
XML Data Management Fall-Winter 2013/14

Exercises Werner Nutt

6. XML Schema

This sheet contains exercises about XML Schema.1 In all the exercises, use the Eclipse
“design” view as far as possible to create your schema.

1. Transforming a DTD into an XML Schemaaa

Consider the following DTD specifying the format of documents with information about
juicers, that is, devices to obtain juice from fruit:

<!ELEMENT juicers (juicer)*>

<!ELEMENT juicer (name, image, description, warranty?,

weight?, cost+, retailer)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT image (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT warranty (#PCDATA)>

<!ELEMENT weight (#PCDATA)>

<!ELEMENT cost (#PCDATA)>

<!ELEMENT retailer (#PCDATA)>

Convert this DTD into an equivalent XML schema. Do a straight one-to-one conversion
(i.e., in the DTD where the elements are declared to contain #PCDATA declare the cor-
responding element in the XML schema to be of type string). Once you have the schema
completed, validate it. Then modify the document juicers.xml to indicate that it con-
forms to your schema. Finally, validate the instance document against your schema.

2. Use More Meaningful Built-In Types

Using a DTD, one can only specifcy the elements with atomic content as containing
#PCDATA. By translating the DTD into XML schema, we have inserted the built-in type
string instead of #PCDATA.
XML Schema, however, offers a large number of different built-in types. In this exercise,
you are to change the datatypes from string to another built-in datatype, wherever it makes
sense. For instance, weight, cost, and retailer can be declared with a much more
relevant datatype than string. (Check the document to see how to do this.)
As before, validate the instance document against your schema.

1The exercises are based on the labs in the XML Schema tutorial by Roger L. Costello,
http://www.xfront.com/xml-schema.html

3. Creating a New Datatype by Restriction

Modify the schema that you created in the previous exercise. Create a new datatype called
money and declare the juicer cost element to be of that type.
Hint: Here are the facets for the built-in datatype decimal:

totalDigits: the total number of digits allowable in the number (including the digits
to the right of the decimal point)

fractionDigits: the number of digits allowed to the right of the decimal point

pattern: regular expression specifying the possible values

enumeration: one of the possible values

whitespace: instructs the XML processor how to deal with white space; possible values
are preserve, replace, or collapse

maxInclusive, maxExclusive, minInclusive, minExclusive: self-explanatory

4. Restricting a Datatype Using Regular Expressions

Modify the schema further that you created in Exercise 3. Note that the image element
contains a string that specifies an image file in the local file system.
Create a new datatype called imageFile and declare the image element to be of that type.
Define a regular expression for imageFile. (Consult the lecture slides to understand how
to write regular expression in XML Schema.)
Again, validate the instance document against your schema.

5. Extending Datatypes

Modify the schema that you created in Exercise 4.
Create a type called appliance. Define appliance to contain declarations for description
and warranty. Create a type called juiceAppliance, which is derived from appliance
(by extension). Make juicer of type juiceAppliance.
Validate the instance document against your schema.

Note: To satisfy the new schema, the contents of each juicer element need to be rear-
ranged in the instance document! For the validation, use juicers5.xml, where this has
already been done.

6. Schemas with Attributes

Consider now an extension of our original DTD, where the element juicer has attributes.

<!ELEMENT juicers (juicer)*>

<!ELEMENT juicer (name, image, description, warranty?,

weight?, cost+, retailer)>

<!ATTLIST juicer id ID #REQUIRED

electric (true|false) #REQUIRED

type (press | gear | centrifugal) #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT image (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT warranty (#PCDATA)>

<!ELEMENT weight (#PCDATA)>

<!ELEMENT cost (#PCDATA)>

<!ELEMENT retailer (#PCDATA)>

Create corresponding attributes in the XML schema. Validate the document juicers6.xml
against the new schema.

7. Extending Simple Types with Attributes

Consider a further extension of the DTD, where the element cost has an attribute currency.

...

<!ELEMENT cost (#PCDATA)>

<!ATTLIST cost currency (USD | CAD) #REQUIRED>

...

Create a corresponding attribute in the XML schema. Note that in this case, you have to
extend a simple type (money) with an attribute.
Validate the document juicers7.xml against the new schema.

8. Sets instead of Sequences

In the last schema you defined the content of a juicer element as a sequence of other
elements. There is no inherent reason, however, that the children of the juicer element
should occur in a specified order. Change the schema so that the juicer element contains
the same set of child elements but allow them to occur in any order.

Hint 1: (1) Whenever a type extends a base type, the extension elements are always
appended to the base type’s elements:

b1, b2, e1, e2

where b1 and b2 are the base type’s elements and e1, e2 are the elements from the type that
is extending the base type.
Thus, even if one makes the base type unordered and the type extending the base type
unordered, the resulting set of elements will still be partially ordered as

{ b1, b2 }, { e1, e2 }

where the curly braces indicates an unordered set. We have an unordered first set followed
(sequentially) by an unordered second set.
So, for this exercise you are to delete the appliance type and place its element declara-
tions in with the juiceAppliance type.
Hint 2: One of the restrictions on using the <all> element is that the elements declared
within <all> must have a maxOccurs="1". So, remove the cost that specifies the cost in
Canadian Dollars. (We will just deal in US currency.)

The file juicers8.xml contains juicer elements in arbitrary order. Validate (1) your
new schema and (2) validate the juicers8.xml against the new schema.

9. Empty Elements

Reuse again the schema juicers0.xsd, which has the appliance complexType. Cur-
rently the retailer element has as its content a URI. Modify it so that its content is empty
and it instead has an attribute—href—whose type is anyURI.

The file juicers9.xml has empty retailer elements. Validate the instance document
against your schema.

10. Creating an Appliances Repository Schema

Modify the XML file and the schema that you created in the last exercise.
In all of the exercises thus far we have stored all of our schema components in a single
schema. Typically, however, one will put elements and types that may be used by many
schemas into a separate schema (a repository schema).
In our juicer example the appliance type is an example of something that could be used
in many schemas. Hence, pull it out of juicers.xsd and put it into a generic schema,
appliances.xsd. Then modify juicers.xsd to use the definition of appliances in
appliances.xsd.
Use the same namespace for the two schemas.

11. Demonstating the Chameleon Effect

Modify the appliances.xsd schema that you created in Exercise 10 to have no target-
Namespace.

12. Using Multiple Namespaces

Modify again the juicers file and the schemas that you created in Exercise 10. Put
the appliances.xsd schema in its own namespace (http://www.appliances.org).
Modify juicers.xsd to use the appliances complexType, which is now in a different
namespace. You will need to modify the instance document to reflect the fact that it is
using multiple namespaces.

13. Creating Lists

Modify the juicers file and the schemas that you created in Exercise 12. Assume there are
multiple retailers for each juicer. Modify juicers.xsd to allow for a list of values for
the href in the retailers element.

14. Declaring Key and Uniqueness Constraints

Take again juicers0.xsd and juicers0.xml as a starting point.
Add the constraints that for juicers, the name attribute is a key and that values of image
are unique. Introduce errors into the XML file to check whether they are detected by the
validator.

