
CS4 Dissertation
XML Di� and Path UtilitiesAdrian MouatSupervisor: Dr. Joe WellsJune 4, 2002

1DelarationI, Adrian Mouat, on�rm that this work submitted for assessment is my own andis expressed in my own words. Any uses made within it of the works of otherauthors in any form (e.g., ideas, equations, �gures, text, tables, programs) areproperly aknowledged at any point of their use. A list of the referenes employedis inluded.
Signed: ..Date: ..

AbstratStandard UNIX tools exist for omparing (di�) and pathing (path) �les,whih operate on a line by line basis using well-studied methods for omputingthe longest ommon subsequene (LCS). Using these tools on hierarhially stru-tured data leads to sub-optimal results, as they are inapable of reognizing thetree-based struture of these �les. This doument introdues a projet to reateXML di� and path utilities whih operate on the hierarhial struture of XMLdouments.

1AknowledgementsI would like to thank Dr. Joe Wells for his help and guidane,CS4 for putting up with my onstant whinging,Mustafa Iqbal for proof-reading the doument, and \The Blak Rebel MotoryleClub", whose musi kept me (somewhat) sane.

Contents
1 Introdution & Bakground 41.1 XML . 51.2 Trees and Di�erening . 61.3 Output Format . 71.4 Pathing . 81.5 Appliations . 92 Related Work 112.1 Tree Corretion Algorithms . 112.1.1 The Extended Zhang and Shasha Algorithm 112.1.2 The Fast Math Edit Sript Algorithm 122.1.3 The xmdi� Algorithm . 142.1.4 Other Algorithms . 142.2 Existing Produts . 152.2.1 DeltaXML . 152.2.2 xmldi� . 162.2.3 XML TreeDi� . 162.2.4 XyDi� . 162.2.5 di�mk . 172.2.6 XML Di� and Merge Tool 172.2.7 VM Tools . 172.3 Output Formats . 182.3.1 DeltaXML . 182.4 Conlusion . 213 Requirements 233.1 Aims and Objetives . 233.1.1 Aim . 233.1.2 Objetives . 233.2 Input and Output . 243.2.1 Input . 243.3 Output . 243.3.1 Di� Utility . 243.4 Funtional Requirements . 253.4.1 Di� Utility . 253.4.2 Path Utility . 273.5 Non-Funtional Requirements . 282

CONTENTS 34 Design 294.1 Diagrams and Charts . 294.2 Relating XML douments to trees 304.3 Desription of Algorithms . 314.3.1 The Fast Math Edit Sript (FMES) Algorithm 334.3.2 xmdi� . 355 Output Format 375.1 Delta Update Language (DUL) . 375.1.1 Insert . 385.1.2 Delete . 415.1.3 Update . 425.1.4 Move . 445.1.5 DUL Example . 465.1.6 Namespaes . 475.1.7 Entity Referenes . 475.1.8 Adding Context Information 485.1.9 Extensions to DUL . 545.1.10 XUpdate . 565.2 Human Readable Output . 566 Implementation 586.1 Tehnology . 586.2 Command Line Invoation . 596.2.1 Di� Tool . 596.2.2 Path Tool . 626.3 Publi Release . 627 Testing 647.1 Blak Box Testing . 647.2 White Box Testing . 657.3 Regression Testing . 668 Disussion 678.1 Ful�lment of Requirements . 678.2 Limitations and Further Work . 688.3 Conlusion . 70A GNU General Publi Liense 72B Sample Input and Output 78

Chapter 1
Introdution & Bakground
The aim of this dissertation was to reate XML-based equivalents of the UNIXdi� and path tools. The utilities and soure ode are available on-line at http://diffxml.soureforge.net.This doument is omprised of 8 hapters, overing di�erent aspets relatedto the design and reation of the tools:� The rest of this hapter is dediated to an introdution to XML and tree-di�erening, as well as an overview of possible appliations.� Chapter 2 disusses related work, both in terms of tree-di�erening algo-rithms and existing software for omparing XML douments.� Chapter 3 details the aims and objetives of the projet, and the funtionalrequirements.� Chapter 4 overs the design of the tools and the algorithms implemented.� Chapter 5 is a detailed spei�ation for a generalised output format forshowing the di�erene between XML douments.� Chapter 6 reviews the implementation of the utilities; the tehnology used,how the programs are alled and the publi release of the utilities.4

CHAPTER 1. INTRODUCTION & BACKGROUND 5� Chapter 7 details the testing of the programs; both the proess used andthe results.� Chapter 8 reviews the ahievements and limitations of the work, and sug-gests possible extensions.� The appendix ontains a opy of GNU General Publi Liense, under whihthe tools were released.1.1 XMLAs stated by the World Wide Web Consortium (W3C) [1℄, \The ExtensibleMarkup Language (XML) is the universal format for strutured douments anddata on the Web." XML is designed to be interoperable with both SGML andHTML. A setion of a possible XML doument is shown in �gure 1.1.<media type=\CD"><length>10m15s</length><artist>Exemplar</artist><trak num=\1"><title>Hello</title><length>5m32s</length></trak><trak num=\2"><title>Goodbye</title><length>4m43s</length></trak></media> Figure 1.1: Part of an XML doumentXML douments are made up of one or more elements whih are delimited bytags. Attributes an be inluded inside tags to give further information about theelement. Elements are ordered whilst attributes are unordered. In the previousexample `<length>' is a tag with no attributes whilst `<trak num=\1">' is a

CHAPTER 1. INTRODUCTION & BACKGROUND 6tag with one attribute. Note that the struture of XML is stritly nested, forexample the doument in �gure 1.2 would be illegal, as the \media" element isterminated inside a hild element.<media type=\CD"><length>10m15s</length><artist>Exemplar</artist><trak num=\1"><title>Hello</title><length>5m32s</length></trak><trak num=\2"></media> <title>Goodbye</title><length>4m43s</length></trak>Figure 1.2: Part of an illegal XML doument
1.2 Trees and Di�ereningThe strit nesting of XML allows us to represent XML douments as orderedtrees. Our �rst example in �gure 1.1 ould be shown as the tree in �gure 1.3(ignoring attributes).It is lear that the problem of �nding the hanges between two XML do-uments an be seen as the \Tree-to-tree Corretion Problem" [2℄ for orderedlabeled trees.Consider the two trees in �gures 1.4 and 1.5:We wish to apply a set of operations to Tree 1 to reate Tree 2. The mostbasi operations we an apply are:� hange the label of a node� delete a leaf node

CHAPTER 1. INTRODUCTION & BACKGROUND 7

\10m15s"length \Exemplar"artist
\Hello"title \5m32s"length

trak
\Goodbye"title \4m43s"length

trak
media

Figure 1.3: Tree representation of an XML doument� insert a leaf nodeWe will all a set of suh operations an edit sript. The set of edit sriptswhih transform Tree 1 into Tree 2 is in�nite; we ould ontinuously add anddelete nodes. However we want to �nd a minimal edit sript whih transformsTree 1 into Tree 2. An example edit sript to hange the tree in �gure 1.4 intothe tree in �gure 1.5 ould be:� delete L(a), the �rst hild of node 2,� add L(f) as the 1st hild of node 3,� relabel the 2nd hild of node 4 from A(e) to A(g).1.3 Output FormatTo be of more value to users, we need to be able to show the edit sript in a moreintuitive, visual and immediately disernible format. An obvious and exiblemethod of solving this problem is to hange the edit sript into a format whih isvalid XML and an be used by other programs. This format an then be modi�ed,e.g. by an XSLT transformation into a format whih displays the hanges in aform whih is easy to read by users.

CHAPTER 1. INTRODUCTION & BACKGROUND 8(1)

L(a) A(b)(5) (6)T
A()(7)T L(d) A(e)(8) (9)T(2) (3) (4)M

Figure 1.4: Tree 1(1)

A(b)(5)T L(f) A()(6) (7)T
L(d) A(g)(8) (9)T(2) (3) (4)M

Figure 1.5: Tree 2We use the term delta in the revision ontrol sense to mean a representationof the di�erenes between two objets, in our ase XML douments. This senseof the word probably ame from its use in mathematis and engineering where itan mean a \quanti�able hange".1.4 PathingThe problem and ation of applying a delta to a �le in order to produe a newversion of the �le with the hanges inorporated is known as pathing. The �lean be, but is not neessarily, one of the �les used in the reation of the delta.

CHAPTER 1. INTRODUCTION & BACKGROUND 9A delta used in this ontext may be alled a path, and the �le with thehanges inorporated may be referred to as the pathed �le.The term pathing is used to refer to the problem and ation of applying suha path.1.5 AppliationsThere are many possible appliations for XML di�erening and pathing tools,some oneivable uses are:Version Control: Text based version ontrol systems use the standard UNIXdi� and path tools extensively. Version Control systems overing XMLwould greatly bene�t from an XML di� tool. Although the UNIX di�utility will produe valid output for XML �les, the output will be sub-optimal in omparison to a di� utility ognizant of the hierarhial strutureof the data. The hierarhial delta should also apture the \essene" of anyhanges - what the users intentions were when modifying the �le - muhbetter than the line-oriented di�.Doument Comparison and Updating: XML douments written by an au-thor or o-author an be heked to �nd the hanges between versions.\Pathes" an be distributed ontaining the hanges made by an author,and others an hoose whether or not they wish to apply the hanges totheir opy of the doument.Databases: XML is inreasingly used for storing data in databases. Detetinghanges to data is important for many database appliations. The XyDi�[11℄ program was developed speially for the Xyleme [17℄ data warehousingprojet. For example if the database returns XML douments for query

CHAPTER 1. INTRODUCTION & BACKGROUND 10results, we an identify the nature of any hanges to a standing query e.g.detet when a new name is added to a mailing list.Web Cahing: Currently web ahes must request omplete douments if theydo not hold a urrent version of the requested page. Using a di�ereningutility, they need only request a delta between the ahed page and thenew page. This ould reate a large redution in the amount of web traÆ,and result in improved transfer times for users. Suh a system ould ahedynami as well as stati web objets. See [9℄ for more information.Transation Data: If a user has a ommon query against an appliation itwould be possible to send only a delta of any hanges to the previous queryresult rather than send the omplete doument again. For example a sportstiker appliation ould send information on only the urrent event (e.g. agoal being sored, a yellow ard given), rather than send the full aountof the math to date. This an result in signi�ant bandwidth savings.

Chapter 2
Related Work
This hapter details previous work arried out in areas relevant to the projet.First we look at tree-orretion algorithms that an be used in di�erening XMLdouments, before moving on to look at existing produts for di�erening XMLand their output formats.2.1 Tree Corretion AlgorithmsAs explained in the previous hapter, the problem of �nding the hanges betweentwo XML douments an be seen as the tree-to-tree orretion problem. Thissetion overs several algorithms reated to solve this problem.2.1.1 The Extended Zhang and Shasha AlgorithmBarnard, Clarke and Dunan's paper [2℄ gives a onise overview of early (pre-1995) work on the tree-to-tree orretion problem. As the early work has largelybeen superseded by later algorithms and papers, we will not onsider it here.However the paper also proposes an algorithm based on Zhang and Shasha'swork [3℄ whih we will refer to as the Extended Zhang and Shasha (EZS1) algo-1The name EZS is oined in the xmldi� [4℄ doumentation11

CHAPTER 2. RELATED WORK 12rithm.The original algorithm by Zhang and Shasha [3℄ runs in time O(n2 log2 n) forbalaned trees [5℄, where n is the number of tree leaves (worse for unbalanedtrees). The algorithm uses the following primitives (basi operations):� hange hange the \value" of a node to a new value, e.g. replae the textof a sentene� delete a leaf node� insert a leaf nodeBarnard, Clark and and Dunan extended Zhang and Shasha's algorithm byadding the following primitives whih at on subtrees rather than just nodes:� deleteTree deletes a subtree� InsertTree inserts a subtree� swap swaps a subtree with another subtreeThese operations were added to give better edit sripts for douments; they allowoperations loser to those a user ould be expeted to perform, suh as mergingand moving whole setions of text at a time.The impat these extensions have on the overall time is relatively negligibleompared to the bene�ts. Note that the EZS algorithm will always produe aedit sript that is minimal in terms of the osts of the operations.This algorithm is implemented in the xmldi� [4℄ program.2.1.2 The Fast Math Edit Sript AlgorithmChawathe, Rajaraman, Garia-Molina and Widom's paper [5℄ overs the FastMath Edit Sript or FMES2 algorithm. The FMES algorithm was reated after2The name FMES is oined in the xmldi� [4℄ doumentation

CHAPTER 2. RELATED WORK 13the EZS algorithm and is intended to be omplementary to it.The FMES algorithm uses the following primitives:� Insert inserts a new leaf node� Delete deletes a leaf node� Update hanges the \value" of a node to a new value, e.g. replae the textof a sentene� Move moves a subtree from one parent to anotherThe algorithm splits the tree-to-tree orretion problem into two parts; �ndinga good mathing between trees (Good Mathing problem) and �nding a MinimumConforming Edit Sript (MCES). A desription of the operation of the algorithman be found in setion 4.3.1In order to ahieve good performane from the algorithm, it is assumed thatfor a leaf l in a doument, there exists at most one leaf in the other doumentwhih \losely" resembles l. This assumption allows the algorithm to performeÆiently, but in ases where this assumption does not hold it may not produea minimal edit sript.The FMES algorithm runs in order O(ne + e2) time where n is the numberof tree leaves and e is the \weighted edit distane" (desribed in the paper).Beause of the tradeo�s between performane and minimality of edit sripts, theauthors suggest using the EZS algorithm in domains where the amount of datais small and the FMES algorithm in domains where there is a large amount ofdata.The FMES algorithm is also implemented in the xmldi� [4℄ program.

CHAPTER 2. RELATED WORK 142.1.3 The xmdi� AlgorithmThe xmdi� algorithm presented in [6℄ is unique in that it de�nes an external-memory algorithm whih an handle arbitrarily long �les. The paper is writtenby Sudarshan Chawathe, a o-author of [5℄, and represents some subsequent workhe has arried out in the area.The following primitives are used by xmdi�:� Insert inserts a leaf node� Delete deletes a leaf node� Update hanges the \value" of a node to a new valueThe algorithm uses the idea of edit graphs to redue the problem of �nding aminimum-ost edit sript to the problem of �nding a shortest path from one endof the edit graph to the other.In an external-memory algorithm the overriding performane fator is thenumber of I/O operations. The algorithm an make use of surplus RAM toredue I/O ost. Given a blok size of S, input trees of sizeM and N respetively,m =M=S and n = N=S, the osts are:� I/O 4mn+ 7m+ 5n� RAM 6S� CPU O(MN + (M +N)S1:5)2.1.4 Other AlgorithmsThere exist many other algorithms and papers on the tree-to-tree orretion prob-lem, whih, due to lak of spae, are not overed in depth here, but two in par-tiular deserve a mention:

CHAPTER 2. RELATED WORK 15� Cole, Hariharan and Indyk's paper [7℄ is reent and ahieves an impressivetime bound, but is heavily mathematial and it would take some time tounderstand well enough to reate an implementation based on it.� Chawathe and Garia-Molina's paper [8℄ overs the MH-DIFF algorithm.They inlude primitives to move and opy entire subtrees, whih as dis-ussed in the EZS algorithm, an lead to more appropriate deltas for dou-ments. Their work overs unordered trees whih are not always appliableto XML douments.2.2 Existing ProdutsThere are several existing produts for �nding hanges between XML produts.All of these tools are designed to take two XML �les as input and somehowdisplay the hanges between them.IBM's XML Di� and Merge Tool [20℄ is not overed as it is not designed toprodue standalone delta �les. Instead the program highlights the di�ereneswithin a Java GUI. However, IBM's other produt XML TreeDi� [22℄ is onsid-ered.2.2.1 DeltaXMLDeltaXML [23℄ is proprietary software reated by Monsell EDM Ltd.Interestingly it an handle both ordered and unordered trees. If a DoumentType De�nition (DTD) is present it is used to obtain entity expansions anddefault attribute values. Output is either a delta or the original doument withhanges tagged. The delta format is onsidered in setion 2.3.

CHAPTER 2. RELATED WORK 162.2.2 xmldi�The xmldi� [4℄ produt is GPL-liensed free software reated by Logilab as partof the NARVAL projet.The program was written in Python and implements the FMES and EZSalgorithms. It has two output formats for deltas, one of whih is not in XMLformat and the other is in the XUpdate [24℄ language (onsidered later).The program needs to hold the XML �les in an internal struture in memory,hene it annot handle very large �les. Also there are several ases where theprogram produes inorret output, due to oalesing of text nodes in XPath (seethe XPath standard [29℄ for more information).2.2.3 XML TreeDi�XML TreeDi� [22℄ produt is proprietary software reated by IBM.The program was written as a set of Java Beans intended to mimi the fun-tionality of the traditional UNIX di� and path programs. It purportedly ahievesgood performane by the use of \fuzzy subtree mathing". The program has 2output formats, FUL and XUL, of whih we onsider XUL later, as XUL is thesuessor of FUL.2.2.4 XyDi�The XyDi� program [11℄ was developed by the VERSO team for INRIA [12℄.The program was developed for the Xyleme [17℄ XML data warehousingprojet. The utility uses the Xeres [13℄ C++ parser. At its heart is a veryfast algorithm able to di�erene large (>10Mb) douments. However the algo-rithm often produes non-minimal output.XyDi� was released under the open soure Q Publi Liense.

CHAPTER 2. RELATED WORK 172.2.5 di�mkThe di�mk utility [18℄ is a Perl program written by Norman Walsh of Sun Mi-rosystems.Although the soure ode is available, it does not appear to have an OpenSoure [32℄ liense and remains the opyright of Sun Mirosystems. The programuses a Perl algorithm for omputing the Longest Common Subsequene (LCS) oftwo strings. It does not always produe minimal, or even orret output. Theoutput is the original doument with hanges marked. Distributed with a utilitywhih displays the di�erenes between the �les using olours in a way whih iseasy to read by humans.2.2.6 XML Di� and Merge ToolThe XML Di� and Merge Tool [19℄ is proprietary software reated by DommittIn.There is no downloadable evaluation, only an on-line demonstration whihinvites the user to upload XML �les. It uses the xmdi� [6℄ algorithm. Theoutput is the original doument with hanges marked.2.2.7 VM ToolsThe VM Tools [21℄ pakage ontains XML di�erening and pathing tools.The tools are written in Java and have a de�ned API for integration with otherjava programs. The pakage is released under their own VM Systems softwareliense. VM Tools does not support di�erening of XML proessing instrutionsor omments, nor does it have support for large �les.

CHAPTER 2. RELATED WORK 182.3 Output FormatsAll of these produts have separate output formats. In this setion we onsiderand ontrast the best of them. I have kept this setion separate from the dis-ussion of the produts as the output formats an stand independent of theirimplementations.None of the output formats produe enough ontext information to produeaurate pathes on �les onsiderably di�erent from those used in reating thedelta. More useful ontext information would be, for example, showing any parentand sibling nodes.For the sake of larity the examples given in this setion have been indentedand formatted; the reader should not expet the programs to produe identialoutput.2.3.1 DeltaXMLAn example of the DeltaXML output format is given in �gure 2.1. The programhas been used to produe a delta between 2 HTML douments where the onlyhange is that the text of a \<td>" element has been hanged from \td 3" to\td 3a".Delta �les produed by DeltaXML always have a namespae for DeltaXMLassoiated with them.The DeltaXML format onveys hange information in a non-omplex fashionand preisely. However it does not make good use of XPath [29℄, and seemsto ontain a lot of redundant information (the unhanged nodes), yet does notprovide the ontext information that is needed for pathing hanged �les.Monsell have applied for a patent on the Delta XML output format.

CHAPTER 2. RELATED WORK 19<xhtml:html xmlns:deltaxml=\http://www.deltaxml.om/ns/well-formed-delta-v1"xmlns: xhtml=\http://www.w3.org/1999/xhtml" deltaxml:delta=\WFmodify"><xhtml:html deltaxml:delta=\WFmodify" ><xhtml:head deltaxml:delta=\unhanged" > </xhtml:head><xhtml:body deltaxml:delta=\WFmodify" ><xhtml:table deltaxml:delta=\WFmodify" ><xhtml:tr deltaxml:delta=\WFmodify" ><xhtml:td deltaxml:delta=\unhanged" > </xhtml:td><xhtml:td deltaxml:delta=\unhanged" > </xhtml:td><xhtml:td deltaxml:delta=\WFmodify" ><deltaxml:PCDATAmodify><deltaxml:PCDATAold>td 3</deltaxml:PCDATAold><deltaxml:PCDATAnew>td 3a</deltaxml:PCDATAnew></deltaxml:PCDATAmodify></xhtml:td></xhtml:tr></xhtml:table></xhtml:body></xhtml:html> Figure 2.1: DeltaXML outputXUpdateThe XUpdate [24℄ format is used by xmldi� and has the advantage of being fullyspei�ed in a reommendation reated by the XML:DB [25℄ initiative. XUp-date an be shaped to a ertain extent by the implementation, but it essentiallyonsists of ommands as shown in 2.2. The delta represents adding an element\<town>" with the value \San Franiso" inside an element \<address>", fol-lowed by appending another element \<address>" as the last hild of \<addresses>".The reommendation for XUpdate is easy to understand, and makes use ofthe XPath standard. The fat that there exists a standard for XUpdate enablesit to be easily adopted by others.XUpdate's disadvantages are its verbosity and lak of support for ontextinformation for the purpose of pathing douments other than those from whih

CHAPTER 2. RELATED WORK 20<?xml version=\1.0"?><xupdate:modi�ations version=\1.0"xmlns:xupdate=\http://www.xmldb.org/xupdate"><xupdate:element name=\address"><town>San Franiso</town></xupdate:element><xupdate:append selet=\/addresses" hild=\last()"><xupdate:element name=\address"><town>San Franiso</town></xupdate:element></xupdate:append> </xupdate:modi�ations>Figure 2.2: XUpdate Output Formatthe original delta was omputed. Also there is no support for seleting only partof a text node, whih is useful in reating small deltas.XULThe XUL output format is used by the IBM XML TreeDi� program. IBM havespent a reasonable amount of time developing XUL, using XUL to replae FULas the default output format for XML TreeDi�.An example of XUL output is given in �gure 2.3.<node id=\/*[1℄" /><node id=\/*[1℄/*[2℄" /><node op=\add" name=\B" type=\3" /><node id=\/*[1℄/*[3℄"/><node op=\add" name=\G" type=\3" /></node></node> Figure 2.3: XUL Output FormatAn understanding of XPath [29℄, not overed here, is required to understandthis output format.The format is not very readable as nodes are referred to as numbers, not bytheir names or values. Although this output format is of limited help to a user,from the mahine's point of view it ould make for faster and easier pathing,

CHAPTER 2. RELATED WORK 21when pathing one of the same douments on whih the delta was produed. Animportant point of this format is that the delta itself is in a hierarhial format,whih is helpful if we are to add ontext information.2.4 ConlusionFrom the algorithms overed earlier, the most appropriate algorithms seem to bexmdi� [6℄ and FMES [5℄.The xmdi� algorithm allows di�erening of large �les and produes minimaledit sripts, both points whih are important to reating a useful di� utility.The FMES algorithm does not always produe minimal deltas and only worksin main memory, but should run substantially faster. In many appliations it ispreferable to quikly see the hanges at a glane rather than wait longer and begiven a slightly more minimal delta.From the output formats desribed earlier the two most apt formats are XUp-date and XUL.XUpdate gives a more textual aount of hanges and is to some extent astandard, whilst XUL gives a preise and less verbose aount of hanges that ismore appropriate for programs.Neither of the output formats support extra ontext information, whih isneessary to produe good pathes for douments other than those from whihthe delta was omputed.Overall, although algorithms exist whih are apable of eÆiently alulatinghanges, there is no produt whih inludes all of the following qualities:� An output format that is good for pathing hanged �les,� A fast and aurate algorithm,� The ability to handle large �les,

CHAPTER 2. RELATED WORK 22� An open soure liense,� Not strongly tied to a partiular XML parser,� Has an independent and fully spei�ed output format.

Chapter 3
Requirements
This hapter overs the aims and objetives of the projet and the requirementsfor the utilities. The requirements are broken into input and output of the pro-grams, funtional requirements and non-funtional requirements.3.1 Aims and Objetives3.1.1 Aim� Provide GPL-liensed [34℄ free software implementations of XML orienteddi� and path utilities.3.1.2 Objetives� Create an XML \di�" utility whih �nds and outputs the hanges between2 XML douments.{ Implement algorithm(s) for solving the tree-to-tree orretion problem.{ De�ne an output format for displaying a delta of the 2 douments.The output format is intended to be used by other programs and notdiretly read by humans. 23

CHAPTER 3. REQUIREMENTS 24� Create an XML \path" utility whih applies a delta from the di� utilityto an arbitrary XML doument.3.2 Input and OutputThe various inputs and output to the program are detailed in this setion.3.2.1 InputDi� Utility� 2 XML douments to be di�erened.� Command line swithes for the various options de�ned in the FuntionalRequirements setion 3.4.Path Utility� Delta output from the di� utility.� XML doument that the delta is to be applied to.� Command line swithes for the various options de�ned in the FuntionalRequirements setion 3.4.3.3 OutputThe various program outputs are detailed in this setion.3.3.1 Di� Utility� A delta of the hanges between the douments or� A statement of whether the two douments di�er if in \silent mode".

CHAPTER 3. REQUIREMENTS 25The output format must be onise yet allow for the addition of ontext data.The addition of ontext data is important to allow pathes of �les whih werenot used in the reation of the delta. This ontext data must be enough to �ndan appropriate point in the doument to apply eah hange.It should be possible to easily hange the output into a format more easilyread by a user. XSL Transformations (XSLT) [31℄ ould be used to transforma generi XML output format into di�erent formats, more appropriate for otherpurposes. For example we ould have transformations to reate untagged ASCIIoutput or formats designed to highlight ertain aspets of the delta, suh as addednodes.3.4 Funtional RequirementsThis setion desribes requirements whih diretly a�et the funtionality of thetool. The requirements are broken into primary and seondary requirements,reeting their relative importane. Some disussion of why the requirements areneessary is inluded.3.4.1 Di� UtilityPrimary Requirements� The tool must be able to read in 2 well-formed XML douments, �le1 and�le2, and output a set of di�erenes that an be used to reate �le2 from�le1. This is the base funtionality required from the program.� The utilities must take a similar form to the existing UNIX di� and pathtools. This will make the program muh more intuitive and usable by UNIXusers.� The program must operate on the tree-struture of the XML �les as opposed

CHAPTER 3. REQUIREMENTS 26to its at line-based struture. This is neessary to produe deltas whihproperly embody the meaning of the hanges between the �les.� The tool must be able to handle arbitrary length �les. A utility whih onlyworks on small �les is of limited use.� The ability to add ontext information to deltas. This will allow auratepathing of douments whih are not �le1 or �le2.Seondary Requirements� A hoie of algorithms should be available, one whih always produes min-imal deltas, and one whih is faster but may not always produe minimaldeltas. In some ases users will want a minimal delta, in other ases theymay want to sari�e minimalness for speed.� Options to ignore whitespae and harater ase within nodes. Variousoptions for the stripping of whitespae are possible, e.g;{ Never strip whitespae.{ Always strip leading and trailing whitespae.{ Only strip whitespae if parent element is in a given list.{ Only keep whitespae if parent element is in a given list.� An option to ignore hanges to XML omments in a delta. Users may notbe interested in hanges between omments, and may want to turn thisfuntionality o�.� A \silent mode" whih outputs only whether or not two �les di�er. It wouldbe useful to inlude a simple hek to tell if two �les di�er, that does notoutput an entire delta.

CHAPTER 3. REQUIREMENTS 273.4.2 Path UtilityPrimary Requirements� The tool must be able to take deltas from the di� tool and apply them toXML douments. In ases where the delta is applied to the same doumentused as �le1 in the di�, the path program must produe output equivalentto �le2. This is the most basi funtion required of the program.� The tool should be able to reverse the sense of a path; e.g. hange all addsto deletes and vie-versa.� The tool should be able to apply pathes to XML douments other thanthose used to omplete the original delta. Pathing suh douments mayneessarily be less exat and whether or not to apply a partiular hange willdepend on the mode of operation and the auray of the math. Disardedhanges should be plaed in a \rejet" �le.� The tool should inlude ontrols over its level of \interativity". \Intera-tivity" is de�ned as the ability to query the user on whether or not a hangeshould be applied. The user should be able to speify the level of intera-tivity, ranging from always query to never query. This option is useful ifthe user needs to have ontrol over whih hanges are to be applied.Seondary Requirements� Options to ignore whitespae and harater ase. The user should be ableto speify if hanges in whitespae and ase are unimportant, and shouldnot be applied.� The tool should mimi the original UNIX \path" ontrols whih inludea \fuzz-fator" whih determines when a math is a good one, based on

CHAPTER 3. REQUIREMENTS 28ontext. If the math is not good, the hange is rejeted or the user isonsulted. It makes sense to keep this funtionality the same if it does nota�et usability.3.5 Non-Funtional RequirementsThis setion overs requirements whih do not a�et the funtionality of the tool,but are nonetheless important.� The tools will be put under the GPL liense, whih allows others to freelyuse and extend the program.� The tool's usage, output and struture will be learly doumented, to helpothers who may wish to extend or modify the tool, as well as normal users.� The tools must run on the departmental Linux mahines.

Chapter 4
Design
The utilities were designed using the proess oriented method put forth in [27℄.This method was hosen due to previous experiene with it, and beause thestruture of the program readily breaks down into a hierarhial, funtional owmodelled well by this method.An objet-oriented methodology, suh as the UML, was not used mainly be-ause I have little experiene of using suh a methodology. The program alsodoes not deompose as readily into objets as a funtional ow, as it is mainlyomposed of two large, inalterable algorithms.4.1 Diagrams and ChartsAll diagrams and the data ditionary an be found online at http://diffxml.soureforge.net/design/. There are three types of diagram used:� Data Flow Diagrams (DFDs): Model the logial proess of the pro-gram. Shows the proesses whih ompose the program and how data ispassed between them. For eah DFD with a ontrol proess, an STD isalso inluded. A data ditionary ontains de�nitions for the dataows andstores in the DFDs. 29

CHAPTER 4. DESIGN 30� State Transition Diagrams (STDs): Reords the ontrol informationrequired within the real-time logial proess model. Shows the variousstates a program an pass through.� Struture Charts: Models the system as hierarhial, synhronous, in-terating modules. As opposed to a DFD whih is asynhronous and hasno expliit hierarhy.4.2 Relating XML douments to treesBoth the FMES and the xmdi� algorithms work on rooted, ordered, labeled treeswhere eah an ontain some \value".A rooted tree has exatly one node that has been seleted as the basis of thedoument, as opposed to a \free tree" or ayli graph. An ordered tree is wherethe hildren of nodes have a designated order. In a labeled tree eah node has aname (label) whih is not neessarily unique but in some sense de�nes its \type",for example a sentene or paragraph in a doument tree. By the value of a nodewe mean whatever information it holds, for example the ontents of a sentenein a doument tree.It is important that we relate these onepts to XML �les, so as to remove anyambiguity. To do so we will referene de�nitions given in the Doument ObjetModel (DOM) Level 2 Core Spei�ation [10℄.Firstly, XML an be seen in a hierarhial format beause XML is stritlynested ; XML elements must always be properly losed and may not overlap.XML �les an always be seen as rooted trees as there is always exatly oneroot element (the \doument element" in DOM) orresponding to the root ofthe tree. The labels of an XML doument are the values returned by the DOMgetNodeName() method. The exeption to this rule is attributes, whih, in our

CHAPTER 4. DESIGN 31ontext, are not de�ned as nodes but as the \value" of an element. The value ofnodes, other than attributes and elements are the same as that returned by theDOM getNodeValue() method.The breakdown of value and label for eah onsidered node type is:Node Type Label ValueElement tag name ((attribute title)(attributevalue))*Comment #omment ontent of the ommentText #text ontent of text nodeProessingInstrution target entire ontent exluding thetargetSeveral node types are not onsidered, either as they are only appliable toDTDs1, or are not onsidered leaf nodes. The value of Element nodes, \((attributetitle)(attribute value))*", represents an assoiative array of attribute titles withtheir values.Using these de�nitions it is possible to build a tree of the form usable by theFMES and xmdi� algorithms from an XML �le.4.3 Desription of AlgorithmsThe following setion briey desribes the working of the FMES and xmdi� al-gorithms. The algorithms build upon or make use of similar onepts whih aredesribed �rst. Both algorithms reate Edit Sripts, a sequene of edit operationswhih transform one tree into another. We use the de�nition of edit operationsas desribed in [5℄.We onsider four main edit operations:1Doument Type De�nition, see the XML spei�ation [1℄

CHAPTER 4. DESIGN 32� Insert: The insertion of a new leaf node x into T1, denoted by INS((x,l,v),y,k).A node x with label l and value v is inserted as the kth hild of node y of T1.Where x is some unique node identi�er. More preisely, if u1; : : : ; um arethe hildren of y in T1, then 1 � k � m+ 1 and u1; : : : ; uk�1; x; uk; : : : ; umare the hildren of y in T2. The value of v is optional and is assumed to benull if omitted.� Delete: The deletion of a leaf node x of T1, denoted by DEL(x). The resultT2 is the same as T1, exept that it does not ontain node x. DEL(x) doesnot hange the relative ordering of the remaining hildren of p(x). Thisoperation deletes only a leaf node; to delete an interior node we must �rstmove its desendants to their new loations or delete them.� Update: The update of the value of a node x in T1, denoted by UPD(x,val).T2 is the same as T1 exept that in T2, v(x) = val, where v(x) denotes thevalue of a node x.� Move: The move of a subtree from one parent to another in T1, denotedby MOVE(x,y,k). T2 is the same as T1, exept x beomes the kth hild ofy. The entire subtree rooted at x is moved along with x. This operation isnot supported by the xmdi� algorithm.In most ases there are many edit sripts that will hange T1 into T2. We wantto hoose an edit sript whih does the minimum amount of work neessary. Inorder to formalize this notion it is neessary to have a ost model whih assignsa ost to eah operation. This requires the funtions:� i(x): whih returns a positive number representing the ost of inserting anode x.

CHAPTER 4. DESIGN 33� d(x): whih returns a positive number representing the ost of deleting anode x.� m(x): whih returns a positive number representing the ost of moving asubtree rooted at x.� u(v1; v2): whih returns a positive number representing the ost of updat-ing a value from v1 to v2.The numbers returned should be onsistent with regards to eah other, forexample the ost of updating a node's value to a similar value should be less thanthe ost of deleting the node and inserting a new node. The ost of an edit sriptis the sum of the osts of its individual operations.4.3.1 The Fast Math Edit Sript (FMES) AlgorithmThe FMES algorithm is fully desribed in [5℄.The algorithm splits the problem of �nding the minimum ost edit distanebetween ordered trees into two subproblems:� The \good" mathing problem.� The minimum \onforming" edit sript problem.The \good" mathing problem is �nding an appropriate mathing betweenthe nodes of two trees, T1 and T2, that an be used in solving the minimum\onforming" edit sript problem. Two nodes are said to have a mathing if thenodes have similar or idential values. Mathings exist on a one-to-one basis. Aset of mathings M an be onsidered better than a set of mathings M 0 if usingM to ompute the edit sript results in a heaper edit sript than using M 0.For reasons of eÆieny, the algorithm assumes that for any given leaf nodey 2 T2, there is at most one node x 2 T1 whih is omputed to math y. This

CHAPTER 4. DESIGN 34assumption will not hold for all douments. In suh ases the algorithm maygenerate non-minimal output, in these ases we trade minimality for speed.The mathing algorithm works by traversing T1 bottom-up, looking for matheswith so far unmathed nodes in T2, whih are added to M . The nodes are thenmarked as \mathed". This basi algorithm an be improved by reating \hains"of nodes with the same label and using Longest Common Subsequene (LCS) [28℄algorithms to get an initial mathing between nodes.The minimum \onforming" edit sript problem is to reate a minimum ostedit sript onforming to a set of mathingsM , given the setM and two trees, T1and T2, whih transforms T1 into T2. There are �ve main stages in the algorithmused to ompute the edit sript, E. In the following desription of the stages,p(x), l(x), v(x) denote the parent, label and value of a node x respetively.The �ve stages are:� Update: Look for mathed pairs of nodes (formally (x; y) 2 M) whihhave di�ering values (v(x) 6= v(y)). For eah pair append the edit operationUPD(x; v(y)) to E and apply the update to T1.� Align: The hildren of a mathed pair ((x; y) 2M) are misaligned if x hasmathed hildren u and v suh that u is to the left of v in T1 but the partnerof u is to the right of the partner of v in T2. Eah pair of internal mathednodes are heked to see if their hildren are misaligned. Misaligned hildrenare aligned via a move operation whih is then appended to E. For detailson how the move operations are worked out, refer to the paper [5℄.� Insert: Look for an unmathed node z 2 T2 suh that its parent is mathed.Suppose y = p(z), and y's partner in T1 is x. For eah node appendedit operation INS((w; l(z); v(z)); x; k) to E, and apply the operation to T1.Add (w; z) as a mathed pair to M . Variable w denotes a new unique

CHAPTER 4. DESIGN 35node identi�er reated for the node, and position k is determined withrespet to the hildren of x and z that have already been aligned. Thenode inserted beomes a leaf node, any hildren of z will be inserted as aseparate operation.� Move: Look for pairs of mathed nodes ((x; y) 2 M) whose parents arenot mathed. Append edit operation MOV(x; u; k) to E and apply theoperation to T1. Variable u denotes the mathed node of the parent ofy in T1. The position k is determined with respet to the already alignedhildren, as in the insert phase. Both the parents are added to the mathingset M .� Delete: Look for unmathed leaf nodes x in T1. For eah suh node addDEL(x) to E and apply the delete operation to T1.One the algorithm has ompleted, T1 has been transformed into a opy ofT2, E is the �nal edit sript and M is a mathing between all nodes in the treesto whih E onforms.4.3.2 xmdi�The xmdi� algorithm [6℄ redues the tree-to-tree orretion problem to the prob-lem of �nding a shortest path in the edit graph of the two trees.Edit graphs are used in several algorithms, notably the Myers LCS algorithm[28℄. For a full desription of edit graphs refer to the Myers paper or the xmdi�paper.Intuitively an edit graph an be thought of as a simple grid, with the sequenesof nodes being ompared as its axes. Suppose the sequene of nodes representingT1 are on the horizontal axis, and the sequene of nodes representing T2 are onthe vertial axis. Therefore eah point on the grid has a orresponding node in

CHAPTER 4. DESIGN 36T1 and in T2. There are direted edges between eah node to the node (if any) tothe right, bottom and bottom-right. Naturally horizontal edges are direted tothe right, vertial edges to the bottom and diagonal edges to the bottom right.Crossing an edge horizontally represents deleting the orresponding node of T1,rossing an edge vertially represents inserting the orresponding node of T2 androssing an edge diagonally represents updating the value of the orrespondingnode on T1 to the value of the orresponding node on T2. Weights are attahed tothe edges equal to the ost of the edit operations they represent. Therefore anyminimum ost edit sript will map to a path in the edit graph from the top-leftto the bottom-right.The xmdi� algorithm an be broken into 2 omponents, omputing the dis-tane matrix and generating the edit sript.The distane matrix is a (M + 1) � (N + 1) matrix D, where M and N arethe number of nodes in the respetive input trees. D(x; y) is the length of theshortest path from (0; 0) to (x; y) in the edit graph. The omputation of thedistane matrix is by a simple algorithm whih heks the weights assigned toedges in the edit graph.Generating the edit sript is the relatively easy task of following the minimumost path through the graph matrix and outputting the appropriate edit operationat eah step.This algorithm is extended to ompute the di�erenes in external memory byseveral tehniques based in bu�ering and omputing nested-loop joins in relationaldatabases. These tehniques are not overed here; for a full aount onsult thexmdi� paper [6℄.

Chapter 5
Output Format
This hapter overs the output format options supported by the program. Abreakdown and motivation for eah of the options is provided. Extensive use ismade of the XPath standard[29℄ and the DOM Level 2 Core Spei�ation [10℄,whih the reader may wish to onsult.5.1 Delta Update Language (DUL)The natural output of the algorithms is an Edit Sript as previously de�ned. Wewant our output format to be a well-formed XML doument, so that it an beeasily used by other programs and modi�ed into other forms, possibly by XSLtransformations. The basi XML elements in DUL are de�ned to be roughlyequivalent to the relevant edit sript operations. The DUL attempts to modelthe basi edit sript operations as XML elements.

37

CHAPTER 5. OUTPUT FORMAT 385.1.1 InsertSyntax<insertparent=\xpathexpr"hildno=\n"harpos=\har"nodetype=\ode"name=\title">value</insert>DesriptionInserts a leaf node into the doument. The instrution is intended to be equivalentto the edit sript operation INS((x,l,v),y,k) desribed on page 31.Attributesparent :The variable xpathexpr is an XPath expression that uniquely identi�es theparent element, equivalent to y in the edit sript operation. The XPath expressionis restrited to having node tests of the form \node()", whih mathes any XPathnode, followed by an abbreviated position prediate of the form [x ℄ where x is theposition number of the node. The xpathexpr uniquely identi�es the parent node.hildno:The variable n is the hild number of y that the node is to be inserted as(the old node at this index beomes the n+1 node). The number representsthe XPath \node()" position taken as hild of the parent node (as opposed tothe DOM node index). The hild number is unused and may be omitted in aseswhere an attribute is inserted, as attributes have no de�ned order. The variablen is equivalent to k in the edit sript operation.harpos:In ases where inserts are made in the middle, immediately after or immedi-

CHAPTER 5. OUTPUT FORMAT 39ately before harater data, it is neessary to hold the harater position at whihto insert the node. The variable har is the numeri harater position at whihto insert the node. The �rst harater of a text node is 1, in aordane with theXPath standard. Setting the attribute to 1 is equivalent to inserting before thetext. If omitted, har defaults to 1.nodetype:The variable ode is the DOM ode of the node returned by the DOM getN-odeType() method, and is part of l(x) in the edit sript operation. These odesare given in �gure 5.1:Node Name CodeElement 1Attribute 2Text 3Proessing Instrution 7Comment 8Figure 5.1: Table of DOM odesDoument nodes, Doument Type nodes and Doument Fragment nodes (asde�ned in the DOM Level 2 Core Spei�ation) are not inluded, as they arenot appropriate leaf nodes. As DTDs are not onsidered within the sope ofDUL, we also do not inlude Notation nodes, Entity nodes, or Entity RefereneNodes. CDATA Setions are seen as Text nodes to avoid problems when usingXPath, whih does not di�erentiate between CDATA Setions and other text.The di�erene algorithm onsiders attributes only as the value of their parentnodes, but to preserve generality they are onsidered nodes distint from theirassoiated elements in DUL.name:The \name" attribute is used in ases where an attribute, element or proess-

CHAPTER 5. OUTPUT FORMAT 40ing instrution is being inserted. The variable title gives the name of an attribute,the tag name of an element, or the target of a proessing instrution. In aseswhere the node is not one of these types, it may be omitted. Default is the emptystring.ContentThe ontent of an insert element, value, is the DOM value of the node to beinserted, as returned by the DOM getNodeValue() method. Equivalent to v inthe edit sript operation.The values are given in �gure 5.2:Node Name ValueAttribute value of attributeComment ontent of ommentElement nullProessing Instrution entire ontent exluding targetText ontent of text nodeFigure 5.2: Table of DOM Node ValuesIn ases where the value is de�ned to be null, inluding node ontent hasno e�et. In these ases the insert operation may be represented by an emptyelement. Representing ases whih do not have a null value by an empty tag isequivalent to setting the value to the empty string.ExampleThe implementation of the di�erening algorithm does not attempt to mathattribute nodes by themselves, instead mathing elements whose tag names andattributes math. Therefore one edit sript operation to insert an element maybe represented by several insert elements e.g:Inserts the element:\<setion title='Poetry' />"

CHAPTER 5. OUTPUT FORMAT 41<insert parent=\/node()[1℄/node()[3℄" hildno=\2" nodetype=\1"name=\setion" /><insert parent=\/node()[1℄/node()[3℄/node()[2℄" nodetype=\2"name=\title" />Poetry</insert>into the doument.5.1.2 DeleteSyntax<deletenode=\xpathexpr"harpos=\har"length=\len = >DesriptionDeletes a leaf node from the doument. Elements with attributes but no hildnodes are onsidered leaf nodes for this purpose, and hene an be removed bythis operation. The instrution is intended to be equivalent to the edit sriptoperation DEL(x) desribed on page 31.Attributesnode:The variable xpathexpr is an XPath expression whih uniquely identi�es theXPath node to be deleted. Attributes may be deleted by an appropriate xpathexpr,whih spei�es their title. The variable xpathexpr is subjet to the same restri-tions as for an insert, with the exeption that when an attribute is being deletedit is spei�ed as the last prediate of the xpathexpr.harpos:In ases where harater data is being deleted, it is neessary to speify howmuh of the text to delete. The attribute \harpos" is used in onjuntion withthe \length" attribute to unambiguously speify what text to remove. The vari-

CHAPTER 5. OUTPUT FORMAT 42able har is the index of the �rst harater to delete, ounting in the same wayas for the insert operation. Unused in ases where the node is not a text node.If omitted it defaults to 1.length:This attribute is used whenever a text node is being deleted. The variable lenidenti�es the number of haraters to delete, from and inluding the haraterspei�ed by the \harpos" attribute. If omitted defaults to 0. Hene if the\length" attribute is unspei�ed when deleting a text node, no deletion takesplae.ExamplesDeleting an attribute:<delete node=\/node()[1℄/node()[2℄/node()[3℄/�title />Removes the \title" attribute of an element.An example of deleting a text node is:<delete node=\/node()[1℄/node()[4℄" harpos=\1" length=\7" />Deletes the �rst 7 haraters from the text node identi�ed.5.1.3 UpdateSyntax<updatenode=\xpathexpr"harpos=\har"length=\length"= >value</update>DesriptionUpdates the value assoiated with a node. The instrution is intended to beequivalent to the edit sript operation UPD(x,val) desribed on page 31.

CHAPTER 5. OUTPUT FORMAT 43Attributesnode:The variable xpathexpr uniquely identi�es the node to be updated, equivalentto x in the edit sript operation. The XPath expression is restrited as for thedelete element, with the addition that elements may not be identi�ed. This isbeause elements have no \value" to update. This is in aordane with theDOM spei�ation where the getNodeValue() method returns null for elements.The names of elements and attributes may not be updated.harpos:In ases where harater data is being updated, it is neessary to speify howmuh of the text to hange. The attribute harpos is used in onjuntion with the\length" attribute to unambiguously speify whih text to update. The variablehar is the �rst harater to hange, ounting in the same way as for the insertoperation. It is unused in ases where the node identi�ed by xpathexpr is not atext node. If omitted it defaults to 1.length:This attribute is used whenever a text node is being updated. The variable lenidenti�es the number of haraters to update, from and inluding the haraterspei�ed by the \harpos" attribute. If omitted defaults to 0. The number ofharaters spei�ed by the \length" attribute are always hanged, if the new textis not len haraters long, the old text is trunated. Similarly if the new text ismore than len haraters, the extra text is inserted without overwriting. Heneif the \length" attribute is unspei�ed when updating a text node, the new textis inserted at the appropriate position, without overwriting the old text.ContentThe value variable represents the new value for the node. The meaning of thevalue is the same as for the insert operation. In ases where harater data is

CHAPTER 5. OUTPUT FORMAT 44being updated, the new text overwrites existing haraters beginning at har.Any haraters not overwritten are kept in the original position. Any haratersleft in value after overwriting the original �nal harater are appended.ExamplesAn example of updating a non-attribute node is:<update node=\/node()[1℄/node()[2℄/node()[3℄">this is a omment</update>An example of updating an attribute is:<update node=\/node()[1℄/node()[3℄/node()[2℄/�title" >ArhBishop</update>Whih hanges the value of the \title" attribute to \Arh Bishop".5.1.4 MoveSyntax<updatenode=\xpathexpr"old harpos=\ohar"length=\len"parent=\parxpathexpr"hildno=\n"new harpos=\nhar />DesriptionMoves the position of a subtree or leaf node within a doument. The instru-tion is intended to be equivalent to edit sript operation MOV(x,y,k) desribedon page 31.Attributesnode:The variable xpathexpr uniquely identi�es the node or subtree to be moved.

CHAPTER 5. OUTPUT FORMAT 45The XPath expression is restrited as for the delete element, exept that at-tributes may not be moved.old harpos:In ases where harater data is being moved, it is neessary to speify howmuh of the text to move. The attribute \old harpos" is used in onjuntionwith the \length" attribute to unambiguously speify what text is to be moved.The variable ohar is the index of the �rst harater to move, ounting in sameway as for the insert operation. Unused in ases where the node is not a textnode. If omitted it defaults to 1.length:This attribute is used whenever a text node is being deleted. The variablelen identi�es the number of haraters that are to be moved. If omitted defaultsto 0. Hene if the \length" attribute is unspei�ed when moving a text node, nomove takes plae.parent :The variable parxpathexpr uniquely identi�es the element the node identi�edby xpathexpr is to beome a hild of. The XPath expression is restrited as forthe insert element.hildno:The variable n is the hild number of parxpathexpr that the node is to beinserted as (the old node at this index beomes the n+1 node). The number isthe XPath \node()" position that the node will have (as opposed to the DOMnode index). In ases where an attribute is inserted the hild number is unusedand may be omitted, as attributes have no de�ned order. Any node urrently atposition hildno under parxpathexpr is moved to position hildno+1.new harpos:In ases where moves insert in the middle, immediately after or immediately

CHAPTER 5. OUTPUT FORMAT 46before harater data, it is neessary to hold the harater position at whih toinsert the node. The variable nhar is the numeri harater position at whih toinsert the node, ounting in the same way as for the insert operation. The �rstharater of a text node is 1, in aordane with the XPath standard. Setting theattribute to 1 is equivalent to inserting before the text. If omitted, har defaultsto 1.ExampleAn example of a move operation is:<move node=\/node()[1℄/node()[3℄/node()[2℄"parent="/node()[1℄/node()[2℄" hildno="2">whih moves the subtree rooted at the 2nd hild of the 3rd hild of the rootelement to be the 2nd hild of the 2nd hild of the root element.5.1.5 DUL ExampleAn example of a omplete DUL doument is given in �gure 5.3.<?xml version="1.0"?><DUL><insert parent=\/node()[1℄/node()[3℄" hildno=\2" harpos=\7"nodetype=\1" name=\setion" /><insert parent=\/node()[1℄/node()[3℄/*[2℄" nodetype=\2"name=\title" />Poetry</insert><delete node=\/node()[1℄/node()[2℄/node()[2℄" harpos=\3"length=\"7"/><update node=\/node()[1℄/node()[3℄/node()[2℄[�title℄">Arh Bishop</update><move node=\/node()[1℄/node()[3℄/node()[2℄"parent="/node()[1℄/node()[2℄" hildno="2"></DUL> Figure 5.3: Complete DUL DoumentThe order of internal elements is important as hanges are proessed with

CHAPTER 5. OUTPUT FORMAT 47respet to any previous hanges. Note that it is not invalid to do operationson previously modi�ed or added nodes, even pointless ases like inserting thenimmediately deleting the same element, although it may well be sub-optimal.This simple representation holds all that is neessary for a delta. In manyases this format will be suÆient. Its advantages are that it is simple and small.5.1.6 NamespaesNamespaes [30℄ are used in XML to qualify element and attribute names by as-soiating them with namespaes identi�ed by Uniform Resoure Identi�er (URI)referenes. A namespae should be both unique and persistent.When using ontext information in DUL, it is neessary to use namespaesto di�erentiate between DUL elements and elements from the douments used toreate the delta. It is also possible that a user may wish to use a DUL doumentor part of a DUL doument within another XML doument.DUL's namespae is urrently identi�ed as http://diffxml.soureforge.net/DUL. This meets the uniqueness harateristi for a namespae, but, as theInternet host for the projet may hange, may not meet the persistene hara-teristi. It was felt that the trade-o� was worthwhile in order to provide a URIwhih ontained information on DUL.5.1.7 Entity ReferenesCurrently DUL has no support for showing di�erenes between entity referenes.Beause of this the urrent implementation either always resolves entities, orremoves external entities from the doument. The attribute \resolve-entities" isattahed to the root element and is given the value \true" or "false" depending ifentities are always resolved or removed respetively. Neither behaviour is entirelyorret. Always resolving entities ould lead to problems when dealing with

CHAPTER 5. OUTPUT FORMAT 48external entities with di�erent URIs; although they may resolve to a ertainvalue at the minute, this value ould hange at any time. Also it is unlear whatshould happen in the ase that an external server annot be reahed.Removing entities is also inorret, as we may be ignoring di�erenes betweenthe douments.A better solution would involve omparing the URIs of external entities,rather than the values to whih the URIs orrespond, and extending the DULto be able to show any di�erenes. This was not implemented as the problemwas not realised until late on in the projet, and beause DTD proessing is notonsidered within the sope of the dissertation.5.1.8 Adding Context InformationThe major disadvantage of the previous output is that it ontains very littleontext information. When we want to apply deltas to douments other thanthe original, ontext information helps us to aurately identify whih nodes thehanges apply to. This reets the line-oriented di� and path utilities ase whereextra lines of ontext information an be output.The problem in our ase is to deide what should onstitute ontext informa-tion.Although I have not implemented ontext aware pathing, it is worth dis-ussing how ontext information ould be output here.The following de�nes several ways of adding ontext information to DULdouments.

CHAPTER 5. OUTPUT FORMAT 49Tag Name ExpansionOne of the simplest meaningful additions is element names in plae of the \node()"node tests1 whih math any node. For example:<delete node=\/do[1℄/hapter[3℄/setion[2℄" /><move node=\/do[1℄/hapter[3℄/setion[2℄"parent=\/do[1℄/hapter[2℄" hildno=\2"/>Note that the position prediates2 in the XPath expressions now identify theposition with regards to the element name rather than the absolute node position,e.g. in the delete operation we are now talking about the seond setion elementof the third hapter element as opposed to the seond hild node of the third hildnode of the root element, whih may or may not refer to the same node. Althoughit would be possible to hoose whih node tests to expand into names, (e.g. onlyexpand the �nal step) this level of ontrol is not onsidered immediately usefulenough to warrant the extra syntax and omplexity required to inlude it.This simple addition makes the meaning of the operation muh learer, butthere is still muh more that an be added in terms of useful ontext information.Reverse PathingA ommon operation when pathing using traditional line based deltas is to\reverse" the sense of the delta, i.e. inserted lines are deleted and vie versa.This allows the user to rereate the original doument in a di� given a path andthe resultant doument. In order to reverse the sense of a DUL doument, it isneessary to store more information about deleted nodes and updated nodes.1Node tests speify the node type and expanded-name of the nodes seleted by the loationstep, see XPath[29℄ for a full desription2Prediates use expressions to re�ne the set of nodes seleted by the loation step. SeeXPath[29℄ for a full desription

CHAPTER 5. OUTPUT FORMAT 50To signify that a delta is in a suitable format for reverse pathing, the attribute\reverse-path" with the value \true" should be added to the root element. Thisattribute defaults to \false" if omitted.In order to reverse a delete, we need to know the values returned by the DOMmethods getNodeName(), getNodeType(), and getNodeValue() for the node to bedeleted.Hene the syntax for the delete instrution beomes:<deletenode=\xpathexpr"harpos=\har"length=\len"nodetype=\ode"name=\title"= >value</delete>Where the extra attributes are:nodetype:Whih is de�ned as for the \nodetype" attribute for the insert operation. Thevariable ode is the DOM ode of the node returned by the getNodeType method.name:Whih is de�ned as for the \name" attribute for the insert operation. Thevariable title is the DOM ode returned by the getNodeName() method. Onlyused in ases where the node to be deleted of type element, attribute or proessinginstrution, and may be omitted in other ases. The default is the empty string.The ontent of the delete element, value, is the DOM value of the node asreturned by the getNodeValue() method. In ases where harater data is beingdeleted only the removed haraters are inluded, not the entire ontents of theXPath text node. In ases where the value of the node is null, inluding nodeontent has no e�et. In suh ases the delete operation may be represented by

CHAPTER 5. OUTPUT FORMAT 51an empty element. This is the same as the ontents for the insert operation.In order to reverse an update operation, we need to know the values returnedby the DOM methods getNodeValue() and getNodeName() for the node to beupdated. Hene the syntax for the update operation beomes:<updatenode=\xpathexpr"harpos=\har"name=\title"= >value<old>oldvalue</old></update>Where the extra attribute is:name:Whih is de�ned as for the \name" attribute for the insert operation. Thevariable title is the DOM ode returned by the getNodeName() method. Onlyused in ases where the node to be deleted of type element, attribute or proessinginstrution, and may be omitted in other ases. The default is the empty string.The harater data ontent of the update element value is the new DOM valueof the node as returned by the getNodeValue() method. The harater data ofthe \old" hild element is the original DOM value of the node as returned by thegetNodeValue() method. In both ases, if harater data is being updated onlythe hanged haraters are inluded, not the entire ontents of the XPath textnode.Context NodesWe now onsider ontext information more akin to the at text onept of out-putting ontext lines surrounding the hanged line. In the hierarhial world,we want to be able to not only output the value of sibling nodes but also par-ent/hild nodes and their siblings. In order to provide ontext information we

CHAPTER 5. OUTPUT FORMAT 52need to add extra attributes and elements ontaining both the ontext data andinformation on the ontext data. Eah DUL operation ours within a ontextelement, whih also ontains any ontext nodes. Operations may also ontainelements whih hold ontext information. What onstitutes a ontext node isspei�ed by the attributes of the \dul" root element.An example of a DUL doument with ontext information is shown in 5.4.The example is hard to read due to the absene of whitespae and indentation,whih is left out to avoid onfusion in identifying ontext nodes.<?xml version=\1.0"?><dul:DUL xmlns:dul=\http://di�xml.soureforge.net" sib ontext=\1"par ontext=\1" par sib ontext=\1"><dul:ontext>text<setion><a/><dul:deletenode=\/do[1℄/hapter[2℄/setion[3℄/text()[1℄" harpos=\1" length=\3">234</delete><!{ omment {></setion>more text</dul:ontext></dul:ontext>more text<hapter title=\Bits and Bobs"><dul:insert parent=\/do[1℄/hapter[3℄" hildno=\1" nodetype=\1"name=\setion" /><data/></hapter>even more text</dul:ontext><dul:ontext>text<setion><dul:updatenode=\/do[1℄/hapter[2℄/setion[3℄/omment()[1℄"> another omment <dul:old> omment </dul:old></update>desription of setion</setion>more text</dul:ontext><dul:ontext>text sibling<hapter><dul:movenode=\/do[1℄/hapter[5℄/setion[7℄" parent=\/do[1℄/hapter[4℄"hildno=\1" ><dul:ontext>some text<hapter><sibling/><dul:mark><setion>some <I> hild </I> nodes </dul:mark><sibling/></hapter>end text</dul:ontext></dul:move></dul:ontext></dul:DUL>Figure 5.4: DUL doument with ontext informationNamespaes are used to di�erentiate DUL elements from ontext informationelements. The attributes attahed to the \dul" root element set the parameters

CHAPTER 5. OUTPUT FORMAT 53for the ontext information:� The attribute \sib ontext" sets the number of sibling elements to outputaround the referened element. Sibling ontext is symmetrial; when pos-sible the given number of siblings is output both before and after the givenelement. The \sib ontext" attribute defaults to the value 0.� The attribute \par ontext" sets the number of parent and hild elementsto output around the referened node. Again ontext is symmetrial but inall ases exept the move operation (and the extended operations onsideredlater), the element will have no hild elements. The \par ontext" attributedefaults to 0.� The attribute \par sib ontext" sets the number of sibling nodes to outputaround the parent/hild elements. Suh siblings have their values given butnot any hild elements. The \par sib ontext" attribute defaults to 0. Theattribute has no e�et when \par ontext" is set to 0.Attributes are not onsidered to be ontext nodes within their own right, butare output as part of elements whih are ontext nodes.The example starts by deleting the text node \234" from the doument. Notethere are 1 preeding sibling, 1 following sibling, the parent element and the par-ents preeding and following siblings shown as ontext. The example then insertsthe element \<setion/>" into the doument. The element has no preeding sib-ling, so none is shown. This is followed by the updating of a omment node. Theformat for the update is the same as for the reverse pathing format desribedpreviously. The �nal operation is to move a \setion" element from \hapter"parent to another. This requires the addition of an \ontext" hild element tothe move operation in order to hold the original ontext of the node. The subtreebeing inserted is highlighted by enlosure within a \mark" element.

CHAPTER 5. OUTPUT FORMAT 54The ontext for the \insert" and \update" elements refer to the transformedtree, i.e. the ontext of the node after the hange has been applied. Conversely theontext for the \delete" element refers to the original tree i.e. the ontext of thenode before the hange is applied. The surrounding ontext for a \move" elementrefers to the transformed tree i.e. the new position of the moved node. Theontext within a \move" element refers to the original tree i.e. the old position ofthe node being moved. Care needs to be taken not to get false impressions fromontext information. Note that the ontext information supplied is fragmented,for example there may be more hildren assoiated with parent elements.5.1.9 Extensions to DULIt is possible to extend the operations in DUL by onsidering further operationson subtrees rather than single elements. Rather than unneessarily de�ne newoperations, we overload the meaning of the insert and delete operations:� Delete SubtreeDelete the subtree rooted at given element:<delete node=\xpathexpr" />Where the XPath expression xpathexpr spei�es the root of the subtree toremove. The XPath expression is restrited in the same way as the insert oper-ation. The xpathexpr uniquely identi�es the element at the root of the subtreebeing removed. The delete subtree operation is ontrasted from the delete nodeoperation as it identi�es a non-leaf node.An example of the delete subtree operation is:<delete node=\/node()[1℄/node()[2℄/node()[2℄" />This example removes the seond hild of the seond hild of the root nodeand all hildren below it. Context elements take a similar form to the \delete"

CHAPTER 5. OUTPUT FORMAT 55element, but ontain a subtree rather than a single node. As text nodes annotbe spei�ed by the xpathexpr, we do not need \harpos" and \length" attributes.� Insert SubtreeInsert a subtree as the nth hild element of given parent:<insert parent=\xpathexpr" hildno=\n" >subtree</insert>Where the XPath expression xpathexpr spei�es the element to be parent ofthe subtree. The XPath expression is restrited in the same way as the originalinsert operation. The xpathexpr uniquely identi�es the parent element. Thesubtree is inserted as the nth hild of the parent. Any node previously atposition n moves to position n + 1. The subtree must be well-formed XML,with exatly one root element. The insert subtree operation is ontrasted fromthe insert node operation as the ontent of the element is a subtree, as opposedto the value of a single node. An example of the insert subtree operation is:<insert parent=\/node()[1℄/node()[3℄" hildno=\2"><setion title=\tools"><bold><itali>Top Tips</itali></bold></setion></insert>Whih appends the given element and its hildren to beome the seond hildof the given parent. Context elements take a similar form to the original insertoperation, but note that all hild nodes are shown already in order to performthe insertion.These elements do not represent the basi operations performed by the dif-ferening algorithms. Instead they build upon the existing operations. In thestandard output of the program, the insertion of a subtree has to be representedby several \insert" elements, one for eah node in the operation. Similarly thedeletion of a subtree has to be represented by several \delete" elements. It should

CHAPTER 5. OUTPUT FORMAT 56be possible to replae multiple insertions and deletions of leaf nodes with the sub-tree operations either by modifying the algorithms or post-proessing the delta�le.5.1.10 XUpdateIt was originally intended that the di�erene program would also support theXUpdate output format. XUpdate is a spei�ation reated by the XML:DBInitiative [25℄. The urrent spei�ation doument is rather ambiguous, andrelies on a referene implementation alled Lexus [26℄, whih is devoid of anysupporting doumentation. As XUpdate only allows a user to speify a XPathtext node (whih oaleses adjaent text nodes), and not part of text node, weran into diÆulties when trying to delete single DOM text nodes. There are aseswhen more than a single DOM text node is referened by a onstrained XPathexpression. It should be possible to provide work-arounds for these ases but atthe time of writing this had not been investigated.Hopefully XUpdate will be subjet to ontinued improvement, and may gainmore widespread usage. For a full desription of XUpdate see [24℄.Contrast with DULThe de�nition for DUL is more rigorous and restrited than that of XUpdate.There is no move operation in XUpdate; it has to be modelled by a delete followedby an insert.5.2 Human Readable OutputNeither the DUL or XUpdate output format are of a format readable by humanswithout further proessing. As both the formats reate well-formed XML do-uments, we an perform XSL Transformations [31℄ on the douments to reate

CHAPTER 5. OUTPUT FORMAT 57output more suited to human onsumption. For example by proessing the origi-nal douments with the delta, it is possible to reate an HTML �le with hangesmarked in di�erent olours, e.g. deleted text shown in red, inserted in blue et.

Chapter 6
Implementation
This hapter overs details of the implementation of the utilities. A breakdown ofthe tehnology used in implementing the algorithms is given, as well as a setionon invoking the program. Details on the publi release of the utilities are alsogiven.6.1 TehnologyIn order to aid programming with XML and improve portability, it was deidedto make use of the standard Appliation Program Interfaes (APIs) availablefor XML. The DOM Level 2 API is used in the implementation of the FMESalgorithm and the path utility. DOM was hosen as it allows XML �les tobe easily and aurately represented as trees as well as providing easy traversalmethods between nodes and their relations.Certain parts of the DOM Level 3 API were also used. Although DOM Level3 is still a work-in-progress, ertain features were of enough gain that its use wasjusti�ed despite the reliane on an unstable API. For example the DOM Level3 methods getUserData and setUserData were used to avoid having to sublassDOM nodes. The hosen DOM parser is Xeres [13℄, from the Apahe group,58

CHAPTER 6. IMPLEMENTATION 59simply beause it is a mature and popular parser.Java was used for almost all the programming. Java was hosen mainly be-ause the DOM APIs are de�ned in terms of Java methods. Although thereare implementations of DOM available for other programming languages, theseare all slightly di�erent interpretations of the Java APIs, and tie the utilities toa given implementation. By using Java we therefore inrease portability bothbetween platforms and API implementations.The XML Pull API [15℄ was used in the implementation of the xmdi� algo-rithm. DOM was not used as we needed an implementation whih avoided storingthe doument in main memory, in order to be able to proess large douments.The Simple API for XML (SAX) ould not be used as it has no mehanism foro-ordinating the parsing of multiple douments. The XML Pull API was usedas it overs both these issues. The hosen implementation of the XML Pull APIwas XPP3 [16℄ a small and extremely fast parser.XPath [29℄ is used heavily in our de�nition of DUL. We used Xalan's [14℄XPath API in reation of the path utility.All programs used are freely available either under the Apahe liense (Xeresand Xalan) or the \Indiana University Extreme! Lab Software Liense" (XPP3).6.2 Command Line InvoationThis setion desribes how the tools are invoked from the ommand line, and theoptions that an be set.6.2.1 Di� ToolSynopsisdi�xml [options℄ from-�le to-�le

CHAPTER 6. IMPLEMENTATION 60Finds di�erenes between the XML douments from-�le and to-�le.
OptionsA desription of all the options \di�xml" aepts is below. The option names,where sensible to do so, are kept lose to those in the GNU di� program. Mostoptions have two equivalent names, one of whih is a single letter pre�xed with a'-' harater, and the other is a long name pre�xed by '{'. Multiple single letteroptions whih do not take arguments an be ombined into a single ommandline word, e.g. -vt is equivalent to -v -t.Long Name ShortName Meaning{brief -q Report only if �les di�er, don'toutput the delta.{ignore-all-whitespae -s Ignore all whitespae whenomparing nodes. Text nodeswith only whitespae are notompared.{ignore-leading-whitespae -w Leading and trailing whitespaein text nodes is ignored whenomparing nodes. Text nodeswith only whitespae are notompared.{ignore-empty-nodes -e Ignore text nodes that ontainonly whitespae.{ignore-ase -i Ignore hanges in haraterase, onsider upper and lowerase to be equivalent.{ignore-omments -r Ignore hanges made toomment elements.{ignore-proessing-instrutions -I Ignore hanges made toproessing instrution elements.{version -V Output version number ofprogram.{help -h Print summary of options andexit.{fmes -f Use the FMES algorithm toompute the hanges.

CHAPTER 6. IMPLEMENTATION 61{xmdi� -x Use the xmdi� algorithm toompute the hanges.{tagnames -t Output tag names of elementsrather than \node()" for nodetests in XPath expressions.{reverse-path -p Create output with enoughinformation for reversing thesense of a path.{remove-entities -n Remove all external entitieswhen proessing. Allowsignoring of hanges to entitiesand o�-line proessing, butmay produe inorret results.{sibling-ontext [=nodes℄ -C nodes Create ontext informationoutput, with nodes (an integer)sibling ontext nodes output toeah side of hanged nodes. Ifnodes is not given, it willdefault to 2.{parent-ontext [=nodes℄ -P nodes Create ontext informationoutput, with nodes (an integer)parent and hild ontext nodesoutput. If nodes is not given itwill default to 1.{parent-sibling-ontext[=nodes℄ -S nodes Create ontext informationoutput, with nodes (an integer)sibling ontext nodes of anyparent or hild ontext nodes.If nodes is not given it willdefault to 1.Note that only the DUL output format may have ontext information.Exit StatusAn exist status of 0 means no di�erenes were found, 1 means some di�ereneswere found and 2 means some error ourred.

CHAPTER 6. IMPLEMENTATION 626.2.2 Path ToolSynopsispathxml [options℄ [original �le [path�le℄℄Apply an di�xml �le to an original.OptionsA desription of all the options \pathxml" aepts is below. The option names,where sensible to do so, are kept lose to those in the GNU path program. Mostoptions have two equivalent names, one of whih is a single letter pre�xed with a'-' harater, and the other is a long name pre�xed by '{'. Multiple single letteroptions whih do not take arguments an be ombined into a single ommandline word, e.g. -dR is equivalent to -d -R.Long Name ShortName Meaning{version -V Output version number of program.{help -h Print summary of options and exit.{dry-run -d Print results of applying the hanges withoutmodifying any �les.{reverse -R Assume that the delta �le was reated with the oldand new �les swapped. Attempt to reverse sense ofhange before applying it, e.g. inserts beomedeletes.
6.3 Publi ReleaseComplied jar �les and soure ode for the di� and path utilities are availablefrom http://diffxml.soureforge.net. Doumentation is also available. Apubli announement of the program was posted on http://freshmeat.net, as

CHAPTER 6. IMPLEMENTATION 63well as to the omp.text.xml newsgroup. The program is released under the opensoure GNU General Publi Liense, for whih the full liense an be found inAppendix A.I have retained lead developer status on the utilities, and intend to ontinuetheir development. By releasing the programs into the environment reated bySoureForge [33℄, I hope to gain the involvement and support of the open soureommunity. Hopefully the programs will see ontinued improvement, not only bythe author but also by other ontributors.

Chapter 7
Testing
Testing was foused both on heking that the programs met the requirementsin setion 3 and on �nding any implementation errors or bugs. Testing ourredontinuously and in more rigorous expliit testing phases. The following desribesthe testing that was arried out on the utilities, an example of input and outputof the program is available in Appendix B.7.1 Blak Box TestingBlak box testing heks for requirements overage. The name is derived fromthe idea that we annot see the ode, only the inputs and outputs, hene the odeis a \blak" box that we annot see into. Blak box testing therefore entres on�nding faults of omission, where parts of the spei�ation have not been properlymet.The initial intention was to test the programs with a very large data set.However as ases whih aused problems were found relatively quikly, the dataset did not beome as large as intended. The urrent data set is available fromthe projet web page at http://diffxml.soureforge.net, ontaining bothorretly handled and inorretly handled ases.64

CHAPTER 7. TESTING 65The following tests were arried out with the data sets:� Run di� program with all data sets for both output formats.� Run path program with deltas and XML douments from above test. En-sure output orresponds to other XML doument used in omputing delta.� Run path program with option to \reverse" sense of path. Ensure outputorresponds to other XML doument used in omputing delta.� Run di� program with option to expand tag names in output.� Run di� program with option to reate ontext output. Values hosen forsibling, parent and parent sibling ontext should range from 0 to 15.� Run di� program in \brief" mode for all data sets.� Run di� program with various options to ignore whitespae.� Run di� program with options to ignore various elements.� Run di� program with options to fore algorithm used.A small sript whih runs a reasonable subset of these tests is available fromthe projet web page http://diffxml.soureforge.net.7.2 White Box TestingWhite box (sometimes known as lear or glass box) testing heks for implemen-tation faults by exerising the boundary values of loops and other parts of theode likely to ause errors. White box testing gets its name from the idea thatwe an see \into" the ode, hene the ode is a \white box" we an see into asopposed to a \blak box" whih we an't.

CHAPTER 7. TESTING 66White box testing ourred ontinuously throughout development, with valueshosen to exerise ode paths and boundary values in the module urrently beingdeveloped. Many bugs were disovered using this method, and nearly all weresolved.7.3 Regression TestingAs the program was developed, a set of working test ases ompiled, omposinga regression test suite. As hanges were made to the program, it was rerun withthe old test suite to ensure no previous funtionality had been broken. Any newtest ases with whih the program worked were then added to the test suite.This ensured that any previously �xed bugs did not reappear in newer versionsof the program. The urrent regression test suite is available from the projetweb page.

Chapter 8
Disussion
In the �nal hapter of this doument, we disuss the ahievements of the projet.The initial objetives and requirements are revisited and ompared to the out-omes. We also look at possibilities for further development. The hapter on-ludes with an overview of the projet, its ahievements and how it sits withprevious work.8.1 Ful�lment of RequirementsIn Chapter 3 we de�ned our objetives as being to:� Create an XML \di�" utility whih �nds and outputs the hanges between2 XML douments.{ Implement algorithm(s) for solving the tree-to-tree orretion problem.{ De�ne an output format for displaying a delta of the 2 douments.The output format is intended to be used by other programs and notdiretly read by humans.� Create an XML \path" utility whih applies a delta from the di� utilityto an arbitrary XML doument. 67

CHAPTER 8. DISCUSSION 68As detailed in 6.3, a working implementation of the utilities is available fromhttp://diffxml.soureforge.net. A full de�nition of DUL, the output formatfor deltas, is in 5.1. This fully meets all the objetives we laid out with the exep-tion of the \path" utility whih an only apply deltas to the XML doumentsthat were used in reation of said delta.In terms of the requirements we spei�ed, all of the primary and seondaryrequirements were met for the di� utility. The requirements for the path utilityto work on XML douments used in reation of the delta and to be able to reversethe sense of pathes were met. The other requirements for the path utility werenot fully met. All of the non-funtional requirements were met.Perhaps most important requirement not met was the ability to performpathing on douments other than those used to reate the delta. This fun-tionality is a large body of work in itself, and ould not be ompleted due to timeonstraints. The author believes the original projet spei�ation was too ambi-tious in this respet, and that the timetable underestimated the amount of timeneeded to �x the bugs. However, the ability of the di� utility to reate ontextoutput, needed for aurate pathing in suh ases, was implemented. The pathutility does work orretly for ases where the doument being pathed was usedin reation of the delta.8.2 Limitations and Further WorkThis setion overs the limitations and possible improvements of the urrentimplementation, as well as funtionality additional to the initial requirements.Further details on the limitations are available in 7. These suggestions ouldtake the form of further aademi work, or future development of the tools.� Various eÆieny gains are possible.

CHAPTER 8. DISCUSSION 69� Not all pairs of XML douments are handled properly; there are still somebugs in the implementation.� Although the DUL has support for identifying single harater hanges, thealgorithm still works on a node by node basis; this ould be improved.� Allow input of �les over a URL.� Allow a �le name of `-' to stand for standard input and handle properly.� Creation of API for di�erening XML douments. This would require somereworking of existing ode, and additional funtions, e.g. the ability todi�erene subtrees only.� Context pathing. Extending the path utility to be able to apply deltasto douments other than those used to ompute the delta. This wouldrequire using the DUL ontext output to math setions of the doumentwith hanges to be made.� Interative pathing. Allow the user to speify if a partiular hange is tobe applied. There should be di�erent levels of interativity depending onthe quality of the path.� Options to ignore whitespae and harater ase in pathing. The userould hoose whether or not a hange is applied if it only a�ets whitespaeor harater ase.� Implementation of the DUL extensions desribed in 5.1.9. These ould beimplemented by either post-proessing the delta �le or supporting diretlyfrom within the algorithms.� Work around for XUpdate output format, whih has problems when tryingto speify harater data to delete/insert.

CHAPTER 8. DISCUSSION 70� More output formats. As the deltas produed by the di� utility are well-formed XML, the deltas an be easily transformed into other formats byXSL Transformations [31℄ or using XML APIs. Formats suitable for par-tiular appliations ould be reated, for example human readable output.� Improve handling of entity referenes. This involves some extensions toDUL.� DUL namespaes properly output by di� utility. Currently they are ignored.� Support for proessing and di�erening of XML Shema and DTDs.� Support for proessing and di�erening of other hierarhial data formats,e.g. HTML and LATEX.� As in some other implementations, e.g. XyDi�, \keys" ould be used tofore mathing of subtrees.8.3 ConlusionThis doument represents the ulmination of almost a year of researh, design andimplementation. The body of work produed is substantial; the soure ode is inexess of 4500 lines, largely omprised of the sophistiated di�erening algorithms,and the DUL spei�ation was no small task in itself.The projet has old roots in both the UNIX di� and path utilities and theearly work on the tree-to-tree orretion problem by people suh as Zhang andShasha [3℄. The projet is also utting edge, many of the XML standards andsoftware used have only been ompleted in reent months, some are still at theworking draft stage and all are undergoing ontinued development. A full break-down of the tehnology used an be found in setion 6.1.

CHAPTER 8. DISCUSSION 71The utilities produed do not represent the only e�orts at XML di�ereningutilities. Existing e�orts were overed in the related work setion 2. Our workstands out for several reasons, despite its urrent immaturity:� It is released under the GNU General Publi Liense, in an environmentopen to ontribution and extensions by others.� It has its own independent and well de�ned output language, DUL, as wellas support for XUpdate.� The DUL is unique in that in ontains expliit support for ontext infor-mation that an be used in aiding pathing of hanged �les.� The di� utility supports large douments via the xmdi� algorithm.� It uses standard APIs to avoid tying itself to partiular parsers.Although the ompletion of this dissertation marks a milestone in the devel-opment of the utilities, it does not mark the end. The author intends to ontinuedevelopment of the programs, and hopefully other members of the open soureommunity or even future dissertations will also build on the urrent work.

Appendix A
GNU General Publi LienseVersion 2, June 1991Copyright 1989, 1991 Free Software Foundation, In.59 Temple Plae, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to opy and distribute verbatim opies of this liense do-ument, but hanging it is not allowed.PreambleThe lienses for most software are designed to take away your freedom to shareand hange it. By ontrast, the GNU General Publi Liense is intended toguarantee your freedom to share and hange free software|to make sure thesoftware is free for all its users. This General Publi Liense applies to most ofthe Free Software Foundation's software and to any other program whose authorsommit to using it. (Some other Free Software Foundation software is overedby the GNU Library General Publi Liense instead.) You an apply it to yourprograms, too.When we speak of free software, we are referring to freedom, not prie. OurGeneral Publi Lienses are designed to make sure that you have the freedom todistribute opies of free software (and harge for this servie if you wish), thatyou reeive soure ode or an get it if you want it, that you an hange thesoftware or use piees of it in new free programs; and that you know you an dothese things.To protet your rights, we need to make restritions that forbid anyone todeny you these rights or to ask you to surrender the rights. These restritionstranslate to ertain responsibilities for you if you distribute opies of the software,or if you modify it.For example, if you distribute opies of suh a program, whether gratis or fora fee, you must give the reipients all the rights that you have. You must makesure that they, too, reeive or an get the soure ode. And you must show themthese terms so they know their rights. 72

APPENDIX A. GNU GENERAL PUBLIC LICENSE 73We protet your rights with two steps: (1) opyright the software, and (2)o�er you this liense whih gives you legal permission to opy, distribute and/ormodify the software.Also, for eah author's protetion and ours, we want to make ertain thateveryone understands that there is no warranty for this free software. If thesoftware is modi�ed by someone else and passed on, we want its reipients toknow that what they have is not the original, so that any problems introduedby others will not reet on the original authors' reputations.Finally, any free program is threatened onstantly by software patents. Wewish to avoid the danger that redistributors of a free program will individuallyobtain patent lienses, in e�et making the program proprietary. To prevent this,we have made it lear that any patent must be liensed for everyone's free use ornot liensed at all.The preise terms and onditions for opying, distribution and modi�ationfollow.Terms and onditions for opying, distribution and mod-i�ation0. This Liense applies to any program or other work whih ontains a notieplaed by the opyright holder saying it may be distributed under the termsof this General Publi Liense. The \Program", below, refers to any suhprogram or work, and a \work based on the Program" means either theProgram or any derivative work under opyright law: that is to say, a workontaining the Program or a portion of it, either verbatim or with modi�-ations and/or translated into another language. (Hereinafter, translationis inluded without limitation in the term \modi�ation".) Eah liensee isaddressed as \you".Ativities other than opying, distribution and modi�ation are not overedby this Liense; they are outside its sope. The at of running the Programis not restrited, and the output from the Program is overed only if itsontents onstitute a work based on the Program (independent of havingbeen made by running the Program). Whether that is true depends onwhat the Program does.1. You may opy and distribute verbatim opies of the Program's soure odeas you reeive it, in any medium, provided that you onspiuously andappropriately publish on eah opy an appropriate opyright notie anddislaimer of warranty; keep intat all the noties that refer to this Lienseand to the absene of any warranty; and give any other reipients of theProgram a opy of this Liense along with the Program.You may harge a fee for the physial at of transferring a opy, and youmay at your option o�er warranty protetion in exhange for a fee.2. You may modify your opy or opies of the Program or any portion of it,thus forming a work based on the Program, and opy and distribute suhmodi�ations or work under the terms of Setion 1 above, provided thatyou also meet all of these onditions:

APPENDIX A. GNU GENERAL PUBLIC LICENSE 74(a) You must ause the modi�ed �les to arry prominent noties statingthat you hanged the �les and the date of any hange.(b) You must ause any work that you distribute or publish, that in wholeor in part ontains or is derived from the Program or any part thereof,to be liensed as a whole at no harge to all third parties under theterms of this Liense.() If the modi�ed program normally reads ommands interatively whenrun, you must ause it, when started running for suh interative use inthe most ordinary way, to print or display an announement inludingan appropriate opyright notie and a notie that there is no warranty(or else, saying that you provide a warranty) and that users may redis-tribute the program under these onditions, and telling the user howto view a opy of this Liense. (Exeption: if the Program itself isinterative but does not normally print suh an announement, yourwork based on the Program is not required to print an announement.)These requirements apply to the modi�ed work as a whole. If identi�ablesetions of that work are not derived from the Program, and an be reason-ably onsidered independent and separate works in themselves, then thisLiense, and its terms, do not apply to those setions when you distributethem as separate works. But when you distribute the same setions aspart of a whole whih is a work based on the Program, the distributionof the whole must be on the terms of this Liense, whose permissions forother liensees extend to the entire whole, and thus to eah and every partregardless of who wrote it.Thus, it is not the intent of this setion to laim rights or ontest yourrights to work written entirely by you; rather, the intent is to exerise theright to ontrol the distribution of derivative or olletive works based onthe Program.In addition, mere aggregation of another work not based on the Programwith the Program (or with a work based on the Program) on a volume ofa storage or distribution medium does not bring the other work under thesope of this Liense.3. You may opy and distribute the Program (or a work based on it, underSetion 2) in objet ode or exeutable form under the terms of Setions 1and 2 above provided that you also do one of the following:(a) Aompany it with the omplete orresponding mahine-readable soureode, whih must be distributed under the terms of Setions 1 and 2above on a medium ustomarily used for software interhange; or,(b) Aompany it with a written o�er, valid for at least three years, togive any third party, for a harge no more than your ost of physiallyperforming soure distribution, a omplete mahine-readable opy ofthe orresponding soure ode, to be distributed under the terms ofSetions 1 and 2 above on a medium ustomarily used for softwareinterhange; or,

APPENDIX A. GNU GENERAL PUBLIC LICENSE 75() Aompany it with the information you reeived as to the o�er todistribute orresponding soure ode. (This alternative is allowed onlyfor nonommerial distribution and only if you reeived the programin objet ode or exeutable form with suh an o�er, in aord withSubsetion b above.)The soure ode for a work means the preferred form of the work for makingmodi�ations to it. For an exeutable work, omplete soure ode meansall the soure ode for all modules it ontains, plus any assoiated interfaede�nition �les, plus the sripts used to ontrol ompilation and installationof the exeutable. However, as a speial exeption, the soure ode dis-tributed need not inlude anything that is normally distributed (in eithersoure or binary form) with the major omponents (ompiler, kernel, andso on) of the operating system on whih the exeutable runs, unless thatomponent itself aompanies the exeutable.If distribution of exeutable or objet ode is made by o�ering aess toopy from a designated plae, then o�ering equivalent aess to opy thesoure ode from the same plae ounts as distribution of the soure ode,even though third parties are not ompelled to opy the soure along withthe objet ode.4. You may not opy, modify, subliense, or distribute the Program exeptas expressly provided under this Liense. Any attempt otherwise to opy,modify, subliense or distribute the Program is void, and will automati-ally terminate your rights under this Liense. However, parties who havereeived opies, or rights, from you under this Liense will not have theirlienses terminated so long as suh parties remain in full ompliane.5. You are not required to aept this Liense, sine you have not signed it.However, nothing else grants you permission to modify or distribute theProgram or its derivative works. These ations are prohibited by law ifyou do not aept this Liense. Therefore, by modifying or distributing theProgram (or any work based on the Program), you indiate your aep-tane of this Liense to do so, and all its terms and onditions for opying,distributing or modifying the Program or works based on it.6. Eah time you redistribute the Program (or any work based on the Pro-gram), the reipient automatially reeives a liense from the original lien-sor to opy, distribute or modify the Program subjet to these terms andonditions. You may not impose any further restritions on the reipients'exerise of the rights granted herein. You are not responsible for enforingompliane by third parties to this Liense.7. If, as a onsequene of a ourt judgment or allegation of patent infringementor for any other reason (not limited to patent issues), onditions are imposedon you (whether by ourt order, agreement or otherwise) that ontraditthe onditions of this Liense, they do not exuse you from the onditionsof this Liense. If you annot distribute so as to satisfy simultaneously yourobligations under this Liense and any other pertinent obligations, then as

APPENDIX A. GNU GENERAL PUBLIC LICENSE 76a onsequene you may not distribute the Program at all. For example, if apatent liense would not permit royalty-free redistribution of the Programby all those who reeive opies diretly or indiretly through you, then theonly way you ould satisfy both it and this Liense would be to refrainentirely from distribution of the Program.If any portion of this setion is held invalid or unenforeable under anypartiular irumstane, the balane of the setion is intended to apply andthe setion as a whole is intended to apply in other irumstanes.It is not the purpose of this setion to indue you to infringe any patentsor other property right laims or to ontest validity of any suh laims; thissetion has the sole purpose of proteting the integrity of the free softwaredistribution system, whih is implemented by publi liense praties. Manypeople have made generous ontributions to the wide range of softwaredistributed through that system in reliane on onsistent appliation ofthat system; it is up to the author/donor to deide if he or she is willing todistribute software through any other system and a liensee annot imposethat hoie.This setion is intended to make thoroughly lear what is believed to be aonsequene of the rest of this Liense.8. If the distribution and/or use of the Program is restrited in ertain oun-tries either by patents or by opyrighted interfaes, the original opyrightholder who plaes the Program under this Liense may add an expliitgeographial distribution limitation exluding those ountries, so that dis-tribution is permitted only in or among ountries not thus exluded. Insuh ase, this Liense inorporates the limitation as if written in the bodyof this Liense.9. The Free Software Foundation may publish revised and/or new versions ofthe General Publi Liense from time to time. Suh new versions will besimilar in spirit to the present version, but may di�er in detail to addressnew problems or onerns.Eah version is given a distinguishing version number. If the Programspei�es a version number of this Liense whih applies to it and \anylater version", you have the option of following the terms and onditionseither of that version or of any later version published by the Free SoftwareFoundation. If the Program does not speify a version number of thisLiense, you may hoose any version ever published by the Free SoftwareFoundation.10. If you wish to inorporate parts of the Program into other free programswhose distribution onditions are di�erent, write to the author to ask forpermission. For software whih is opyrighted by the Free Software Founda-tion, write to the Free Software Foundation; we sometimes make exeptionsfor this. Our deision will be guided by the two goals of preserving the freestatus of all derivatives of our free software and of promoting the sharingand reuse of software generally.

APPENDIX A. GNU GENERAL PUBLIC LICENSE 77NO WARRANTY11. Beause the Program is liensed free of harge, there is no war-ranty for the Program, to the extent permitted by appliable law.exept when otherwise stated in writing the opyright holdersand/or other parties provide the program \as is" without war-ranty of any kind, either expressed or implied, inluding, but notlimited to, the implied warranties of merhantability and �tnessfor a partiular purpose. The entire risk as to the quality andperformane of the Program is with you. Should the Programprove defetive, you assume the ost of all neessary serviing,repair or orretion.12. In no event unless required by appliable law or agreed to inwriting will any opyright holder, or any other party who maymodify and/or redistribute the program as permitted above, beliable to you for damages, inluding any general, speial, iniden-tal or onsequential damages arising out of the use or inabilityto use the program (inluding but not limited to loss of data ordata being rendered inaurate or losses sustained by you or thirdparties or a failure of the Program to operate with any other pro-grams), even if suh holder or other party has been advised ofthe possibility of suh damages.END OF TERMS AND CONDITIONS

Appendix BSample Input and OutputThe following shows some example input and output of the di�xml utility. Theoutput for the pathxml utility is not shown, as this is simply the original XML�le again.An example of di�erening two small XML �les:diffxml orr.xml orr2.xmlWhere orr.xml is the �le:<?xml version="1.0"?><parent>This element has <hild>embedded text</hild> withinit.</parent>And orr2.xml is the �le:<?xml version="1.0"?><parent><!--This element has--><hild>embedded text</hild>within it.</parent>Whih produes the output:<?xml version="1.0" enoding="UTF-8"?><delta><insert harpos="1" hildno="1" name="#omment" nodetype="8"parent="/node()[1℄">This element has</insert><delete node="/node()[1℄/node()[2℄"></delete></delta>Whih is orret (represents inserting the omment and deleting the text).An example of adding elements and attributes:diffxml attr.xml attr2.xmlWhere attr.xml is the �le:<?xml version="1.0"?><parent>This element has <hild t="test">embedded text</hild>within it.</parent> 78

APPENDIX B. SAMPLE INPUT AND OUTPUT 79And attr2.xml is the �le:<?xml version="1.0"?><parent>This element has <newhild t="test2">embedded text</newhild> within it.</parent>Whih produes the output:<?xml version="1.0" enoding="UTF-8"?><delta><insert harpos="18" hildno="2" name="newhild" nodetype="1"parent="/node()[1℄"></insert><insert name="t" nodetype="2" parent="/node()[1℄/node()[2℄">test2</insert><move hildno="1" new harpos="1" node="/node()[1℄/node()[3℄/node()[1℄"parent="/node()[1℄/node()[2℄"></move><delete harpos="1" node="/node()[1℄/node()[3℄"></delete></delta>Whih is orret (shows the insertion the new element and attribute, followed bymoving of the text node hild).Larger examples are not given here as the output size quikly grows andredues in legibility. However, more test ases are available from the websitehttp://www.diffxml.soureforge.net.

Bibliography[1℄ World Wide Web Consortium web-pages on XML ira Nov 2001.http://www.w3.org/XML[2℄ David T. Barnard, Gwen Clarke and Niholas Dunan. Tree-to-Tree Cor-retion for Doument Trees. Queen's University, Ontario, Canada, January1995.[3℄ Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editingdistane between trees and related problems. SIAM Journal of Computing18(6):1245-1262, Deember 1989.[4℄ xmldi� by Logilab. http://www.logilab.org/xmldiff[5℄ Sudarshan S. Chawathe, Anand Rajaraman, Hetor Garia-Molina, and Jen-nifer Widom. Change Detetion in Hierarhially Strutured Information.Stanford University, California, June 1996.[6℄ Sudarshan S. Chawathe. Comparing Hierarhial Data in External Memory.University of Maryland. Proeedings of the 25th VLDB Conferene pages90-101, Edinburgh, Sotland, September 1999.[7℄ Rihard Cole, Ramesh Hariharan and Piotr Indyk. Tree pattern mathingand subset mathing in deterministi O(n log3 n)-time. Otober 2000.[8℄ Sudarshan S. Chawathe and Hetor Garia-Molina. Meaningful Change De-tetion in Strutured Data. Proeedings of the ACM SIGMOD InternationalConferene on Management of Data, p ages 26-37, Tuson, Arizona, May1997.[9℄ Mihut D. Ionesu. xProxy: A Transparent Cahing and Delta Transfer Sys-tem for Web Objets. University of California at Berkeley, Deember 2000.[10℄ The Doument Objet Model Level 2 Core. World Wide WebConsortium, November 2000. http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113[11℄ XyDi� by INRIA. http://www-roq.inria.fr/~obena/drom/www/xydiff/eng.htm[12℄ INRIA. Frenh national institute for researh into data proessing and au-tomation. http://www-roq.inria.fr/en/ampus/index.htm[13℄ Xeres by Apahe. XML Parsers in Java and C++. http://xml.apahe.org80

BIBLIOGRAPHY 81[14℄ Xalan by Apahe. XSLT stylesheet proessors, in Java and C++. http://xml.apahe.org[15℄ Common API for XML Pull Parsing. XML Pull.org. http://www.xmlpull.org/index.shtml[16℄ XML Pull Parser 3. An XMLPULL parsing engine. http://www.extreme.indiana.edu/xgws/xsoap/xpp/index.html[17℄ Xyleme. http://www.xyleme.om[18℄ di�mk by Sun Mirosystems. http://www.sun.om/xml/developers/diffmk[19℄ XML Di� and Merge Tool by Dommitt In. http://www.dommitt.om[20℄ XML Di� and Merge Tool by IBM. http://alphaworks.ibm.om/teh/xmldiffmerge[21℄ VM Tools by VM Systems. http://www.vmguys.om/vmtools/.[22℄ XML TreeDi� by IBM. http://alphaworks.ibm.om/teh/xmltreediff[23℄ DeltaXML by Mosell EDM ltd. http://www.deltaxml.om[24℄ Andreas Laux and Lars Martin. XUpdate Working Draft. XML:DB Initia-tive, September 2000.[25℄ XML:DB Initiative for XML Databases. http://www.xmldb.org[26℄ Referene implementation for XUpdate. http://www.xmldb.org/xupdate/index.html[27℄ Mihael J. Pont. Software Engineering with C++ and CASE Tools. 1996.ISBN 0-201-87718-X.[28℄ Myers E.W. An o(nd) di�erene algorithm and its variations. 1986. Algo-rithmia 1, pages 251-266.[29℄ XML Path Language (XPath). World Wide Web Consortium, November1999. http://www.w3.org/TR/xpath[30℄ Namespaes in XML. World Wide Web Consortium, January 1999. http://www.w3.org/TR/REC-xml-names/[31℄ Extensible Stylesheet Language Transformation (XSLT). World Wide WebConsortium, November 1999. http://www.w3.org/TR/xslt[32℄ Open Soure Initiative. http://www.opensoure.org[33℄ SoureForge. Open soure development environment. http://soureforge.net[34℄ The GNU General Publi Liense. Free Software Foundation, June 1991.http://www.gnu.org/lienses/gpl.txt

