <!-- Pull in the chapters -->
 <book>
 &chap1;&chap2;&chap3;
 </book>

internal
subset

location of
the file

Parameter Entities

•  Can only be used in DTDs and the internal subset

•  Indicated by percent (%) symbol instead of ampersand (&)

•  Can be named or external entities

→ Modularization of DTDs

Pattern:

 <!ENTITY % name "Text to be inserted">

Parameter Entities in the XHTML 1 DTD
<!--========== Generic Attributes ==========-->
<!-- core attributes common to most elements -->
<!ENTITY % coreattrs
 "id ID #IMPLIED
 class CDATA #IMPLIED
 style %StyleSheet; #IMPLIED
 title %Text; #IMPLIED"
 >

<!-- internationalization attributes -->
<!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED
 xml:lang %LanguageCode; #IMPLIED
 dir (ltr|rtl) #IMPLIED"
 >
…
<!ENTITY % attrs "%coreattrs; %i18n; %events;">

Parameter Entities in the XHTML 1 DTD
<!--============ Document Body ============-->
<!ELEMENT body %Block;>
<!ATTLIST body
 %attrs;
 onload %Script; #IMPLIED
 onunload %Script; #IMPLIED
 >

<!ENTITY % block
 "p | %heading; | div | %lists; | %blocktext; |
 fieldset | table">

<!ENTITY % Block "(%block; | form | %misc;)*">

Valid Documents

A document with a DTD is valid if it conforms to the DTD,

that is,

•  the document conforms
 to the regular-expression grammar,

•  types of attributes are correct,

•  constraints on references are satisfied.

DTDs Support Document Interpretation

 <?xml version="1.0" encoding="UTF-8"?>

 <a>

 How many children of the node <a>
 will a DOM parser find?

DTDs Support Document Interpretation

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE a [
 <!ELEMENT a (b)>
 <!ELEMENT b EMPTY>
]>
 <a>

 How many children of the node <a>
 will a DOM parser find now?

Not Every DTD Makes Sense

<DOCTYPE genealogy [

 <!ELEMENT genealogy (person*)>

 <!ELEMENT person (

 name,

 dateOfBirth,

 person, <!-- mother -->

 person)> <!-- father -->

 ...

]>

Is there a problem with this?

Not Every DTD Makes Sense (cntd)

<DOCTYPE genealogy [

 <!ELEMENT genealogy (person*)>

 <!ELEMENT person (

 name,

 dateOfBirth,

 person?, <!-- mother -->

 person?)> <!-- father -->

 ...

]>

Is this now okay?

Weaknesses of DTDs

•  DTDs are rather weak specifications by DB &
programming-language standards

–  Only one base type: PCDATA

–  No useful “abstractions”, e.g., sets

–  IDs and IDREFs are untyped

–  No constraints, e.g., child is inverse of parent

–  Tag definitions are global

•  Some extensions impose a schema or types
on an XML document, e.g., XML Schema	 	 	

Weaknesses of DTDs (cntd)

Questions:

•  How would you say that element a has exactly the

children b, c, d in any order?

•  In general, can validity of documents
with respect to such definitions be checked efficiently?

