
XML Data Management Fall-Winter 2011/12

Exercises Werner Nutt

11. XSLT Stylesheets (2)

These exercises are about XSLT stylesheets. You are asked to write a stylesheets
to achieve a number of tasks.
Run your stylesheets using Kernow. On the sheet for Lab 9, you can find instruc-
tions how to download Kernow, a graphical frontend to the Saxon XQuery/XSLT
processor. Kernow is a Java package and can be run under Linux, Windows and
Mac OS.
You can develop your stylesheets in the XSLT Sandbox of Kernow. The outer-
most element of your stylesheets should be of the kind xsl:stylesheet, with
attributes set as shown below:

<xsl:stylesheet version="2.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

In the lectures, we have introduced XSLT 1.0, because version 2.0 is not yet
widely supported. Saxon, however, is a processor for XSLT 2.0 and will return a
warning if you declare your stylesheet as of version 1.0.
To tell Kernow that the output should be XML 1.0 and that we would like it prop-
erly indented, add as the first element in the stylesheet the following output spec-
ification:

<xsl:output method="xml"

version="1.0"

encoding="iso-8859-1"

indent="yes"/>

The version of Kernow that you download allows you to run 100 queries. Then it
will ask you to enter a code in order to proceed. I have the code and will send it
to you if you ask me by email.
These exercises are largely similar to the ones for XQuery. This is intentional,
since both XQuery and XSLT allow one to specify transformations turning XML
documents into other XML or (X)HTML documents.
The exercises allow you to compare the means by which such transformations can
be expressed in the two languages.

1



Countries
The following are transformations over the countries.xml document. Formu-
late your transformations in such a way that they return the correct result for all
possible recipe documents that satisfy countries.dtd.

1. Return an element <countries> with a list of <country> elements, con-
taining in turn elements <name> and <population>, such that each coun-
try of the document appears once. Write the stylesheet so that iteration is
achieved by recursive calls to templates.

2. Return a similar list, ordered by <population> in descending order. Write
the stylesheet so that iteration is expressed by <xsl:for-each> elements.

3. Rewrite the preceding stylesheet in such a way that you use dynamic ele-
ment constructors to construct the new elements.

4. Rewrite the stylesheet from Exercise 2 or 3 in such a way that you create
country elements and name and population attributes and that you use
shallow and deep copying wherever possible.

5. Return a list of <city> elements, containing the name of the city, such that
each city has an attribute population and another attribute country. The
cities are returned according to their population, in descending order. Use
iteration by template call.

6. Restructure the document by listing countries according to population, cities
within each country according to population, and languages within each
country according to percentage, all in descending order.

7. Return an element <languages> with a list of <language> elements, al-
phabetically sorted, where each language from the countries documents oc-
curs exactly once. Use the two approaches shown in the lecture.

8. Return an element <languages> with a list of <language> elements, al-
phabetically sorted, where each language element containts a list of country
elements, such that the language is spoken in the country, together with the
number of speakers of the language in that country.

Hint: You may need parameters, named templates, calls to templates, and
the formating function format-number. Parameters and named templates
are documented on the lecture slides.

9. Create a stylesheet that produces an HTML layout of the countries docu-
ment. Follow the example of the recipes layout from the lecture.

2


