
XML Data Management Fall-Winter 2013/14

Coursework Werner Nutt

Sample Solutions for Coursework C1: XPath

These are sample solutions for the queries in coursework C1. There are usually
many different ways of expressing a query and this list shows one possible formu-
lation in XPath for each query on the task list.

1. How many calories are in Linguine alla Pescatora?

//recipe[title="Linguine alla Pescatora"]/nutrition/@calories

2. Return the titles of the recipes that have more than 500 calories.

//recipe[nutrition/@calories > 500]/title

3. Return the recipes for which at least 4 eggs are needed.

//recipe[.//ingredient[@name="eggs" and @amount >= 4]]

4. Which recipe has the highest number of calories? (Do not use the XQuery
function max!)

//recipe[not(nutrition/@calories < //nutrition/@calories)]

5. How many ingredients are there in Ricotta Pie?

count(//recipe[title="Ricotta Pie"]//ingredient)

6. How many compound ingredients (i.e., ingredients with ingredients) are
there in Ricotta Pie?

count(//recipe[title="Ricotta Pie"]//ingredient[ingredient])

7. How many elementary (= non-compound) ingredients are there in Ricotta
Pie? (An ingredient is elementary if it does not have ingredients itself.)

count(//recipe[title="Ricotta Pie"]

//ingredient[not(ingredient)])



8. Which recipes have an ingredient whose preparation needs more steps than
are needed for the recipe itself (i.e., top level steps)?

//recipe[ingredient[count(preparation/step)

> count(ancestor::recipe/preparation/step)]]

9. What is the average number of calories per recipe? (Do not use the XQuery
function avg!) Note: Since the “/” operator has its own meaning in XPath,
the division operator is infix div.

sum(//recipe/nutrition/@calories) div count(//recipe)

10. Return the names of the ingredients of Zuppa Inglese.

//recipe[title="Zuppa Inglese"]//ingredient/@name

11. Return the names of those ingredients of Zuppa Inglese that occur also in
other recipes.

//recipe[title="Zuppa Inglese"]

//ingredient[@name =

//recipe[title!="Zuppa Inglese"]

//ingredient/@name]

/@name

12. Which recipes have an ingredient in common with Zuppa Inglese?

//recipe[.//ingredient/@name =

//recipe[title="Zuppa Inglese"]//ingredient/@name]

13. Return the ingredients of recipes other than Zuppa Inglese that these recipes
have in common with Zuppa Inglese.

//recipe[title!="Zuppa Inglese"]

//ingredient[@name =

//recipe[title="Zuppa Inglese"]

//ingredient/@name]

14. Return the names of all elementary ingredients that occur in at least two
recipes.

//ingredient[not(ingredient)]

[@name =

ancestor::recipe/following::ingredient/@name]

/@name



15. Return the titles of all recipes for which some form of egg is needed (like
“egg whites” or “egg yolk”).

//recipe[.//ingredient[contains(@name,"egg")]]/title

16. Return the titles of the recipes that have only elementary ingredients.

//recipe[not(ingredient/ingredient)]/title

17. Return the names of those ingredients that are mentioned in a preparation
step of their recipe.

I did not find a fully correct solution and it may even be that it cannot be
expressed in XPath (1.0). I came up first with the following one:

//ingredient[contains(ancestor::recipe//step,@name)]/@name

Explain why this misses answers! Then I improved as follows:

//ingredient[contains(ancestor::recipe//preparation,

@name)]/@name

Explain why this is still incorrect! Last year, a student came up with this
one:

//ingredient[contains(following-sibling::preparation,

@name)]/@name

Do you see that this is better, but still misses some answers?

18. Return the names of ingredients that are not mentioned in a preparation step
of their recipe.

I give a sample solution based on the last “solution” to the preceding ques-
tion. As that one is not fully correct, the one below is not either (it may
return too many ingredients).

//ingredient[not(contains(following-sibling::preparation,

@name))]/@name


