XML Data Management
Part 12: Core XPath

Werner Nutt

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2012/2013

FREIE UNIVERSITAT BOZEN

| | LiBERA UNIVERSITA DI BoLzANO

FREE UNIVERSITY OF BOZEN - BOLZANO

Part 12: Core XPath

A Logic View of Databases

A database has two parts: schema and instance

The schema describes how data is organized:
@ relations with their names and with number, names and types of attributes

o Example: Person(name, gender, age), HasChild(parent, child)

The instance contains the actual data:
o for every relation, there is a set of atoms complying with the schema,
e Example: {Person(fred, ’male’,25), Person(mary, *female’, 60),
Person(clara, ’female’, 3), Person(paul, ’male’, 1),
HasChild(mary, fred), HasChild(fred, clara),
HasChild(fred, paul)}

Often, we ignore types and sometimes, we ignore also the attribute names

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (1/20)

Part 12: Core XPath

First-Order Queries

Definition
A first-order query has the form

Q:{($1,,$n)|¢}

where

@ ¢ is a predicate logic formula

® x1,...,x, are the free variables of ¢

We say that
@ ¢ is the body of the query,
@ r1,...,x, are the output variables, and
@ n is the arity of the query.

G847 | unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (2/20)

Part 12: Core XPath

Example Queries

Let’s try to express the following queries as first-order queries:

@ Who are the male persons?
@ Who are the grandmothers?
@ Who are the male persons without children?

What do these queries look like in SQL?

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (3/20)

Part 12: Core XPath

XML Documents as Relational Instances

XML docs are rooted labeled trees, a special case of labeled directed graphs.

Directed graphs (digraphs) consist of
@ nodes

o directed edges (described by a binary relation child(-, -))

Rooted trees are digraphs with
@ one source (no incoming edge), called “root”
@ an arbitrary number of sinks, called “leaves”

@ no cycles.

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (4/20)

Part 12: Core XPath

XML Documents as Relational Instances (cntd)
We assume there is a set of labels X (labels model the element tags)
A labeled tree has exactly one label on each node
The set of all trees with labels from ¥ is denoted as T
We express that a node carries label a € ¥ with the unary relation lab,(-).

We identify all labeled rooted trees ¢
with instances of the schema with the relations
e child(-, -)
@ lab,(-), aeX
If ¢ is such a tree, then nod(t) is the set of all nodes of ¢

We are graciously ignoring strings and other values.

We could model them with unary relations “textigy,.(-)"

&

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (5/20)

unibz.it

Part 12: Core XPath

XPath Queries as First-order Queries

We want to query our movies documents known from the coursework

o Select all movies z: (//movie)

@ Select all actors x of “Spider Man"
(//movie[title/text ()="SM’]/actor)

@ Select all pairs of actors x appearing in movie y

How many variables do we need to write these queries?

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (6/20)

Part 12: Core XPath

XPath Queries over Trees: Exercises

Write queries asking for
@ all movies starring Kirsten Dunst
@ all movies starring Kirsten Dunst and William Dafoe

@ all movies with Kirsten Dunst, but not William Dafoe

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (7/20)

Part 12: Core XPath

First-order Queries over Trees

Syntax of Tree Formulas
For a € ¥ and z, y € Vars:

¢ ::= lab,(z) | child"(z,y) | next_sibling”(z,y) | ¢ | Fx¢ | P1 A @2

Transitive Closure

We have to add child* to the instances if we want to talk about descendants
in FO, and similiarly next next_sibling* in order to talk about horizontal
recursion.

Tree Queries

As before, queries over trees are expressions of the form

{(.131,...,]}71) | ¢}7

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (8/20)

oA it

Part 12: Core XPath

Core XPath 1.0

Introduced by Gottlob & Koch in [PODS'01, JACM'03]

o ‘“logical core” of XPath 1.0, used to study theoretical properties

@ many simplifications
e removes arithmethic
e removes functions on data content (e.g., on strings)
o leaves only the navigational core

unibz.it

&

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (9/20)

Part 12: Core XPath

Example Queries in Core XPath 1.0

Select all movies
XPath short: //movie
XPath long: child® :: movie
FO logic: child*(root,) A labpoyvie()

Select all actors acting together with JDepp in a movie

XPath short: //movielactor/text() = ’JDepp’l/
actor[not[text() = ’JDepp’]l]
XPath long: child*::movie[child::actor[text() = ’JDepp’l]/
child::actor[not[text() = ’JDepp’]]
FO logic: Fy1(child*(root, y1) A labuovie(y1))
N Elyg(chlld(y1, yQ) A /abactor(yQ) A teXt’JDepp’(yQ)) A
Chlld(yl, x) A labactor(x) A _'teXt’JDEPP’ (ZC))

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (10/20)

Part 12: Core XPath

Core XPath 1.0

Syntax where a €

filter f = x|a|not[f]]| f[p]
axis r u= child | next_sibling |7~ |r* | self |...
paths p == f[p/p"[pUD"|/p

Semantics for trees t € Tx

(11/20)

Part 12: Core XPath XML DM - 2012/2013

W. Nutt

Part 12: Core XPath

Core XPath 1.0 Semantics

eval®(x) = nod(t)

eval®(a) = lab%, (extension of lab, in t)

eval®(not f) = nod(t) \ eval®(f)

eval®(flp]) = {n € eval’(f) | In .(n,n’) € eval‘(p)}
eval®(child) = child® (extension of child in t)
eval’(next_sibling) = next_sibling

eval'(r™1) = eval®(r)™!

eval'(r*) = eval(r)

eval®(self) = {(n,n) | n € nod(t)}

evall(r:: f) = {(nm’) € eval'(r) | n' € eval’(f)}
evalt(p/p’) = eval® ()oeval'(p') (composition of relations)
eval'(pUp’) = eval®(p) U eval’(p')

eval®(/p) = {(root,n) € nod(t)* | (root,n) € eval(p)}

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (12/20)

Part 12: Core XPath

Exercises: Expressiveness of Core XPath 1.0

Can one define the following queries in Core XPath 1.07

@ All nodes reachable from the root over a path with labels in a*b?

@ All nodes that are reachable from the root over a path with labels in
(aa)*?

@ Can one define the same query in Datalog for trees?

@ And what about Datalog where all query predicates are unary (monadic
datalog)?

unibz.it

&

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (13/20)

Part 12: Core XPath

Translation to FO Logic

Proposition

Every expression of XPath 1.0 can be translated in linear time to an FO formula
with 2 free variables, that define the same binary query.

[¥]= = true [child]e,y = child(z,y)
[a]s = laba(x) [next_sibling],,, = next_sibling(z,y)
[not [f]] = =[/f]= [r oy =7y, 2)

[flp)le = [fl= A Jy [Ploy [r*]ey =r"(z,y)
[(r) e = 7" (y, 2)
[self]s,y = (x = y)

[r = flew = [r]eo 1y Ip/p' ey = 32([ple.= A [P']:0)
[pUpTey = [Play V[P Tey [/9']2,y = (x = root A [p],y)

unibz.it

i)
(

W. Nutt Part 12: Core XPath XML DM - 2012/2013 14/20)

Part 12: Core XPath

Query Answering for Core XPath 1.0

For a start set S C nod(t), let evally(p) = {n’ | n € S, (n,n’) € eval’(p)}

Theorem (Gottlob & Koch (TODS'05))

For all expressions p of Core XPath 1.0, trees ¢, and start sets .S, one can
compute the monadic query eval’y(p) in time O(|t| - [p]).

Idea: Uses an algebra where one navigates from S through an operator tree
corresonding to p.

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (15/20)

Operator Tree of Query [Gottiob & Koch (TODS'05)]

Example 10.3. The Core XPath query
/descendant::a/child::b[child::c/child::d or not(following::*)]
is evaluated as specified by the query tree

ﬁ/m\u
/N

child T(®b) parent —
T I\
N N dom preceding

SN]

descendant T'(a) T(c) parent dom

T !

{root} T(d)

Part 12: Core XPath

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (16/20)

Part 12: Core XPath

Complexity of Full XPath 1.0

Full XPath 1.0 is more difficult because of
@ equalities (join on labels)
@ data manipulation (string and arithmetic functions)

@ context information (context node, position in current node set, size of
node set).

Theorem (Gottlob, Koch & Pichler, 2005)

There is an algorithm that evaluates an expression p on a document ¢ with
e time complexity O(|t|* - |p|?)
e space complexity O(|t|? - |p|?)

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (17/20)

Part 12: Core XPath

Expressivity of Core XPath 1.0 (Marx & de Rijke)

Theorem

For every FO tree query with 2 variables Q = {z | ¢}, there exists a Core XPath
expression filter expression f, such that @ and f return the same answers over
all rooted labeld trees, and conversely.

In other words, Core XPath 1.0 has the same expressivity as First-Order Logic
over trees with 2 variables.

unibz.it

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (18/20)

Part 12: Core XPath

From XPath 1.0 to XPath 2.0

XPath 2.0 extends XPath 1.0 essentially by
@ stronger typing (types as in XML schema)
@ sequence processing functions (e.g., remove, insert, index-of)

@ explicit quantification with variables as in XQuery

(using some $x in p satisfies, e, every $x in p satisfies, e)
@ iteration as in XQuery

(using for $x in p return e)

@ intersection and difference of paths

As for XPath 1.0, one has defined Core XPath 2.0, which adds quantification,
iteration, iteration and path intersection and difference to XPath 1.0.

unibz.it

&

W. Nutt Part 12: Core XPath XML DM - 2012/2013 (19/20)

Part 12: Core XPath

Expressivity of Core XPath 2.0

Theorem (Marx & ten Kaate)
@ The evaluation problem for Core XPath 2.0 is PSpace-complete

@ Core XPath 2.0 has the same expressivity as full first-order logice over
trees.

unibz.it

i)
(

W. Nutt Part 12: Core XPath XML DM - 2012/2013 20/20)

	Part 12: Core XPath
	

