
XML Data Management
Part 12: Core XPath

Werner Nutt

Faculty of Computer Science
Master of Science in Computer Science

A.Y. 2012/2013

unibz.itunibz.it

Part 12: Core XPath

A Logic View of Databases

A database has two parts: schema and instance

The schema describes how data is organized:

relations with their names and with number, names and types of attributes

Example: Person(name, gender, age), HasChild(parent, child)

The instance contains the actual data:

for every relation, there is a set of atoms complying with the schema,

Example: {Person(fred, ’male’, 25), Person(mary, ’female’, 60),

Person(clara, ’female’, 3), Person(paul, ’male’, 1),

HasChild(mary, fred), HasChild(fred, clara),

HasChild(fred, paul)}

Often, we ignore types and sometimes, we ignore also the attribute names

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (1/20)

unibz.itunibz.it

Part 12: Core XPath

First-Order Queries

Definition

A first-order query has the form

Q = {(x1, . . . , xn) | φ}

where

φ is a predicate logic formula

x1, . . . , xn are the free variables of φ

We say that

φ is the body of the query,

x1, . . . , xn are the output variables, and

n is the arity of the query.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (2/20)

unibz.itunibz.it

Part 12: Core XPath

Example Queries

Let’s try to express the following queries as first-order queries:

Who are the male persons?

Who are the grandmothers?

Who are the male persons without children?

What do these queries look like in SQL?

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (3/20)

unibz.itunibz.it

Part 12: Core XPath

XML Documents as Relational Instances

XML docs are rooted labeled trees, a special case of labeled directed graphs.

Directed graphs (digraphs) consist of

nodes

directed edges (described by a binary relation child(· , ·))

Rooted trees are digraphs with

one source (no incoming edge), called “root”

an arbitrary number of sinks, called “leaves”

no cycles.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (4/20)

unibz.itunibz.it

Part 12: Core XPath

XML Documents as Relational Instances (cntd)

We assume there is a set of labels Σ (labels model the element tags)

A labeled tree has exactly one label on each node

The set of all trees with labels from Σ is denoted as TΣ

We express that a node carries label a ∈ Σ with the unary relation laba(·).

We identify all labeled rooted trees t
with instances of the schema with the relations

child(· , ·)
laba(·), a ∈ Σ

If t is such a tree, then nod(t) is the set of all nodes of t

We are graciously ignoring strings and other values.
We could model them with unary relations “text’xyz’(·)”

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (5/20)

unibz.itunibz.it

Part 12: Core XPath

XPath Queries as First-order Queries

We want to query our movies documents known from the coursework

Select all movies x: (//movie)

Select all actors x of “Spider Man”

(//movie[title/text()=’SM’]/actor)

Select all pairs of actors x appearing in movie y

How many variables do we need to write these queries?

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (6/20)

unibz.itunibz.it

Part 12: Core XPath

XPath Queries over Trees: Exercises

Write queries asking for

all movies starring Kirsten Dunst

all movies starring Kirsten Dunst and William Dafoe

all movies with Kirsten Dunst, but not William Dafoe

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (7/20)

unibz.itunibz.it

Part 12: Core XPath

First-order Queries over Trees

Syntax of Tree Formulas

For a ∈ Σ and x, y ∈ Vars:

φ ::= laba(x) | child∗(x, y) | next sibling∗(x, y) | ¬φ | ∃xφ | φ1 ∧ φ2

Transitive Closure

We have to add child∗ to the instances if we want to talk about descendants
in FO, and similiarly next next sibling∗ in order to talk about horizontal
recursion.

Tree Queries

As before, queries over trees are expressions of the form

{(x1, . . . , xn) | φ},

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (8/20)

unibz.itunibz.it

Part 12: Core XPath

Core XPath 1.0

Introduced by Gottlob & Koch in [PODS’01, JACM’03]

“logical core” of XPath 1.0, used to study theoretical properties

many simplifications

removes arithmethic
removes functions on data content (e.g., on strings)
leaves only the navigational core

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (9/20)

unibz.itunibz.it

Part 12: Core XPath

Example Queries in Core XPath 1.0

Select all movies

XPath short: //movie

XPath long: child∗ :: movie
FO logic: child∗(root, x) ∧ labmovie(x)

Select all actors acting together with JDepp in a movie

XPath short: //movie[actor/text() = ’JDepp’]/

actor[not[text() = ’JDepp’]]

XPath long: child∗::movie[child::actor[text() = ’JDepp’]]/

child::actor[not[text() = ’JDepp’]]

FO logic: ∃y1(child∗(root, y1) ∧ labmovie(y1))
∧ ∃y2(child(y1, y2) ∧ labactor(y2) ∧ text’JDepp’(y2)) ∧

child(y1, x) ∧ labactor(x) ∧ ¬text’JDepp’(x))

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (10/20)

unibz.itunibz.it

Part 12: Core XPath

Core XPath 1.0

Syntax where a ∈ Σ

filter f ::= ∗ | a | not [f] | f [p]

axis r ::= child | next sibling | r−1 | r∗ | self | . . .
paths p ::= r :: f | p/p′ | p ∪ p′ | /p

Semantics for trees t ∈ TΣ

eval t(f) ⊆ nod(t)

eval t(r) ⊆ nod(t)2

eval t(p) ⊆ nod(t)2

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (11/20)

unibz.itunibz.it

Part 12: Core XPath

Core XPath 1.0 Semantics

eval t(∗) = nod(t)
eval t(a) = lab t

a (extension of laba in t)
eval t(not f) = nod(t) \ eval t(f)
eval t(f [p]) = {n ∈ eval t(f) | ∃n .(n, n′) ∈ eval t(p)}

eval t(child) = childt (extension of child in t)
eval t(next sibling) = next siblingt

eval t(r−1) = eval t(r)−1

eval t(r∗) = eval t(r)∗

eval t(self) = {(n, n) | n ∈ nod(t)}

eval t(r :: f) = {(n, n′) ∈ eval t(r) | n′ ∈ eval t(f)}
eval t(p/p′) = eval t(p) ◦ eval t(p′) (composition of relations)
eval t(p ∪ p′) = eval t(p) ∪ eval t(p′)
eval t(/p) = {(root, n) ∈ nod(t)2 | (root, n) ∈ eval t(p)}

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (12/20)

unibz.itunibz.it

Part 12: Core XPath

Exercises: Expressiveness of Core XPath 1.0

Can one define the following queries in Core XPath 1.0?

All nodes reachable from the root over a path with labels in a∗b?

All nodes that are reachable from the root over a path with labels in
(aa)∗?

Can one define the same query in Datalog for trees?

And what about Datalog where all query predicates are unary (monadic
datalog)?

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (13/20)

unibz.itunibz.it

Part 12: Core XPath

Translation to FO Logic

Proposition

Every expression of XPath 1.0 can be translated in linear time to an FO formula
with 2 free variables, that define the same binary query.

J∗Kx = true
JaKx = laba(x)
Jnot [f]Kx = ¬JfKx
Jf [p]Kx = JfKx ∧ ∃y JpKx,y

JchildKx,y = child(x, y)
Jnext siblingKx,y = next sibling(x, y)
Jr−1Kx,y = r(y, x)
Jr∗Kx,y = r∗(x, y)
J(r∗)−1Kx,y = r∗(y, x)
JselfKx,y = (x = y)

Jr :: fKx,y = JrKx,yJfKy
Jp ∪ p′Kx,y = JpKx,y ∨ Jp′Kx,y

Jp/p′Kx,y = ∃z(JpKx,z ∧ Jp′Kz,y)
J/p′Kx,y = (x = root ∧ JpKz,y)

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (14/20)

unibz.itunibz.it

Part 12: Core XPath

Query Answering for Core XPath 1.0

For a start set S ⊆ nod(t), let eval tS(p) = {n′ | n ∈ S, (n, n′) ∈ eval t(p)}

Theorem (Gottlob & Koch (TODS’05))

For all expressions p of Core XPath 1.0, trees t, and start sets S, one can
compute the monadic query eval tS(p) in time O(|t| · |p|).

Idea: Uses an algebra where one navigates from S through an operator tree
corresonding to p.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (15/20)

unibz.itunibz.it

Part 12: Core XPath

Operator Tree of Query [Gottlob & Koch (TODS’05)]

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (16/20)

unibz.itunibz.it

Part 12: Core XPath

Complexity of Full XPath 1.0

Full XPath 1.0 is more difficult because of

equalities (join on labels)

data manipulation (string and arithmetic functions)

context information (context node, position in current node set, size of
node set).

Theorem (Gottlob, Koch & Pichler, 2005)

There is an algorithm that evaluates an expression p on a document t with

time complexity O(|t|4 · |p|2)

space complexity O(|t|2 · |p|2)

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (17/20)

unibz.itunibz.it

Part 12: Core XPath

sd

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (18/20)

unibz.itunibz.it

Part 12: Core XPath

Expressivity of Core XPath 1.0 (Marx & de Rijke)

Theorem

For every FO tree query with 2 variables Q = {x | φ}, there exists a Core XPath
expression filter expression f , such that Q and f return the same answers over
all rooted labeld trees, and conversely.

In other words, Core XPath 1.0 has the same expressivity as First-Order Logic
over trees with 2 variables.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (18/20)

unibz.itunibz.it

Part 12: Core XPath

From XPath 1.0 to XPath 2.0

XPath 2.0 extends XPath 1.0 essentially by

stronger typing (types as in XML schema)

sequence processing functions (e.g., remove, insert, index-of)

explicit quantification with variables as in XQuery
(using some $x in p satisfies, e, every $x in p satisfies, e)

iteration as in XQuery
(using for $x in p return e)

intersection and difference of paths

As for XPath 1.0, one has defined Core XPath 2.0, which adds quantification,
iteration, iteration and path intersection and difference to XPath 1.0.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (19/20)

unibz.itunibz.it

Part 12: Core XPath

Expressivity of Core XPath 2.0

Theorem (Marx & ten Kaate)

The evaluation problem for Core XPath 2.0 is PSpace-complete

Core XPath 2.0 has the same expressivity as full first-order logice over
trees.

W. Nutt Part 12: Core XPath XML DM – 2012/2013 (20/20)

	Part 12: Core XPath
	

