
CS4 Dissertation
XML Di� and Pat
h UtilitiesAdrian MouatSupervisor: Dr. Joe WellsJune 4, 2002

1De
larationI, Adrian Mouat,
on�rm that this work submitted for assessment is my own andis expressed in my own words. Any uses made within it of the works of otherauthors in any form (e.g., ideas, equations, �gures, text, tables, programs) areproperly a
knowledged at any point of their use. A list of the referen
es employedis in
luded.
Signed: ..Date: ..

Abstra
tStandard UNIX tools exist for
omparing (di�) and pat
hing (pat
h) �les,whi
h operate on a line by line basis using well-studied methods for
omputingthe longest
ommon subsequen
e (LCS). Using these tools on hierar
hi
ally stru
-tured data leads to sub-optimal results, as they are in
apable of re
ognizing thetree-based stru
ture of these �les. This do
ument introdu
es a proje
t to
reateXML di� and pat
h utilities whi
h operate on the hierar
hi
al stru
ture of XMLdo
uments.

1A
knowledgementsI would like to thank Dr. Joe Wells for his help and guidan
e,CS4 for putting up with my
onstant whinging,Mustafa Iqbal for proof-reading the do
ument, and \The Bla
k Rebel Motor
y
leClub", whose musi
 kept me (somewhat) sane.

Contents
1 Introdu
tion & Ba
kground 41.1 XML . 51.2 Trees and Di�eren
ing . 61.3 Output Format . 71.4 Pat
hing . 81.5 Appli
ations . 92 Related Work 112.1 Tree Corre
tion Algorithms . 112.1.1 The Extended Zhang and Shasha Algorithm 112.1.2 The Fast Mat
h Edit S
ript Algorithm 122.1.3 The xmdi� Algorithm . 142.1.4 Other Algorithms . 142.2 Existing Produ
ts . 152.2.1 DeltaXML . 152.2.2 xmldi� . 162.2.3 XML TreeDi� . 162.2.4 XyDi� . 162.2.5 di�mk . 172.2.6 XML Di� and Merge Tool 172.2.7 VM Tools . 172.3 Output Formats . 182.3.1 DeltaXML . 182.4 Con
lusion . 213 Requirements 233.1 Aims and Obje
tives . 233.1.1 Aim . 233.1.2 Obje
tives . 233.2 Input and Output . 243.2.1 Input . 243.3 Output . 243.3.1 Di� Utility . 243.4 Fun
tional Requirements . 253.4.1 Di� Utility . 253.4.2 Pat
h Utility . 273.5 Non-Fun
tional Requirements . 282

CONTENTS 34 Design 294.1 Diagrams and Charts . 294.2 Relating XML do
uments to trees 304.3 Des
ription of Algorithms . 314.3.1 The Fast Mat
h Edit S
ript (FMES) Algorithm 334.3.2 xmdi� . 355 Output Format 375.1 Delta Update Language (DUL) . 375.1.1 Insert . 385.1.2 Delete . 415.1.3 Update . 425.1.4 Move . 445.1.5 DUL Example . 465.1.6 Namespa
es . 475.1.7 Entity Referen
es . 475.1.8 Adding Context Information 485.1.9 Extensions to DUL . 545.1.10 XUpdate . 565.2 Human Readable Output . 566 Implementation 586.1 Te
hnology . 586.2 Command Line Invo
ation . 596.2.1 Di� Tool . 596.2.2 Pat
h Tool . 626.3 Publi
 Release . 627 Testing 647.1 Bla
k Box Testing . 647.2 White Box Testing . 657.3 Regression Testing . 668 Dis
ussion 678.1 Ful�lment of Requirements . 678.2 Limitations and Further Work . 688.3 Con
lusion . 70A GNU General Publi
 Li
ense 72B Sample Input and Output 78

Chapter 1
Introdu
tion & Ba
kground
The aim of this dissertation was to
reate XML-based equivalents of the UNIXdi� and pat
h tools. The utilities and sour
e
ode are available on-line at http://diffxml.sour
eforge.net.This do
ument is
omprised of 8
hapters,
overing di�erent aspe
ts relatedto the design and
reation of the tools:� The rest of this
hapter is dedi
ated to an introdu
tion to XML and tree-di�eren
ing, as well as an overview of possible appli
ations.� Chapter 2 dis
usses related work, both in terms of tree-di�eren
ing algo-rithms and existing software for
omparing XML do
uments.� Chapter 3 details the aims and obje
tives of the proje
t, and the fun
tionalrequirements.� Chapter 4
overs the design of the tools and the algorithms implemented.� Chapter 5 is a detailed spe
i�
ation for a generalised output format forshowing the di�eren
e between XML do
uments.� Chapter 6 reviews the implementation of the utilities; the te
hnology used,how the programs are
alled and the publi
 release of the utilities.4

CHAPTER 1. INTRODUCTION & BACKGROUND 5� Chapter 7 details the testing of the programs; both the pro
ess used andthe results.� Chapter 8 reviews the a
hievements and limitations of the work, and sug-gests possible extensions.� The appendix
ontains a
opy of GNU General Publi
 Li
ense, under whi
hthe tools were released.1.1 XMLAs stated by the World Wide Web Consortium (W3C) [1℄, \The ExtensibleMarkup Language (XML) is the universal format for stru
tured do
uments anddata on the Web." XML is designed to be interoperable with both SGML andHTML. A se
tion of a possible XML do
ument is shown in �gure 1.1.<media type=\CD"><length>10m15s</length><artist>Exemplar</artist><tra
k num=\1"><title>Hello</title><length>5m32s</length></tra
k><tra
k num=\2"><title>Goodbye</title><length>4m43s</length></tra
k></media> Figure 1.1: Part of an XML do
umentXML do
uments are made up of one or more elements whi
h are delimited bytags. Attributes
an be in
luded inside tags to give further information about theelement. Elements are ordered whilst attributes are unordered. In the previousexample `<length>' is a tag with no attributes whilst `<tra
k num=\1">' is a

CHAPTER 1. INTRODUCTION & BACKGROUND 6tag with one attribute. Note that the stru
ture of XML is stri
tly nested, forexample the do
ument in �gure 1.2 would be illegal, as the \media" element isterminated inside a
hild element.<media type=\CD"><length>10m15s</length><artist>Exemplar</artist><tra
k num=\1"><title>Hello</title><length>5m32s</length></tra
k><tra
k num=\2"></media> <title>Goodbye</title><length>4m43s</length></tra
k>Figure 1.2: Part of an illegal XML do
ument
1.2 Trees and Di�eren
ingThe stri
t nesting of XML allows us to represent XML do
uments as orderedtrees. Our �rst example in �gure 1.1
ould be shown as the tree in �gure 1.3(ignoring attributes).It is
lear that the problem of �nding the
hanges between two XML do
-uments
an be seen as the \Tree-to-tree Corre
tion Problem" [2℄ for orderedlabeled trees.Consider the two trees in �gures 1.4 and 1.5:We wish to apply a set of operations to Tree 1 to
reate Tree 2. The mostbasi
 operations we
an apply are:�
hange the label of a node� delete a leaf node

CHAPTER 1. INTRODUCTION & BACKGROUND 7

\10m15s"length \Exemplar"artist
\Hello"title \5m32s"length

tra
k
\Goodbye"title \4m43s"length

tra
k
media

Figure 1.3: Tree representation of an XML do
ument� insert a leaf nodeWe will
all a set of su
h operations an edit s
ript. The set of edit s
riptswhi
h transform Tree 1 into Tree 2 is in�nite; we
ould
ontinuously add anddelete nodes. However we want to �nd a minimal edit s
ript whi
h transformsTree 1 into Tree 2. An example edit s
ript to
hange the tree in �gure 1.4 intothe tree in �gure 1.5
ould be:� delete L(a), the �rst
hild of node 2,� add L(f) as the 1st
hild of node 3,� relabel the 2nd
hild of node 4 from A(e) to A(g).1.3 Output FormatTo be of more value to users, we need to be able to show the edit s
ript in a moreintuitive, visual and immediately dis
ernible format. An obvious and
exiblemethod of solving this problem is to
hange the edit s
ript into a format whi
h isvalid XML and
an be used by other programs. This format
an then be modi�ed,e.g. by an XSLT transformation into a format whi
h displays the
hanges in aform whi
h is easy to read by users.

CHAPTER 1. INTRODUCTION & BACKGROUND 8(1)

L(a) A(b)(5) (6)T
A(
)(7)T L(d) A(e)(8) (9)T(2) (3) (4)M

Figure 1.4: Tree 1(1)

A(b)(5)T L(f) A(
)(6) (7)T
L(d) A(g)(8) (9)T(2) (3) (4)M

Figure 1.5: Tree 2We use the term delta in the revision
ontrol sense to mean a representationof the di�eren
es between two obje
ts, in our
ase XML do
uments. This senseof the word probably
ame from its use in mathemati
s and engineering where it
an mean a \quanti�able
hange".1.4 Pat
hingThe problem and a
tion of applying a delta to a �le in order to produ
e a newversion of the �le with the
hanges in
orporated is known as pat
hing. The �le
an be, but is not ne
essarily, one of the �les used in the
reation of the delta.

CHAPTER 1. INTRODUCTION & BACKGROUND 9A delta used in this
ontext may be
alled a pat
h, and the �le with the
hanges in
orporated may be referred to as the pat
hed �le.The term pat
hing is used to refer to the problem and a
tion of applying su
ha pat
h.1.5 Appli
ationsThere are many possible appli
ations for XML di�eren
ing and pat
hing tools,some
on
eivable uses are:Version Control: Text based version
ontrol systems use the standard UNIXdi� and pat
h tools extensively. Version Control systems
overing XMLwould greatly bene�t from an XML di� tool. Although the UNIX di�utility will produ
e valid output for XML �les, the output will be sub-optimal in
omparison to a di� utility
ognizant of the hierar
hi
al stru
tureof the data. The hierar
hi
al delta should also
apture the \essen
e" of any
hanges - what the users intentions were when modifying the �le - mu
hbetter than the line-oriented di�.Do
ument Comparison and Updating: XML do
uments written by an au-thor or
o-author
an be
he
ked to �nd the
hanges between versions.\Pat
hes"
an be distributed
ontaining the
hanges made by an author,and others
an
hoose whether or not they wish to apply the
hanges totheir
opy of the do
ument.Databases: XML is in
reasingly used for storing data in databases. Dete
ting
hanges to data is important for many database appli
ations. The XyDi�[11℄ program was developed spe
ially for the Xyleme [17℄ data warehousingproje
t. For example if the database returns XML do
uments for query

CHAPTER 1. INTRODUCTION & BACKGROUND 10results, we
an identify the nature of any
hanges to a standing query e.g.dete
t when a new name is added to a mailing list.Web Ca
hing: Currently web
a
hes must request
omplete do
uments if theydo not hold a
urrent version of the requested page. Using a di�eren
ingutility, they need only request a delta between the
a
hed page and thenew page. This
ould
reate a large redu
tion in the amount of web traÆ
,and result in improved transfer times for users. Su
h a system
ould
a
hedynami
 as well as stati
 web obje
ts. See [9℄ for more information.Transa
tion Data: If a user has a
ommon query against an appli
ation itwould be possible to send only a delta of any
hanges to the previous queryresult rather than send the
omplete do
ument again. For example a sportsti
ker appli
ation
ould send information on only the
urrent event (e.g. agoal being s
ored, a yellow
ard given), rather than send the full a

ountof the mat
h to date. This
an result in signi�
ant bandwidth savings.

Chapter 2
Related Work
This
hapter details previous work
arried out in areas relevant to the proje
t.First we look at tree-
orre
tion algorithms that
an be used in di�eren
ing XMLdo
uments, before moving on to look at existing produ
ts for di�eren
ing XMLand their output formats.2.1 Tree Corre
tion AlgorithmsAs explained in the previous
hapter, the problem of �nding the
hanges betweentwo XML do
uments
an be seen as the tree-to-tree
orre
tion problem. Thisse
tion
overs several algorithms
reated to solve this problem.2.1.1 The Extended Zhang and Shasha AlgorithmBarnard, Clarke and Dun
an's paper [2℄ gives a
on
ise overview of early (pre-1995) work on the tree-to-tree
orre
tion problem. As the early work has largelybeen superseded by later algorithms and papers, we will not
onsider it here.However the paper also proposes an algorithm based on Zhang and Shasha'swork [3℄ whi
h we will refer to as the Extended Zhang and Shasha (EZS1) algo-1The name EZS is
oined in the xmldi� [4℄ do
umentation11

CHAPTER 2. RELATED WORK 12rithm.The original algorithm by Zhang and Shasha [3℄ runs in time O(n2 log2 n) forbalan
ed trees [5℄, where n is the number of tree leaves (worse for unbalan
edtrees). The algorithm uses the following primitives (basi
 operations):�
hange
hange the \value" of a node to a new value, e.g. repla
e the textof a senten
e� delete a leaf node� insert a leaf nodeBarnard, Clark and and Dun
an extended Zhang and Shasha's algorithm byadding the following primitives whi
h a
t on subtrees rather than just nodes:� deleteTree deletes a subtree� InsertTree inserts a subtree� swap swaps a subtree with another subtreeThese operations were added to give better edit s
ripts for do
uments; they allowoperations
loser to those a user
ould be expe
ted to perform, su
h as mergingand moving whole se
tions of text at a time.The impa
t these extensions have on the overall time is relatively negligible
ompared to the bene�ts. Note that the EZS algorithm will always produ
e aedit s
ript that is minimal in terms of the
osts of the operations.This algorithm is implemented in the xmldi� [4℄ program.2.1.2 The Fast Mat
h Edit S
ript AlgorithmChawathe, Rajaraman, Gar
ia-Molina and Widom's paper [5℄
overs the FastMat
h Edit S
ript or FMES2 algorithm. The FMES algorithm was
reated after2The name FMES is
oined in the xmldi� [4℄ do
umentation

CHAPTER 2. RELATED WORK 13the EZS algorithm and is intended to be
omplementary to it.The FMES algorithm uses the following primitives:� Insert inserts a new leaf node� Delete deletes a leaf node� Update
hanges the \value" of a node to a new value, e.g. repla
e the textof a senten
e� Move moves a subtree from one parent to anotherThe algorithm splits the tree-to-tree
orre
tion problem into two parts; �ndinga good mat
hing between trees (Good Mat
hing problem) and �nding a MinimumConforming Edit S
ript (MCES). A des
ription of the operation of the algorithm
an be found in se
tion 4.3.1In order to a
hieve good performan
e from the algorithm, it is assumed thatfor a leaf l in a do
ument, there exists at most one leaf in the other do
umentwhi
h \
losely" resembles l. This assumption allows the algorithm to performeÆ
iently, but in
ases where this assumption does not hold it may not produ
ea minimal edit s
ript.The FMES algorithm runs in order O(ne + e2) time where n is the numberof tree leaves and e is the \weighted edit distan
e" (des
ribed in the paper).Be
ause of the tradeo�s between performan
e and minimality of edit s
ripts, theauthors suggest using the EZS algorithm in domains where the amount of datais small and the FMES algorithm in domains where there is a large amount ofdata.The FMES algorithm is also implemented in the xmldi� [4℄ program.

CHAPTER 2. RELATED WORK 142.1.3 The xmdi� AlgorithmThe xmdi� algorithm presented in [6℄ is unique in that it de�nes an external-memory algorithm whi
h
an handle arbitrarily long �les. The paper is writtenby Sudarshan Chawathe, a
o-author of [5℄, and represents some subsequent workhe has
arried out in the area.The following primitives are used by xmdi�:� Insert inserts a leaf node� Delete deletes a leaf node� Update
hanges the \value" of a node to a new valueThe algorithm uses the idea of edit graphs to redu
e the problem of �nding aminimum-
ost edit s
ript to the problem of �nding a shortest path from one endof the edit graph to the other.In an external-memory algorithm the overriding performan
e fa
tor is thenumber of I/O operations. The algorithm
an make use of surplus RAM toredu
e I/O
ost. Given a blo
k size of S, input trees of sizeM and N respe
tively,m =M=S and n = N=S, the
osts are:� I/O 4mn+ 7m+ 5n� RAM 6S� CPU O(MN + (M +N)S1:5)2.1.4 Other AlgorithmsThere exist many other algorithms and papers on the tree-to-tree
orre
tion prob-lem, whi
h, due to la
k of spa
e, are not
overed in depth here, but two in par-ti
ular deserve a mention:

CHAPTER 2. RELATED WORK 15� Cole, Hariharan and Indyk's paper [7℄ is re
ent and a
hieves an impressivetime bound, but is heavily mathemati
al and it would take some time tounderstand well enough to
reate an implementation based on it.� Chawathe and Gar
ia-Molina's paper [8℄
overs the MH-DIFF algorithm.They in
lude primitives to move and
opy entire subtrees, whi
h as dis-
ussed in the EZS algorithm,
an lead to more appropriate deltas for do
u-ments. Their work
overs unordered trees whi
h are not always appli
ableto XML do
uments.2.2 Existing Produ
tsThere are several existing produ
ts for �nding
hanges between XML produ
ts.All of these tools are designed to take two XML �les as input and somehowdisplay the
hanges between them.IBM's XML Di� and Merge Tool [20℄ is not
overed as it is not designed toprodu
e standalone delta �les. Instead the program highlights the di�eren
eswithin a Java GUI. However, IBM's other produ
t XML TreeDi� [22℄ is
onsid-ered.2.2.1 DeltaXMLDeltaXML [23℄ is proprietary software
reated by Monsell EDM Ltd.Interestingly it
an handle both ordered and unordered trees. If a Do
umentType De�nition (DTD) is present it is used to obtain entity expansions anddefault attribute values. Output is either a delta or the original do
ument with
hanges tagged. The delta format is
onsidered in se
tion 2.3.

CHAPTER 2. RELATED WORK 162.2.2 xmldi�The xmldi� [4℄ produ
t is GPL-li
ensed free software
reated by Logilab as partof the NARVAL proje
t.The program was written in Python and implements the FMES and EZSalgorithms. It has two output formats for deltas, one of whi
h is not in XMLformat and the other is in the XUpdate [24℄ language (
onsidered later).The program needs to hold the XML �les in an internal stru
ture in memory,hen
e it
annot handle very large �les. Also there are several
ases where theprogram produ
es in
orre
t output, due to
oales
ing of text nodes in XPath (seethe XPath standard [29℄ for more information).2.2.3 XML TreeDi�XML TreeDi� [22℄ produ
t is proprietary software
reated by IBM.The program was written as a set of Java Beans intended to mimi
 the fun
-tionality of the traditional UNIX di� and pat
h programs. It purportedly a
hievesgood performan
e by the use of \fuzzy subtree mat
hing". The program has 2output formats, FUL and XUL, of whi
h we
onsider XUL later, as XUL is thesu

essor of FUL.2.2.4 XyDi�The XyDi� program [11℄ was developed by the VERSO team for INRIA [12℄.The program was developed for the Xyleme [17℄ XML data warehousingproje
t. The utility uses the Xer
es [13℄ C++ parser. At its heart is a veryfast algorithm able to di�eren
e large (>10Mb) do
uments. However the algo-rithm often produ
es non-minimal output.XyDi� was released under the open sour
e Q Publi
 Li
ense.

CHAPTER 2. RELATED WORK 172.2.5 di�mkThe di�mk utility [18℄ is a Perl program written by Norman Walsh of Sun Mi-
rosystems.Although the sour
e
ode is available, it does not appear to have an OpenSour
e [32℄ li
ense and remains the
opyright of Sun Mi
rosystems. The programuses a Perl algorithm for
omputing the Longest Common Subsequen
e (LCS) oftwo strings. It does not always produ
e minimal, or even
orre
t output. Theoutput is the original do
ument with
hanges marked. Distributed with a utilitywhi
h displays the di�eren
es between the �les using
olours in a way whi
h iseasy to read by humans.2.2.6 XML Di� and Merge ToolThe XML Di� and Merge Tool [19℄ is proprietary software
reated by DommittIn
.There is no downloadable evaluation, only an on-line demonstration whi
hinvites the user to upload XML �les. It uses the xmdi� [6℄ algorithm. Theoutput is the original do
ument with
hanges marked.2.2.7 VM ToolsThe VM Tools [21℄ pa
kage
ontains XML di�eren
ing and pat
hing tools.The tools are written in Java and have a de�ned API for integration with otherjava programs. The pa
kage is released under their own VM Systems softwareli
ense. VM Tools does not support di�eren
ing of XML pro
essing instru
tionsor
omments, nor does it have support for large �les.

CHAPTER 2. RELATED WORK 182.3 Output FormatsAll of these produ
ts have separate output formats. In this se
tion we
onsiderand
ontrast the best of them. I have kept this se
tion separate from the dis-
ussion of the produ
ts as the output formats
an stand independent of theirimplementations.None of the output formats produ
e enough
ontext information to produ
ea

urate pat
hes on �les
onsiderably di�erent from those used in
reating thedelta. More useful
ontext information would be, for example, showing any parentand sibling nodes.For the sake of
larity the examples given in this se
tion have been indentedand formatted; the reader should not expe
t the programs to produ
e identi
aloutput.2.3.1 DeltaXMLAn example of the DeltaXML output format is given in �gure 2.1. The programhas been used to produ
e a delta between 2 HTML do
uments where the only
hange is that the text of a \<td>" element has been
hanged from \td 3" to\td 3a".Delta �les produ
ed by DeltaXML always have a namespa
e for DeltaXMLasso
iated with them.The DeltaXML format
onveys
hange information in a non-
omplex fashionand pre
isely. However it does not make good use of XPath [29℄, and seemsto
ontain a lot of redundant information (the un
hanged nodes), yet does notprovide the
ontext information that is needed for pat
hing
hanged �les.Monsell have applied for a patent on the Delta XML output format.

CHAPTER 2. RELATED WORK 19<xhtml:html xmlns:deltaxml=\http://www.deltaxml.
om/ns/well-formed-delta-v1"xmlns: xhtml=\http://www.w3.org/1999/xhtml" deltaxml:delta=\WFmodify"><xhtml:html deltaxml:delta=\WFmodify" ><xhtml:head deltaxml:delta=\un
hanged" > </xhtml:head><xhtml:body deltaxml:delta=\WFmodify" ><xhtml:table deltaxml:delta=\WFmodify" ><xhtml:tr deltaxml:delta=\WFmodify" ><xhtml:td deltaxml:delta=\un
hanged" > </xhtml:td><xhtml:td deltaxml:delta=\un
hanged" > </xhtml:td><xhtml:td deltaxml:delta=\WFmodify" ><deltaxml:PCDATAmodify><deltaxml:PCDATAold>td 3</deltaxml:PCDATAold><deltaxml:PCDATAnew>td 3a</deltaxml:PCDATAnew></deltaxml:PCDATAmodify></xhtml:td></xhtml:tr></xhtml:table></xhtml:body></xhtml:html> Figure 2.1: DeltaXML outputXUpdateThe XUpdate [24℄ format is used by xmldi� and has the advantage of being fullyspe
i�ed in a re
ommendation
reated by the XML:DB [25℄ initiative. XUp-date
an be shaped to a
ertain extent by the implementation, but it essentially
onsists of
ommands as shown in 2.2. The delta represents adding an element\<town>" with the value \San Fran
is
o" inside an element \<address>", fol-lowed by appending another element \<address>" as the last
hild of \<addresses>".The re
ommendation for XUpdate is easy to understand, and makes use ofthe XPath standard. The fa
t that there exists a standard for XUpdate enablesit to be easily adopted by others.XUpdate's disadvantages are its verbosity and la
k of support for
ontextinformation for the purpose of pat
hing do
uments other than those from whi
h

CHAPTER 2. RELATED WORK 20<?xml version=\1.0"?><xupdate:modi�
ations version=\1.0"xmlns:xupdate=\http://www.xmldb.org/xupdate"><xupdate:element name=\address"><town>San Fran
is
o</town></xupdate:element><xupdate:append sele
t=\/addresses"
hild=\last()"><xupdate:element name=\address"><town>San Fran
is
o</town></xupdate:element></xupdate:append> </xupdate:modi�
ations>Figure 2.2: XUpdate Output Formatthe original delta was
omputed. Also there is no support for sele
ting only partof a text node, whi
h is useful in
reating small deltas.XULThe XUL output format is used by the IBM XML TreeDi� program. IBM havespent a reasonable amount of time developing XUL, using XUL to repla
e FULas the default output format for XML TreeDi�.An example of XUL output is given in �gure 2.3.<node id=\/*[1℄" /><node id=\/*[1℄/*[2℄" /><node op=\add" name=\B" type=\3" /><node id=\/*[1℄/*[3℄"/><node op=\add" name=\G" type=\3" /></node></node> Figure 2.3: XUL Output FormatAn understanding of XPath [29℄, not
overed here, is required to understandthis output format.The format is not very readable as nodes are referred to as numbers, not bytheir names or values. Although this output format is of limited help to a user,from the ma
hine's point of view it
ould make for faster and easier pat
hing,

CHAPTER 2. RELATED WORK 21when pat
hing one of the same do
uments on whi
h the delta was produ
ed. Animportant point of this format is that the delta itself is in a hierar
hi
al format,whi
h is helpful if we are to add
ontext information.2.4 Con
lusionFrom the algorithms
overed earlier, the most appropriate algorithms seem to bexmdi� [6℄ and FMES [5℄.The xmdi� algorithm allows di�eren
ing of large �les and produ
es minimaledit s
ripts, both points whi
h are important to
reating a useful di� utility.The FMES algorithm does not always produ
e minimal deltas and only worksin main memory, but should run substantially faster. In many appli
ations it ispreferable to qui
kly see the
hanges at a glan
e rather than wait longer and begiven a slightly more minimal delta.From the output formats des
ribed earlier the two most apt formats are XUp-date and XUL.XUpdate gives a more textual a

ount of
hanges and is to some extent astandard, whilst XUL gives a pre
ise and less verbose a

ount of
hanges that ismore appropriate for programs.Neither of the output formats support extra
ontext information, whi
h isne
essary to produ
e good pat
hes for do
uments other than those from whi
hthe delta was
omputed.Overall, although algorithms exist whi
h are
apable of eÆ
iently
al
ulating
hanges, there is no produ
t whi
h in
ludes all of the following qualities:� An output format that is good for pat
hing
hanged �les,� A fast and a

urate algorithm,� The ability to handle large �les,

CHAPTER 2. RELATED WORK 22� An open sour
e li
ense,� Not strongly tied to a parti
ular XML parser,� Has an independent and fully spe
i�ed output format.

Chapter 3
Requirements
This
hapter
overs the aims and obje
tives of the proje
t and the requirementsfor the utilities. The requirements are broken into input and output of the pro-grams, fun
tional requirements and non-fun
tional requirements.3.1 Aims and Obje
tives3.1.1 Aim� Provide GPL-li
ensed [34℄ free software implementations of XML orienteddi� and pat
h utilities.3.1.2 Obje
tives� Create an XML \di�" utility whi
h �nds and outputs the
hanges between2 XML do
uments.{ Implement algorithm(s) for solving the tree-to-tree
orre
tion problem.{ De�ne an output format for displaying a delta of the 2 do
uments.The output format is intended to be used by other programs and notdire
tly read by humans. 23

CHAPTER 3. REQUIREMENTS 24� Create an XML \pat
h" utility whi
h applies a delta from the di� utilityto an arbitrary XML do
ument.3.2 Input and OutputThe various inputs and output to the program are detailed in this se
tion.3.2.1 InputDi� Utility� 2 XML do
uments to be di�eren
ed.� Command line swit
hes for the various options de�ned in the Fun
tionalRequirements se
tion 3.4.Pat
h Utility� Delta output from the di� utility.� XML do
ument that the delta is to be applied to.� Command line swit
hes for the various options de�ned in the Fun
tionalRequirements se
tion 3.4.3.3 OutputThe various program outputs are detailed in this se
tion.3.3.1 Di� Utility� A delta of the
hanges between the do
uments or� A statement of whether the two do
uments di�er if in \silent mode".

CHAPTER 3. REQUIREMENTS 25The output format must be
on
ise yet allow for the addition of
ontext data.The addition of
ontext data is important to allow pat
hes of �les whi
h werenot used in the
reation of the delta. This
ontext data must be enough to �ndan appropriate point in the do
ument to apply ea
h
hange.It should be possible to easily
hange the output into a format more easilyread by a user. XSL Transformations (XSLT) [31℄
ould be used to transforma generi
 XML output format into di�erent formats, more appropriate for otherpurposes. For example we
ould have transformations to
reate untagged ASCIIoutput or formats designed to highlight
ertain aspe
ts of the delta, su
h as addednodes.3.4 Fun
tional RequirementsThis se
tion des
ribes requirements whi
h dire
tly a�e
t the fun
tionality of thetool. The requirements are broken into primary and se
ondary requirements,re
e
ting their relative importan
e. Some dis
ussion of why the requirements arene
essary is in
luded.3.4.1 Di� UtilityPrimary Requirements� The tool must be able to read in 2 well-formed XML do
uments, �le1 and�le2, and output a set of di�eren
es that
an be used to
reate �le2 from�le1. This is the base fun
tionality required from the program.� The utilities must take a similar form to the existing UNIX di� and pat
htools. This will make the program mu
h more intuitive and usable by UNIXusers.� The program must operate on the tree-stru
ture of the XML �les as opposed

CHAPTER 3. REQUIREMENTS 26to its
at line-based stru
ture. This is ne
essary to produ
e deltas whi
hproperly embody the meaning of the
hanges between the �les.� The tool must be able to handle arbitrary length �les. A utility whi
h onlyworks on small �les is of limited use.� The ability to add
ontext information to deltas. This will allow a

uratepat
hing of do
uments whi
h are not �le1 or �le2.Se
ondary Requirements� A
hoi
e of algorithms should be available, one whi
h always produ
es min-imal deltas, and one whi
h is faster but may not always produ
e minimaldeltas. In some
ases users will want a minimal delta, in other
ases theymay want to sa
ri�
e minimalness for speed.� Options to ignore whitespa
e and
hara
ter
ase within nodes. Variousoptions for the stripping of whitespa
e are possible, e.g;{ Never strip whitespa
e.{ Always strip leading and trailing whitespa
e.{ Only strip whitespa
e if parent element is in a given list.{ Only keep whitespa
e if parent element is in a given list.� An option to ignore
hanges to XML
omments in a delta. Users may notbe interested in
hanges between
omments, and may want to turn thisfun
tionality o�.� A \silent mode" whi
h outputs only whether or not two �les di�er. It wouldbe useful to in
lude a simple
he
k to tell if two �les di�er, that does notoutput an entire delta.

CHAPTER 3. REQUIREMENTS 273.4.2 Pat
h UtilityPrimary Requirements� The tool must be able to take deltas from the di� tool and apply them toXML do
uments. In
ases where the delta is applied to the same do
umentused as �le1 in the di�, the pat
h program must produ
e output equivalentto �le2. This is the most basi
 fun
tion required of the program.� The tool should be able to reverse the sense of a pat
h; e.g.
hange all addsto deletes and vi
e-versa.� The tool should be able to apply pat
hes to XML do
uments other thanthose used to
omplete the original delta. Pat
hing su
h do
uments mayne
essarily be less exa
t and whether or not to apply a parti
ular
hange willdepend on the mode of operation and the a

ura
y of the mat
h. Dis
arded
hanges should be pla
ed in a \reje
t" �le.� The tool should in
lude
ontrols over its level of \intera
tivity". \Intera
-tivity" is de�ned as the ability to query the user on whether or not a
hangeshould be applied. The user should be able to spe
ify the level of intera
-tivity, ranging from always query to never query. This option is useful ifthe user needs to have
ontrol over whi
h
hanges are to be applied.Se
ondary Requirements� Options to ignore whitespa
e and
hara
ter
ase. The user should be ableto spe
ify if
hanges in whitespa
e and
ase are unimportant, and shouldnot be applied.� The tool should mimi
 the original UNIX \pat
h"
ontrols whi
h in
ludea \fuzz-fa
tor" whi
h determines when a mat
h is a good one, based on

CHAPTER 3. REQUIREMENTS 28
ontext. If the mat
h is not good, the
hange is reje
ted or the user is
onsulted. It makes sense to keep this fun
tionality the same if it does nota�e
t usability.3.5 Non-Fun
tional RequirementsThis se
tion
overs requirements whi
h do not a�e
t the fun
tionality of the tool,but are nonetheless important.� The tools will be put under the GPL li
ense, whi
h allows others to freelyuse and extend the program.� The tool's usage, output and stru
ture will be
learly do
umented, to helpothers who may wish to extend or modify the tool, as well as normal users.� The tools must run on the departmental Linux ma
hines.

Chapter 4
Design
The utilities were designed using the pro
ess oriented method put forth in [27℄.This method was
hosen due to previous experien
e with it, and be
ause thestru
ture of the program readily breaks down into a hierar
hi
al, fun
tional
owmodelled well by this method.An obje
t-oriented methodology, su
h as the UML, was not used mainly be-
ause I have little experien
e of using su
h a methodology. The program alsodoes not de
ompose as readily into obje
ts as a fun
tional
ow, as it is mainly
omposed of two large, inalterable algorithms.4.1 Diagrams and ChartsAll diagrams and the data di
tionary
an be found online at http://diffxml.sour
eforge.net/design/. There are three types of diagram used:� Data Flow Diagrams (DFDs): Model the logi
al pro
ess of the pro-gram. Shows the pro
esses whi
h
ompose the program and how data ispassed between them. For ea
h DFD with a
ontrol pro
ess, an STD isalso in
luded. A data di
tionary
ontains de�nitions for the data
ows andstores in the DFDs. 29

CHAPTER 4. DESIGN 30� State Transition Diagrams (STDs): Re
ords the
ontrol informationrequired within the real-time logi
al pro
ess model. Shows the variousstates a program
an pass through.� Stru
ture Charts: Models the system as hierar
hi
al, syn
hronous, in-tera
ting modules. As opposed to a DFD whi
h is asyn
hronous and hasno expli
it hierar
hy.4.2 Relating XML do
uments to treesBoth the FMES and the xmdi� algorithms work on rooted, ordered, labeled treeswhere ea
h
an
ontain some \value".A rooted tree has exa
tly one node that has been sele
ted as the basis of thedo
ument, as opposed to a \free tree" or a
y
li
 graph. An ordered tree is wherethe
hildren of nodes have a designated order. In a labeled tree ea
h node has aname (label) whi
h is not ne
essarily unique but in some sense de�nes its \type",for example a senten
e or paragraph in a do
ument tree. By the value of a nodewe mean whatever information it holds, for example the
ontents of a senten
ein a do
ument tree.It is important that we relate these
on
epts to XML �les, so as to remove anyambiguity. To do so we will referen
e de�nitions given in the Do
ument Obje
tModel (DOM) Level 2 Core Spe
i�
ation [10℄.Firstly, XML
an be seen in a hierar
hi
al format be
ause XML is stri
tlynested ; XML elements must always be properly
losed and may not overlap.XML �les
an always be seen as rooted trees as there is always exa
tly oneroot element (the \do
ument element" in DOM)
orresponding to the root ofthe tree. The labels of an XML do
ument are the values returned by the DOMgetNodeName() method. The ex
eption to this rule is attributes, whi
h, in our

CHAPTER 4. DESIGN 31
ontext, are not de�ned as nodes but as the \value" of an element. The value ofnodes, other than attributes and elements are the same as that returned by theDOM getNodeValue() method.The breakdown of value and label for ea
h
onsidered node type is:Node Type Label ValueElement tag name ((attribute title)(attributevalue))*Comment #
omment
ontent of the
ommentText #text
ontent of text nodePro
essingInstru
tion target entire
ontent ex
luding thetargetSeveral node types are not
onsidered, either as they are only appli
able toDTDs1, or are not
onsidered leaf nodes. The value of Element nodes, \((attributetitle)(attribute value))*", represents an asso
iative array of attribute titles withtheir values.Using these de�nitions it is possible to build a tree of the form usable by theFMES and xmdi� algorithms from an XML �le.4.3 Des
ription of AlgorithmsThe following se
tion brie
y des
ribes the working of the FMES and xmdi� al-gorithms. The algorithms build upon or make use of similar
on
epts whi
h aredes
ribed �rst. Both algorithms
reate Edit S
ripts, a sequen
e of edit operationswhi
h transform one tree into another. We use the de�nition of edit operationsas des
ribed in [5℄.We
onsider four main edit operations:1Do
ument Type De�nition, see the XML spe
i�
ation [1℄

CHAPTER 4. DESIGN 32� Insert: The insertion of a new leaf node x into T1, denoted by INS((x,l,v),y,k).A node x with label l and value v is inserted as the kth
hild of node y of T1.Where x is some unique node identi�er. More pre
isely, if u1; : : : ; um arethe
hildren of y in T1, then 1 � k � m+ 1 and u1; : : : ; uk�1; x; uk; : : : ; umare the
hildren of y in T2. The value of v is optional and is assumed to benull if omitted.� Delete: The deletion of a leaf node x of T1, denoted by DEL(x). The resultT2 is the same as T1, ex
ept that it does not
ontain node x. DEL(x) doesnot
hange the relative ordering of the remaining
hildren of p(x). Thisoperation deletes only a leaf node; to delete an interior node we must �rstmove its des
endants to their new lo
ations or delete them.� Update: The update of the value of a node x in T1, denoted by UPD(x,val).T2 is the same as T1 ex
ept that in T2, v(x) = val, where v(x) denotes thevalue of a node x.� Move: The move of a subtree from one parent to another in T1, denotedby MOVE(x,y,k). T2 is the same as T1, ex
ept x be
omes the kth
hild ofy. The entire subtree rooted at x is moved along with x. This operation isnot supported by the xmdi� algorithm.In most
ases there are many edit s
ripts that will
hange T1 into T2. We wantto
hoose an edit s
ript whi
h does the minimum amount of work ne
essary. Inorder to formalize this notion it is ne
essary to have a
ost model whi
h assignsa
ost to ea
h operation. This requires the fun
tions:�
i(x): whi
h returns a positive number representing the
ost of inserting anode x.

CHAPTER 4. DESIGN 33�
d(x): whi
h returns a positive number representing the
ost of deleting anode x.�
m(x): whi
h returns a positive number representing the
ost of moving asubtree rooted at x.�
u(v1; v2): whi
h returns a positive number representing the
ost of updat-ing a value from v1 to v2.The numbers returned should be
onsistent with regards to ea
h other, forexample the
ost of updating a node's value to a similar value should be less thanthe
ost of deleting the node and inserting a new node. The
ost of an edit s
riptis the sum of the
osts of its individual operations.4.3.1 The Fast Mat
h Edit S
ript (FMES) AlgorithmThe FMES algorithm is fully des
ribed in [5℄.The algorithm splits the problem of �nding the minimum
ost edit distan
ebetween ordered trees into two subproblems:� The \good" mat
hing problem.� The minimum \
onforming" edit s
ript problem.The \good" mat
hing problem is �nding an appropriate mat
hing betweenthe nodes of two trees, T1 and T2, that
an be used in solving the minimum\
onforming" edit s
ript problem. Two nodes are said to have a mat
hing if thenodes have similar or identi
al values. Mat
hings exist on a one-to-one basis. Aset of mat
hings M
an be
onsidered better than a set of mat
hings M 0 if usingM to
ompute the edit s
ript results in a
heaper edit s
ript than using M 0.For reasons of eÆ
ien
y, the algorithm assumes that for any given leaf nodey 2 T2, there is at most one node x 2 T1 whi
h is
omputed to mat
h y. This

CHAPTER 4. DESIGN 34assumption will not hold for all do
uments. In su
h
ases the algorithm maygenerate non-minimal output, in these
ases we trade minimality for speed.The mat
hing algorithm works by traversing T1 bottom-up, looking for mat
heswith so far unmat
hed nodes in T2, whi
h are added to M . The nodes are thenmarked as \mat
hed". This basi
 algorithm
an be improved by
reating \
hains"of nodes with the same label and using Longest Common Subsequen
e (LCS) [28℄algorithms to get an initial mat
hing between nodes.The minimum \
onforming" edit s
ript problem is to
reate a minimum
ostedit s
ript
onforming to a set of mat
hingsM , given the setM and two trees, T1and T2, whi
h transforms T1 into T2. There are �ve main stages in the algorithmused to
ompute the edit s
ript, E. In the following des
ription of the stages,p(x), l(x), v(x) denote the parent, label and value of a node x respe
tively.The �ve stages are:� Update: Look for mat
hed pairs of nodes (formally (x; y) 2 M) whi
hhave di�ering values (v(x) 6= v(y)). For ea
h pair append the edit operationUPD(x; v(y)) to E and apply the update to T1.� Align: The
hildren of a mat
hed pair ((x; y) 2M) are misaligned if x hasmat
hed
hildren u and v su
h that u is to the left of v in T1 but the partnerof u is to the right of the partner of v in T2. Ea
h pair of internal mat
hednodes are
he
ked to see if their
hildren are misaligned. Misaligned
hildrenare aligned via a move operation whi
h is then appended to E. For detailson how the move operations are worked out, refer to the paper [5℄.� Insert: Look for an unmat
hed node z 2 T2 su
h that its parent is mat
hed.Suppose y = p(z), and y's partner in T1 is x. For ea
h node appendedit operation INS((w; l(z); v(z)); x; k) to E, and apply the operation to T1.Add (w; z) as a mat
hed pair to M . Variable w denotes a new unique

CHAPTER 4. DESIGN 35node identi�er
reated for the node, and position k is determined withrespe
t to the
hildren of x and z that have already been aligned. Thenode inserted be
omes a leaf node, any
hildren of z will be inserted as aseparate operation.� Move: Look for pairs of mat
hed nodes ((x; y) 2 M) whose parents arenot mat
hed. Append edit operation MOV(x; u; k) to E and apply theoperation to T1. Variable u denotes the mat
hed node of the parent ofy in T1. The position k is determined with respe
t to the already aligned
hildren, as in the insert phase. Both the parents are added to the mat
hingset M .� Delete: Look for unmat
hed leaf nodes x in T1. For ea
h su
h node addDEL(x) to E and apply the delete operation to T1.On
e the algorithm has
ompleted, T1 has been transformed into a
opy ofT2, E is the �nal edit s
ript and M is a mat
hing between all nodes in the treesto whi
h E
onforms.4.3.2 xmdi�The xmdi� algorithm [6℄ redu
es the tree-to-tree
orre
tion problem to the prob-lem of �nding a shortest path in the edit graph of the two trees.Edit graphs are used in several algorithms, notably the Myers LCS algorithm[28℄. For a full des
ription of edit graphs refer to the Myers paper or the xmdi�paper.Intuitively an edit graph
an be thought of as a simple grid, with the sequen
esof nodes being
ompared as its axes. Suppose the sequen
e of nodes representingT1 are on the horizontal axis, and the sequen
e of nodes representing T2 are onthe verti
al axis. Therefore ea
h point on the grid has a
orresponding node in

CHAPTER 4. DESIGN 36T1 and in T2. There are dire
ted edges between ea
h node to the node (if any) tothe right, bottom and bottom-right. Naturally horizontal edges are dire
ted tothe right, verti
al edges to the bottom and diagonal edges to the bottom right.Crossing an edge horizontally represents deleting the
orresponding node of T1,
rossing an edge verti
ally represents inserting the
orresponding node of T2 and
rossing an edge diagonally represents updating the value of the
orrespondingnode on T1 to the value of the
orresponding node on T2. Weights are atta
hed tothe edges equal to the
ost of the edit operations they represent. Therefore anyminimum
ost edit s
ript will map to a path in the edit graph from the top-leftto the bottom-right.The xmdi� algorithm
an be broken into 2
omponents,
omputing the dis-tan
e matrix and generating the edit s
ript.The distan
e matrix is a (M + 1) � (N + 1) matrix D, where M and N arethe number of nodes in the respe
tive input trees. D(x; y) is the length of theshortest path from (0; 0) to (x; y) in the edit graph. The
omputation of thedistan
e matrix is by a simple algorithm whi
h
he
ks the weights assigned toedges in the edit graph.Generating the edit s
ript is the relatively easy task of following the minimum
ost path through the graph matrix and outputting the appropriate edit operationat ea
h step.This algorithm is extended to
ompute the di�eren
es in external memory byseveral te
hniques based in bu�ering and
omputing nested-loop joins in relationaldatabases. These te
hniques are not
overed here; for a full a

ount
onsult thexmdi� paper [6℄.

Chapter 5
Output Format
This
hapter
overs the output format options supported by the program. Abreakdown and motivation for ea
h of the options is provided. Extensive use ismade of the XPath standard[29℄ and the DOM Level 2 Core Spe
i�
ation [10℄,whi
h the reader may wish to
onsult.5.1 Delta Update Language (DUL)The natural output of the algorithms is an Edit S
ript as previously de�ned. Wewant our output format to be a well-formed XML do
ument, so that it
an beeasily used by other programs and modi�ed into other forms, possibly by XSLtransformations. The basi
 XML elements in DUL are de�ned to be roughlyequivalent to the relevant edit s
ript operations. The DUL attempts to modelthe basi
 edit s
ript operations as XML elements.

37

CHAPTER 5. OUTPUT FORMAT 385.1.1 InsertSyntax<insertparent=\xpathexpr"
hildno=\
n"
harpos=\
har"nodetype=\
ode"name=\title">value</insert>Des
riptionInserts a leaf node into the do
ument. The instru
tion is intended to be equivalentto the edit s
ript operation INS((x,l,v),y,k) des
ribed on page 31.Attributesparent :The variable xpathexpr is an XPath expression that uniquely identi�es theparent element, equivalent to y in the edit s
ript operation. The XPath expressionis restri
ted to having node tests of the form \node()", whi
h mat
hes any XPathnode, followed by an abbreviated position predi
ate of the form [x ℄ where x is theposition number of the node. The xpathexpr uniquely identi�es the parent node.
hildno:The variable
n is the
hild number of y that the node is to be inserted as(the old node at this index be
omes the
n+1 node). The number representsthe XPath \node()" position taken as
hild of the parent node (as opposed tothe DOM node index). The
hild number is unused and may be omitted in
aseswhere an attribute is inserted, as attributes have no de�ned order. The variable
n is equivalent to k in the edit s
ript operation.
harpos:In
ases where inserts are made in the middle, immediately after or immedi-

CHAPTER 5. OUTPUT FORMAT 39ately before
hara
ter data, it is ne
essary to hold the
hara
ter position at whi
hto insert the node. The variable
har is the numeri

hara
ter position at whi
hto insert the node. The �rst
hara
ter of a text node is 1, in a

ordan
e with theXPath standard. Setting the attribute to 1 is equivalent to inserting before thetext. If omitted,
har defaults to 1.nodetype:The variable
ode is the DOM
ode of the node returned by the DOM getN-odeType() method, and is part of l(x) in the edit s
ript operation. These
odesare given in �gure 5.1:Node Name CodeElement 1Attribute 2Text 3Pro
essing Instru
tion 7Comment 8Figure 5.1: Table of DOM
odesDo
ument nodes, Do
ument Type nodes and Do
ument Fragment nodes (asde�ned in the DOM Level 2 Core Spe
i�
ation) are not in
luded, as they arenot appropriate leaf nodes. As DTDs are not
onsidered within the s
ope ofDUL, we also do not in
lude Notation nodes, Entity nodes, or Entity Referen
eNodes. CDATA Se
tions are seen as Text nodes to avoid problems when usingXPath, whi
h does not di�erentiate between CDATA Se
tions and other text.The di�eren
e algorithm
onsiders attributes only as the value of their parentnodes, but to preserve generality they are
onsidered nodes distin
t from theirasso
iated elements in DUL.name:The \name" attribute is used in
ases where an attribute, element or pro
ess-

CHAPTER 5. OUTPUT FORMAT 40ing instru
tion is being inserted. The variable title gives the name of an attribute,the tag name of an element, or the target of a pro
essing instru
tion. In
aseswhere the node is not one of these types, it may be omitted. Default is the emptystring.ContentThe
ontent of an insert element, value, is the DOM value of the node to beinserted, as returned by the DOM getNodeValue() method. Equivalent to v inthe edit s
ript operation.The values are given in �gure 5.2:Node Name ValueAttribute value of attributeComment
ontent of
ommentElement nullPro
essing Instru
tion entire
ontent ex
luding targetText
ontent of text nodeFigure 5.2: Table of DOM Node ValuesIn
ases where the value is de�ned to be null, in
luding node
ontent hasno e�e
t. In these
ases the insert operation may be represented by an emptyelement. Representing
ases whi
h do not have a null value by an empty tag isequivalent to setting the value to the empty string.ExampleThe implementation of the di�eren
ing algorithm does not attempt to mat
hattribute nodes by themselves, instead mat
hing elements whose tag names andattributes mat
h. Therefore one edit s
ript operation to insert an element maybe represented by several insert elements e.g:Inserts the element:\<se
tion title='Poetry' />"

CHAPTER 5. OUTPUT FORMAT 41<insert parent=\/node()[1℄/node()[3℄"
hildno=\2" nodetype=\1"name=\se
tion" /><insert parent=\/node()[1℄/node()[3℄/node()[2℄" nodetype=\2"name=\title" />Poetry</insert>into the do
ument.5.1.2 DeleteSyntax<deletenode=\xpathexpr"
harpos=\
har"length=\len = >Des
riptionDeletes a leaf node from the do
ument. Elements with attributes but no
hildnodes are
onsidered leaf nodes for this purpose, and hen
e
an be removed bythis operation. The instru
tion is intended to be equivalent to the edit s
riptoperation DEL(x) des
ribed on page 31.Attributesnode:The variable xpathexpr is an XPath expression whi
h uniquely identi�es theXPath node to be deleted. Attributes may be deleted by an appropriate xpathexpr,whi
h spe
i�es their title. The variable xpathexpr is subje
t to the same restri
-tions as for an insert, with the ex
eption that when an attribute is being deletedit is spe
i�ed as the last predi
ate of the xpathexpr.
harpos:In
ases where
hara
ter data is being deleted, it is ne
essary to spe
ify howmu
h of the text to delete. The attribute \
harpos" is used in
onjun
tion withthe \length" attribute to unambiguously spe
ify what text to remove. The vari-

CHAPTER 5. OUTPUT FORMAT 42able
har is the index of the �rst
hara
ter to delete,
ounting in the same wayas for the insert operation. Unused in
ases where the node is not a text node.If omitted it defaults to 1.length:This attribute is used whenever a text node is being deleted. The variable lenidenti�es the number of
hara
ters to delete, from and in
luding the
hara
terspe
i�ed by the \
harpos" attribute. If omitted defaults to 0. Hen
e if the\length" attribute is unspe
i�ed when deleting a text node, no deletion takespla
e.ExamplesDeleting an attribute:<delete node=\/node()[1℄/node()[2℄/node()[3℄/�title />Removes the \title" attribute of an element.An example of deleting a text node is:<delete node=\/node()[1℄/node()[4℄"
harpos=\1" length=\7" />Deletes the �rst 7
hara
ters from the text node identi�ed.5.1.3 UpdateSyntax<updatenode=\xpathexpr"
harpos=\
har"length=\length"= >value</update>Des
riptionUpdates the value asso
iated with a node. The instru
tion is intended to beequivalent to the edit s
ript operation UPD(x,val) des
ribed on page 31.

CHAPTER 5. OUTPUT FORMAT 43Attributesnode:The variable xpathexpr uniquely identi�es the node to be updated, equivalentto x in the edit s
ript operation. The XPath expression is restri
ted as for thedelete element, with the addition that elements may not be identi�ed. This isbe
ause elements have no \value" to update. This is in a

ordan
e with theDOM spe
i�
ation where the getNodeValue() method returns null for elements.The names of elements and attributes may not be updated.
harpos:In
ases where
hara
ter data is being updated, it is ne
essary to spe
ify howmu
h of the text to
hange. The attribute
harpos is used in
onjun
tion with the\length" attribute to unambiguously spe
ify whi
h text to update. The variable
har is the �rst
hara
ter to
hange,
ounting in the same way as for the insertoperation. It is unused in
ases where the node identi�ed by xpathexpr is not atext node. If omitted it defaults to 1.length:This attribute is used whenever a text node is being updated. The variable lenidenti�es the number of
hara
ters to update, from and in
luding the
hara
terspe
i�ed by the \
harpos" attribute. If omitted defaults to 0. The number of
hara
ters spe
i�ed by the \length" attribute are always
hanged, if the new textis not len
hara
ters long, the old text is trun
ated. Similarly if the new text ismore than len
hara
ters, the extra text is inserted without overwriting. Hen
eif the \length" attribute is unspe
i�ed when updating a text node, the new textis inserted at the appropriate position, without overwriting the old text.ContentThe value variable represents the new value for the node. The meaning of thevalue is the same as for the insert operation. In
ases where
hara
ter data is

CHAPTER 5. OUTPUT FORMAT 44being updated, the new text overwrites existing
hara
ters beginning at
har.Any
hara
ters not overwritten are kept in the original position. Any
hara
tersleft in value after overwriting the original �nal
hara
ter are appended.ExamplesAn example of updating a non-attribute node is:<update node=\/node()[1℄/node()[2℄/node()[3℄">this is a
omment</update>An example of updating an attribute is:<update node=\/node()[1℄/node()[3℄/node()[2℄/�title" >Ar
hBishop</update>Whi
h
hanges the value of the \title" attribute to \Ar
h Bishop".5.1.4 MoveSyntax<updatenode=\xpathexpr"old
harpos=\o
har"length=\len"parent=\parxpathexpr"
hildno=\
n"new
harpos=\n
har />Des
riptionMoves the position of a subtree or leaf node within a do
ument. The instru
-tion is intended to be equivalent to edit s
ript operation MOV(x,y,k) des
ribedon page 31.Attributesnode:The variable xpathexpr uniquely identi�es the node or subtree to be moved.

CHAPTER 5. OUTPUT FORMAT 45The XPath expression is restri
ted as for the delete element, ex
ept that at-tributes may not be moved.old
harpos:In
ases where
hara
ter data is being moved, it is ne
essary to spe
ify howmu
h of the text to move. The attribute \old
harpos" is used in
onjun
tionwith the \length" attribute to unambiguously spe
ify what text is to be moved.The variable o
har is the index of the �rst
hara
ter to move,
ounting in sameway as for the insert operation. Unused in
ases where the node is not a textnode. If omitted it defaults to 1.length:This attribute is used whenever a text node is being deleted. The variablelen identi�es the number of
hara
ters that are to be moved. If omitted defaultsto 0. Hen
e if the \length" attribute is unspe
i�ed when moving a text node, nomove takes pla
e.parent :The variable parxpathexpr uniquely identi�es the element the node identi�edby xpathexpr is to be
ome a
hild of. The XPath expression is restri
ted as forthe insert element.
hildno:The variable
n is the
hild number of parxpathexpr that the node is to beinserted as (the old node at this index be
omes the
n+1 node). The number isthe XPath \node()" position that the node will have (as opposed to the DOMnode index). In
ases where an attribute is inserted the
hild number is unusedand may be omitted, as attributes have no de�ned order. Any node
urrently atposition
hildno under parxpathexpr is moved to position
hildno+1.new
harpos:In
ases where moves insert in the middle, immediately after or immediately

CHAPTER 5. OUTPUT FORMAT 46before
hara
ter data, it is ne
essary to hold the
hara
ter position at whi
h toinsert the node. The variable n
har is the numeri

hara
ter position at whi
h toinsert the node,
ounting in the same way as for the insert operation. The �rst
hara
ter of a text node is 1, in a

ordan
e with the XPath standard. Setting theattribute to 1 is equivalent to inserting before the text. If omitted,
har defaultsto 1.ExampleAn example of a move operation is:<move node=\/node()[1℄/node()[3℄/node()[2℄"parent="/node()[1℄/node()[2℄"
hildno="2">whi
h moves the subtree rooted at the 2nd
hild of the 3rd
hild of the rootelement to be the 2nd
hild of the 2nd
hild of the root element.5.1.5 DUL ExampleAn example of a
omplete DUL do
ument is given in �gure 5.3.<?xml version="1.0"?><DUL><insert parent=\/node()[1℄/node()[3℄"
hildno=\2"
harpos=\7"nodetype=\1" name=\se
tion" /><insert parent=\/node()[1℄/node()[3℄/*[2℄" nodetype=\2"name=\title" />Poetry</insert><delete node=\/node()[1℄/node()[2℄/node()[2℄"
harpos=\3"length=\"7"/><update node=\/node()[1℄/node()[3℄/node()[2℄[�title℄">Ar
h Bishop</update><move node=\/node()[1℄/node()[3℄/node()[2℄"parent="/node()[1℄/node()[2℄"
hildno="2"></DUL> Figure 5.3: Complete DUL Do
umentThe order of internal elements is important as
hanges are pro
essed with

CHAPTER 5. OUTPUT FORMAT 47respe
t to any previous
hanges. Note that it is not invalid to do operationson previously modi�ed or added nodes, even pointless
ases like inserting thenimmediately deleting the same element, although it may well be sub-optimal.This simple representation holds all that is ne
essary for a delta. In many
ases this format will be suÆ
ient. Its advantages are that it is simple and small.5.1.6 Namespa
esNamespa
es [30℄ are used in XML to qualify element and attribute names by as-so
iating them with namespa
es identi�ed by Uniform Resour
e Identi�er (URI)referen
es. A namespa
e should be both unique and persistent.When using
ontext information in DUL, it is ne
essary to use namespa
esto di�erentiate between DUL elements and elements from the do
uments used to
reate the delta. It is also possible that a user may wish to use a DUL do
umentor part of a DUL do
ument within another XML do
ument.DUL's namespa
e is
urrently identi�ed as http://diffxml.sour
eforge.net/DUL. This meets the uniqueness
hara
teristi
 for a namespa
e, but, as theInternet host for the proje
t may
hange, may not meet the persisten
e
hara
-teristi
. It was felt that the trade-o� was worthwhile in order to provide a URIwhi
h
ontained information on DUL.5.1.7 Entity Referen
esCurrently DUL has no support for showing di�eren
es between entity referen
es.Be
ause of this the
urrent implementation either always resolves entities, orremoves external entities from the do
ument. The attribute \resolve-entities" isatta
hed to the root element and is given the value \true" or "false" depending ifentities are always resolved or removed respe
tively. Neither behaviour is entirely
orre
t. Always resolving entities
ould lead to problems when dealing with

CHAPTER 5. OUTPUT FORMAT 48external entities with di�erent URIs; although they may resolve to a
ertainvalue at the minute, this value
ould
hange at any time. Also it is un
lear whatshould happen in the
ase that an external server
annot be rea
hed.Removing entities is also in
orre
t, as we may be ignoring di�eren
es betweenthe do
uments.A better solution would involve
omparing the URIs of external entities,rather than the values to whi
h the URIs
orrespond, and extending the DULto be able to show any di�eren
es. This was not implemented as the problemwas not realised until late on in the proje
t, and be
ause DTD pro
essing is not
onsidered within the s
ope of the dissertation.5.1.8 Adding Context InformationThe major disadvantage of the previous output is that it
ontains very little
ontext information. When we want to apply deltas to do
uments other thanthe original,
ontext information helps us to a

urately identify whi
h nodes the
hanges apply to. This re
e
ts the line-oriented di� and pat
h utilities
ase whereextra lines of
ontext information
an be output.The problem in our
ase is to de
ide what should
onstitute
ontext informa-tion.Although I have not implemented
ontext aware pat
hing, it is worth dis-
ussing how
ontext information
ould be output here.The following de�nes several ways of adding
ontext information to DULdo
uments.

CHAPTER 5. OUTPUT FORMAT 49Tag Name ExpansionOne of the simplest meaningful additions is element names in pla
e of the \node()"node tests1 whi
h mat
h any node. For example:<delete node=\/do
[1℄/
hapter[3℄/se
tion[2℄" /><move node=\/do
[1℄/
hapter[3℄/se
tion[2℄"parent=\/do
[1℄/
hapter[2℄"
hildno=\2"/>Note that the position predi
ates2 in the XPath expressions now identify theposition with regards to the element name rather than the absolute node position,e.g. in the delete operation we are now talking about the se
ond se
tion elementof the third
hapter element as opposed to the se
ond
hild node of the third
hildnode of the root element, whi
h may or may not refer to the same node. Althoughit would be possible to
hoose whi
h node tests to expand into names, (e.g. onlyexpand the �nal step) this level of
ontrol is not
onsidered immediately usefulenough to warrant the extra syntax and
omplexity required to in
lude it.This simple addition makes the meaning of the operation mu
h
learer, butthere is still mu
h more that
an be added in terms of useful
ontext information.Reverse Pat
hingA
ommon operation when pat
hing using traditional line based deltas is to\reverse" the sense of the delta, i.e. inserted lines are deleted and vi
e versa.This allows the user to re
reate the original do
ument in a di� given a pat
h andthe resultant do
ument. In order to reverse the sense of a DUL do
ument, it isne
essary to store more information about deleted nodes and updated nodes.1Node tests spe
ify the node type and expanded-name of the nodes sele
ted by the lo
ationstep, see XPath[29℄ for a full des
ription2Predi
ates use expressions to re�ne the set of nodes sele
ted by the lo
ation step. SeeXPath[29℄ for a full des
ription

CHAPTER 5. OUTPUT FORMAT 50To signify that a delta is in a suitable format for reverse pat
hing, the attribute\reverse-pat
h" with the value \true" should be added to the root element. Thisattribute defaults to \false" if omitted.In order to reverse a delete, we need to know the values returned by the DOMmethods getNodeName(), getNodeType(), and getNodeValue() for the node to bedeleted.Hen
e the syntax for the delete instru
tion be
omes:<deletenode=\xpathexpr"
harpos=\
har"length=\len"nodetype=\
ode"name=\title"= >value</delete>Where the extra attributes are:nodetype:Whi
h is de�ned as for the \nodetype" attribute for the insert operation. Thevariable
ode is the DOM
ode of the node returned by the getNodeType method.name:Whi
h is de�ned as for the \name" attribute for the insert operation. Thevariable title is the DOM
ode returned by the getNodeName() method. Onlyused in
ases where the node to be deleted of type element, attribute or pro
essinginstru
tion, and may be omitted in other
ases. The default is the empty string.The
ontent of the delete element, value, is the DOM value of the node asreturned by the getNodeValue() method. In
ases where
hara
ter data is beingdeleted only the removed
hara
ters are in
luded, not the entire
ontents of theXPath text node. In
ases where the value of the node is null, in
luding node
ontent has no e�e
t. In su
h
ases the delete operation may be represented by

CHAPTER 5. OUTPUT FORMAT 51an empty element. This is the same as the
ontents for the insert operation.In order to reverse an update operation, we need to know the values returnedby the DOM methods getNodeValue() and getNodeName() for the node to beupdated. Hen
e the syntax for the update operation be
omes:<updatenode=\xpathexpr"
harpos=\
har"name=\title"= >value<old>oldvalue</old></update>Where the extra attribute is:name:Whi
h is de�ned as for the \name" attribute for the insert operation. Thevariable title is the DOM
ode returned by the getNodeName() method. Onlyused in
ases where the node to be deleted of type element, attribute or pro
essinginstru
tion, and may be omitted in other
ases. The default is the empty string.The
hara
ter data
ontent of the update element value is the new DOM valueof the node as returned by the getNodeValue() method. The
hara
ter data ofthe \old"
hild element is the original DOM value of the node as returned by thegetNodeValue() method. In both
ases, if
hara
ter data is being updated onlythe
hanged
hara
ters are in
luded, not the entire
ontents of the XPath textnode.Context NodesWe now
onsider
ontext information more akin to the
at text
on
ept of out-putting
ontext lines surrounding the
hanged line. In the hierar
hi
al world,we want to be able to not only output the value of sibling nodes but also par-ent/
hild nodes and their siblings. In order to provide
ontext information we

CHAPTER 5. OUTPUT FORMAT 52need to add extra attributes and elements
ontaining both the
ontext data andinformation on the
ontext data. Ea
h DUL operation o

urs within a
ontextelement, whi
h also
ontains any
ontext nodes. Operations may also
ontainelements whi
h hold
ontext information. What
onstitutes a
ontext node isspe
i�ed by the attributes of the \dul" root element.An example of a DUL do
ument with
ontext information is shown in 5.4.The example is hard to read due to the absen
e of whitespa
e and indentation,whi
h is left out to avoid
onfusion in identifying
ontext nodes.<?xml version=\1.0"?><dul:DUL xmlns:dul=\http://di�xml.sour
eforge.net" sib
ontext=\1"par
ontext=\1" par sib
ontext=\1"><dul:
ontext>text<se
tion><a/><dul:deletenode=\/do
[1℄/
hapter[2℄/se
tion[3℄/text()[1℄"
harpos=\1" length=\3">234</delete><!{
omment {></se
tion>more text</dul:
ontext></dul:
ontext>more text<
hapter title=\Bits and Bobs"><dul:insert parent=\/do
[1℄/
hapter[3℄"
hildno=\1" nodetype=\1"name=\se
tion" /><data/></
hapter>even more text</dul:
ontext><dul:
ontext>text<se
tion><dul:updatenode=\/do
[1℄/
hapter[2℄/se
tion[3℄/
omment()[1℄"> another
omment <dul:old>
omment </dul:old></update>des
ription of se
tion</se
tion>more text</dul:
ontext><dul:
ontext>text sibling<
hapter><dul:movenode=\/do
[1℄/
hapter[5℄/se
tion[7℄" parent=\/do
[1℄/
hapter[4℄"
hildno=\1" ><dul:
ontext>some text<
hapter><sibling/><dul:mark><se
tion>some <I>
hild </I> nodes </dul:mark><sibling/></
hapter>end text</dul:
ontext></dul:move></dul:
ontext></dul:DUL>Figure 5.4: DUL do
ument with
ontext informationNamespa
es are used to di�erentiate DUL elements from
ontext informationelements. The attributes atta
hed to the \dul" root element set the parameters

CHAPTER 5. OUTPUT FORMAT 53for the
ontext information:� The attribute \sib
ontext" sets the number of sibling elements to outputaround the referen
ed element. Sibling
ontext is symmetri
al; when pos-sible the given number of siblings is output both before and after the givenelement. The \sib
ontext" attribute defaults to the value 0.� The attribute \par
ontext" sets the number of parent and
hild elementsto output around the referen
ed node. Again
ontext is symmetri
al but inall
ases ex
ept the move operation (and the extended operations
onsideredlater), the element will have no
hild elements. The \par
ontext" attributedefaults to 0.� The attribute \par sib
ontext" sets the number of sibling nodes to outputaround the parent/
hild elements. Su
h siblings have their values given butnot any
hild elements. The \par sib
ontext" attribute defaults to 0. Theattribute has no e�e
t when \par
ontext" is set to 0.Attributes are not
onsidered to be
ontext nodes within their own right, butare output as part of elements whi
h are
ontext nodes.The example starts by deleting the text node \234" from the do
ument. Notethere are 1 pre
eding sibling, 1 following sibling, the parent element and the par-ents pre
eding and following siblings shown as
ontext. The example then insertsthe element \<se
tion/>" into the do
ument. The element has no pre
eding sib-ling, so none is shown. This is followed by the updating of a
omment node. Theformat for the update is the same as for the reverse pat
hing format des
ribedpreviously. The �nal operation is to move a \se
tion" element from \
hapter"parent to another. This requires the addition of an \
ontext"
hild element tothe move operation in order to hold the original
ontext of the node. The subtreebeing inserted is highlighted by en
losure within a \mark" element.

CHAPTER 5. OUTPUT FORMAT 54The
ontext for the \insert" and \update" elements refer to the transformedtree, i.e. the
ontext of the node after the
hange has been applied. Conversely the
ontext for the \delete" element refers to the original tree i.e. the
ontext of thenode before the
hange is applied. The surrounding
ontext for a \move" elementrefers to the transformed tree i.e. the new position of the moved node. The
ontext within a \move" element refers to the original tree i.e. the old position ofthe node being moved. Care needs to be taken not to get false impressions from
ontext information. Note that the
ontext information supplied is fragmented,for example there may be more
hildren asso
iated with parent elements.5.1.9 Extensions to DULIt is possible to extend the operations in DUL by
onsidering further operationson subtrees rather than single elements. Rather than unne
essarily de�ne newoperations, we overload the meaning of the insert and delete operations:� Delete SubtreeDelete the subtree rooted at given element:<delete node=\xpathexpr" />Where the XPath expression xpathexpr spe
i�es the root of the subtree toremove. The XPath expression is restri
ted in the same way as the insert oper-ation. The xpathexpr uniquely identi�es the element at the root of the subtreebeing removed. The delete subtree operation is
ontrasted from the delete nodeoperation as it identi�es a non-leaf node.An example of the delete subtree operation is:<delete node=\/node()[1℄/node()[2℄/node()[2℄" />This example removes the se
ond
hild of the se
ond
hild of the root nodeand all
hildren below it. Context elements take a similar form to the \delete"

CHAPTER 5. OUTPUT FORMAT 55element, but
ontain a subtree rather than a single node. As text nodes
annotbe spe
i�ed by the xpathexpr, we do not need \
harpos" and \length" attributes.� Insert SubtreeInsert a subtree as the
nth
hild element of given parent:<insert parent=\xpathexpr"
hildno=\
n" >subtree</insert>Where the XPath expression xpathexpr spe
i�es the element to be parent ofthe subtree. The XPath expression is restri
ted in the same way as the originalinsert operation. The xpathexpr uniquely identi�es the parent element. Thesubtree is inserted as the
nth
hild of the parent. Any node previously atposition
n moves to position
n + 1. The subtree must be well-formed XML,with exa
tly one root element. The insert subtree operation is
ontrasted fromthe insert node operation as the
ontent of the element is a subtree, as opposedto the value of a single node. An example of the insert subtree operation is:<insert parent=\/node()[1℄/node()[3℄"
hildno=\2"><se
tion title=\tools"><bold><itali
>Top Tips</itali
></bold></se
tion></insert>Whi
h appends the given element and its
hildren to be
ome the se
ond
hildof the given parent. Context elements take a similar form to the original insertoperation, but note that all
hild nodes are shown already in order to performthe insertion.These elements do not represent the basi
 operations performed by the dif-feren
ing algorithms. Instead they build upon the existing operations. In thestandard output of the program, the insertion of a subtree has to be representedby several \insert" elements, one for ea
h node in the operation. Similarly thedeletion of a subtree has to be represented by several \delete" elements. It should

CHAPTER 5. OUTPUT FORMAT 56be possible to repla
e multiple insertions and deletions of leaf nodes with the sub-tree operations either by modifying the algorithms or post-pro
essing the delta�le.5.1.10 XUpdateIt was originally intended that the di�eren
e program would also support theXUpdate output format. XUpdate is a spe
i�
ation
reated by the XML:DBInitiative [25℄. The
urrent spe
i�
ation do
ument is rather ambiguous, andrelies on a referen
e implementation
alled Lexus [26℄, whi
h is devoid of anysupporting do
umentation. As XUpdate only allows a user to spe
ify a XPathtext node (whi
h
oales
es adja
ent text nodes), and not part of text node, weran into diÆ
ulties when trying to delete single DOM text nodes. There are
aseswhen more than a single DOM text node is referen
ed by a
onstrained XPathexpression. It should be possible to provide work-arounds for these
ases but atthe time of writing this had not been investigated.Hopefully XUpdate will be subje
t to
ontinued improvement, and may gainmore widespread usage. For a full des
ription of XUpdate see [24℄.Contrast with DULThe de�nition for DUL is more rigorous and restri
ted than that of XUpdate.There is no move operation in XUpdate; it has to be modelled by a delete followedby an insert.5.2 Human Readable OutputNeither the DUL or XUpdate output format are of a format readable by humanswithout further pro
essing. As both the formats
reate well-formed XML do
-uments, we
an perform XSL Transformations [31℄ on the do
uments to
reate

CHAPTER 5. OUTPUT FORMAT 57output more suited to human
onsumption. For example by pro
essing the origi-nal do
uments with the delta, it is possible to
reate an HTML �le with
hangesmarked in di�erent
olours, e.g. deleted text shown in red, inserted in blue et
.

Chapter 6
Implementation
This
hapter
overs details of the implementation of the utilities. A breakdown ofthe te
hnology used in implementing the algorithms is given, as well as a se
tionon invoking the program. Details on the publi
 release of the utilities are alsogiven.6.1 Te
hnologyIn order to aid programming with XML and improve portability, it was de
idedto make use of the standard Appli
ation Program Interfa
es (APIs) availablefor XML. The DOM Level 2 API is used in the implementation of the FMESalgorithm and the pat
h utility. DOM was
hosen as it allows XML �les tobe easily and a

urately represented as trees as well as providing easy traversalmethods between nodes and their relations.Certain parts of the DOM Level 3 API were also used. Although DOM Level3 is still a work-in-progress,
ertain features were of enough gain that its use wasjusti�ed despite the relian
e on an unstable API. For example the DOM Level3 methods getUserData and setUserData were used to avoid having to sub
lassDOM nodes. The
hosen DOM parser is Xer
es [13℄, from the Apa
he group,58

CHAPTER 6. IMPLEMENTATION 59simply be
ause it is a mature and popular parser.Java was used for almost all the programming. Java was
hosen mainly be-
ause the DOM APIs are de�ned in terms of Java methods. Although thereare implementations of DOM available for other programming languages, theseare all slightly di�erent interpretations of the Java APIs, and tie the utilities toa given implementation. By using Java we therefore in
rease portability bothbetween platforms and API implementations.The XML Pull API [15℄ was used in the implementation of the xmdi� algo-rithm. DOM was not used as we needed an implementation whi
h avoided storingthe do
ument in main memory, in order to be able to pro
ess large do
uments.The Simple API for XML (SAX)
ould not be used as it has no me
hanism for
o-ordinating the parsing of multiple do
uments. The XML Pull API was usedas it
overs both these issues. The
hosen implementation of the XML Pull APIwas XPP3 [16℄ a small and extremely fast parser.XPath [29℄ is used heavily in our de�nition of DUL. We used Xalan's [14℄XPath API in
reation of the pat
h utility.All programs used are freely available either under the Apa
he li
ense (Xer
esand Xalan) or the \Indiana University Extreme! Lab Software Li
ense" (XPP3).6.2 Command Line Invo
ationThis se
tion des
ribes how the tools are invoked from the
ommand line, and theoptions that
an be set.6.2.1 Di� ToolSynopsisdi�xml [options℄ from-�le to-�le

CHAPTER 6. IMPLEMENTATION 60Finds di�eren
es between the XML do
uments from-�le and to-�le.
OptionsA des
ription of all the options \di�xml" a

epts is below. The option names,where sensible to do so, are kept
lose to those in the GNU di� program. Mostoptions have two equivalent names, one of whi
h is a single letter pre�xed with a'-'
hara
ter, and the other is a long name pre�xed by '{'. Multiple single letteroptions whi
h do not take arguments
an be
ombined into a single
ommandline word, e.g. -vt is equivalent to -v -t.Long Name ShortName Meaning{brief -q Report only if �les di�er, don'toutput the delta.{ignore-all-whitespa
e -s Ignore all whitespa
e when
omparing nodes. Text nodeswith only whitespa
e are not
ompared.{ignore-leading-whitespa
e -w Leading and trailing whitespa
ein text nodes is ignored when
omparing nodes. Text nodeswith only whitespa
e are not
ompared.{ignore-empty-nodes -e Ignore text nodes that
ontainonly whitespa
e.{ignore-
ase -i Ignore
hanges in
hara
ter
ase,
onsider upper and lower
ase to be equivalent.{ignore-
omments -r Ignore
hanges made to
omment elements.{ignore-pro
essing-instru
tions -I Ignore
hanges made topro
essing instru
tion elements.{version -V Output version number ofprogram.{help -h Print summary of options andexit.{fmes -f Use the FMES algorithm to
ompute the
hanges.

CHAPTER 6. IMPLEMENTATION 61{xmdi� -x Use the xmdi� algorithm to
ompute the
hanges.{tagnames -t Output tag names of elementsrather than \node()" for nodetests in XPath expressions.{reverse-pat
h -p Create output with enoughinformation for reversing thesense of a pat
h.{remove-entities -n Remove all external entitieswhen pro
essing. Allowsignoring of
hanges to entitiesand o�-line pro
essing, butmay produ
e in
orre
t results.{sibling-
ontext [=nodes℄ -C nodes Create
ontext informationoutput, with nodes (an integer)sibling
ontext nodes output toea
h side of
hanged nodes. Ifnodes is not given, it willdefault to 2.{parent-
ontext [=nodes℄ -P nodes Create
ontext informationoutput, with nodes (an integer)parent and
hild
ontext nodesoutput. If nodes is not given itwill default to 1.{parent-sibling-
ontext[=nodes℄ -S nodes Create
ontext informationoutput, with nodes (an integer)sibling
ontext nodes of anyparent or
hild
ontext nodes.If nodes is not given it willdefault to 1.Note that only the DUL output format may have
ontext information.Exit StatusAn exist status of 0 means no di�eren
es were found, 1 means some di�eren
eswere found and 2 means some error o

urred.

CHAPTER 6. IMPLEMENTATION 626.2.2 Pat
h ToolSynopsispat
hxml [options℄ [original �le [pat
h�le℄℄Apply an di�xml �le to an original.OptionsA des
ription of all the options \pat
hxml" a

epts is below. The option names,where sensible to do so, are kept
lose to those in the GNU pat
h program. Mostoptions have two equivalent names, one of whi
h is a single letter pre�xed with a'-'
hara
ter, and the other is a long name pre�xed by '{'. Multiple single letteroptions whi
h do not take arguments
an be
ombined into a single
ommandline word, e.g. -dR is equivalent to -d -R.Long Name ShortName Meaning{version -V Output version number of program.{help -h Print summary of options and exit.{dry-run -d Print results of applying the
hanges withoutmodifying any �les.{reverse -R Assume that the delta �le was
reated with the oldand new �les swapped. Attempt to reverse sense of
hange before applying it, e.g. inserts be
omedeletes.
6.3 Publi
 ReleaseComplied jar �les and sour
e
ode for the di� and pat
h utilities are availablefrom http://diffxml.sour
eforge.net. Do
umentation is also available. Apubli
 announ
ement of the program was posted on http://freshmeat.net, as

CHAPTER 6. IMPLEMENTATION 63well as to the
omp.text.xml newsgroup. The program is released under the opensour
e GNU General Publi
 Li
ense, for whi
h the full li
ense
an be found inAppendix A.I have retained lead developer status on the utilities, and intend to
ontinuetheir development. By releasing the programs into the environment
reated bySour
eForge [33℄, I hope to gain the involvement and support of the open sour
e
ommunity. Hopefully the programs will see
ontinued improvement, not only bythe author but also by other
ontributors.

Chapter 7
Testing
Testing was fo
used both on
he
king that the programs met the requirementsin se
tion 3 and on �nding any implementation errors or bugs. Testing o

urred
ontinuously and in more rigorous expli
it testing phases. The following des
ribesthe testing that was
arried out on the utilities, an example of input and outputof the program is available in Appendix B.7.1 Bla
k Box TestingBla
k box testing
he
ks for requirements
overage. The name is derived fromthe idea that we
annot see the
ode, only the inputs and outputs, hen
e the
odeis a \bla
k" box that we
annot see into. Bla
k box testing therefore
entres on�nding faults of omission, where parts of the spe
i�
ation have not been properlymet.The initial intention was to test the programs with a very large data set.However as
ases whi
h
aused problems were found relatively qui
kly, the dataset did not be
ome as large as intended. The
urrent data set is available fromthe proje
t web page at http://diffxml.sour
eforge.net,
ontaining both
orre
tly handled and in
orre
tly handled
ases.64

CHAPTER 7. TESTING 65The following tests were
arried out with the data sets:� Run di� program with all data sets for both output formats.� Run pat
h program with deltas and XML do
uments from above test. En-sure output
orresponds to other XML do
ument used in
omputing delta.� Run pat
h program with option to \reverse" sense of pat
h. Ensure output
orresponds to other XML do
ument used in
omputing delta.� Run di� program with option to expand tag names in output.� Run di� program with option to
reate
ontext output. Values
hosen forsibling, parent and parent sibling
ontext should range from 0 to 15.� Run di� program in \brief" mode for all data sets.� Run di� program with various options to ignore whitespa
e.� Run di� program with options to ignore various elements.� Run di� program with options to for
e algorithm used.A small s
ript whi
h runs a reasonable subset of these tests is available fromthe proje
t web page http://diffxml.sour
eforge.net.7.2 White Box TestingWhite box (sometimes known as
lear or glass box) testing
he
ks for implemen-tation faults by exer
ising the boundary values of loops and other parts of the
ode likely to
ause errors. White box testing gets its name from the idea thatwe
an see \into" the
ode, hen
e the
ode is a \white box" we
an see into asopposed to a \bla
k box" whi
h we
an't.

CHAPTER 7. TESTING 66White box testing o

urred
ontinuously throughout development, with values
hosen to exer
ise
ode paths and boundary values in the module
urrently beingdeveloped. Many bugs were dis
overed using this method, and nearly all weresolved.7.3 Regression TestingAs the program was developed, a set of working test
ases
ompiled,
omposinga regression test suite. As
hanges were made to the program, it was rerun withthe old test suite to ensure no previous fun
tionality had been broken. Any newtest
ases with whi
h the program worked were then added to the test suite.This ensured that any previously �xed bugs did not reappear in newer versionsof the program. The
urrent regression test suite is available from the proje
tweb page.

Chapter 8
Dis
ussion
In the �nal
hapter of this do
ument, we dis
uss the a
hievements of the proje
t.The initial obje
tives and requirements are revisited and
ompared to the out-
omes. We also look at possibilities for further development. The
hapter
on-
ludes with an overview of the proje
t, its a
hievements and how it sits withprevious work.8.1 Ful�lment of RequirementsIn Chapter 3 we de�ned our obje
tives as being to:� Create an XML \di�" utility whi
h �nds and outputs the
hanges between2 XML do
uments.{ Implement algorithm(s) for solving the tree-to-tree
orre
tion problem.{ De�ne an output format for displaying a delta of the 2 do
uments.The output format is intended to be used by other programs and notdire
tly read by humans.� Create an XML \pat
h" utility whi
h applies a delta from the di� utilityto an arbitrary XML do
ument. 67

CHAPTER 8. DISCUSSION 68As detailed in 6.3, a working implementation of the utilities is available fromhttp://diffxml.sour
eforge.net. A full de�nition of DUL, the output formatfor deltas, is in 5.1. This fully meets all the obje
tives we laid out with the ex
ep-tion of the \pat
h" utility whi
h
an only apply deltas to the XML do
umentsthat were used in
reation of said delta.In terms of the requirements we spe
i�ed, all of the primary and se
ondaryrequirements were met for the di� utility. The requirements for the pat
h utilityto work on XML do
uments used in
reation of the delta and to be able to reversethe sense of pat
hes were met. The other requirements for the pat
h utility werenot fully met. All of the non-fun
tional requirements were met.Perhaps most important requirement not met was the ability to performpat
hing on do
uments other than those used to
reate the delta. This fun
-tionality is a large body of work in itself, and
ould not be
ompleted due to time
onstraints. The author believes the original proje
t spe
i�
ation was too ambi-tious in this respe
t, and that the timetable underestimated the amount of timeneeded to �x the bugs. However, the ability of the di� utility to
reate
ontextoutput, needed for a

urate pat
hing in su
h
ases, was implemented. The pat
hutility does work
orre
tly for
ases where the do
ument being pat
hed was usedin
reation of the delta.8.2 Limitations and Further WorkThis se
tion
overs the limitations and possible improvements of the
urrentimplementation, as well as fun
tionality additional to the initial requirements.Further details on the limitations are available in 7. These suggestions
ouldtake the form of further a
ademi
 work, or future development of the tools.� Various eÆ
ien
y gains are possible.

CHAPTER 8. DISCUSSION 69� Not all pairs of XML do
uments are handled properly; there are still somebugs in the implementation.� Although the DUL has support for identifying single
hara
ter
hanges, thealgorithm still works on a node by node basis; this
ould be improved.� Allow input of �les over a URL.� Allow a �le name of `-' to stand for standard input and handle properly.� Creation of API for di�eren
ing XML do
uments. This would require somereworking of existing
ode, and additional fun
tions, e.g. the ability todi�eren
e subtrees only.� Context pat
hing. Extending the pat
h utility to be able to apply deltasto do
uments other than those used to
ompute the delta. This wouldrequire using the DUL
ontext output to mat
h se
tions of the do
umentwith
hanges to be made.� Intera
tive pat
hing. Allow the user to spe
ify if a parti
ular
hange is tobe applied. There should be di�erent levels of intera
tivity depending onthe quality of the pat
h.� Options to ignore whitespa
e and
hara
ter
ase in pat
hing. The user
ould
hoose whether or not a
hange is applied if it only a�e
ts whitespa
eor
hara
ter
ase.� Implementation of the DUL extensions des
ribed in 5.1.9. These
ould beimplemented by either post-pro
essing the delta �le or supporting dire
tlyfrom within the algorithms.� Work around for XUpdate output format, whi
h has problems when tryingto spe
ify
hara
ter data to delete/insert.

CHAPTER 8. DISCUSSION 70� More output formats. As the deltas produ
ed by the di� utility are well-formed XML, the deltas
an be easily transformed into other formats byXSL Transformations [31℄ or using XML APIs. Formats suitable for par-ti
ular appli
ations
ould be
reated, for example human readable output.� Improve handling of entity referen
es. This involves some extensions toDUL.� DUL namespa
es properly output by di� utility. Currently they are ignored.� Support for pro
essing and di�eren
ing of XML S
hema and DTDs.� Support for pro
essing and di�eren
ing of other hierar
hi
al data formats,e.g. HTML and LATEX.� As in some other implementations, e.g. XyDi�, \keys"
ould be used tofor
e mat
hing of subtrees.8.3 Con
lusionThis do
ument represents the
ulmination of almost a year of resear
h, design andimplementation. The body of work produ
ed is substantial; the sour
e
ode is inex
ess of 4500 lines, largely
omprised of the sophisti
ated di�eren
ing algorithms,and the DUL spe
i�
ation was no small task in itself.The proje
t has old roots in both the UNIX di� and pat
h utilities and theearly work on the tree-to-tree
orre
tion problem by people su
h as Zhang andShasha [3℄. The proje
t is also
utting edge, many of the XML standards andsoftware used have only been
ompleted in re
ent months, some are still at theworking draft stage and all are undergoing
ontinued development. A full break-down of the te
hnology used
an be found in se
tion 6.1.

CHAPTER 8. DISCUSSION 71The utilities produ
ed do not represent the only e�orts at XML di�eren
ingutilities. Existing e�orts were
overed in the related work se
tion 2. Our workstands out for several reasons, despite its
urrent immaturity:� It is released under the GNU General Publi
 Li
ense, in an environmentopen to
ontribution and extensions by others.� It has its own independent and well de�ned output language, DUL, as wellas support for XUpdate.� The DUL is unique in that in
ontains expli
it support for
ontext infor-mation that
an be used in aiding pat
hing of
hanged �les.� The di� utility supports large do
uments via the xmdi� algorithm.� It uses standard APIs to avoid tying itself to parti
ular parsers.Although the
ompletion of this dissertation marks a milestone in the devel-opment of the utilities, it does not mark the end. The author intends to
ontinuedevelopment of the programs, and hopefully other members of the open sour
e
ommunity or even future dissertations will also build on the
urrent work.

Appendix A
GNU General Publi
 Li
enseVersion 2, June 1991Copyright

 1989, 1991 Free Software Foundation, In
.59 Temple Pla
e, Suite 330, Boston, MA 02111-1307 USAEveryone is permitted to
opy and distribute verbatim
opies of this li
ense do
-ument, but
hanging it is not allowed.PreambleThe li
enses for most software are designed to take away your freedom to shareand
hange it. By
ontrast, the GNU General Publi
 Li
ense is intended toguarantee your freedom to share and
hange free software|to make sure thesoftware is free for all its users. This General Publi
 Li
ense applies to most ofthe Free Software Foundation's software and to any other program whose authors
ommit to using it. (Some other Free Software Foundation software is
overedby the GNU Library General Publi
 Li
ense instead.) You
an apply it to yourprograms, too.When we speak of free software, we are referring to freedom, not pri
e. OurGeneral Publi
 Li
enses are designed to make sure that you have the freedom todistribute
opies of free software (and
harge for this servi
e if you wish), thatyou re
eive sour
e
ode or
an get it if you want it, that you
an
hange thesoftware or use pie
es of it in new free programs; and that you know you
an dothese things.To prote
t your rights, we need to make restri
tions that forbid anyone todeny you these rights or to ask you to surrender the rights. These restri
tionstranslate to
ertain responsibilities for you if you distribute
opies of the software,or if you modify it.For example, if you distribute
opies of su
h a program, whether gratis or fora fee, you must give the re
ipients all the rights that you have. You must makesure that they, too, re
eive or
an get the sour
e
ode. And you must show themthese terms so they know their rights. 72

APPENDIX A. GNU GENERAL PUBLIC LICENSE 73We prote
t your rights with two steps: (1)
opyright the software, and (2)o�er you this li
ense whi
h gives you legal permission to
opy, distribute and/ormodify the software.Also, for ea
h author's prote
tion and ours, we want to make
ertain thateveryone understands that there is no warranty for this free software. If thesoftware is modi�ed by someone else and passed on, we want its re
ipients toknow that what they have is not the original, so that any problems introdu
edby others will not re
e
t on the original authors' reputations.Finally, any free program is threatened
onstantly by software patents. Wewish to avoid the danger that redistributors of a free program will individuallyobtain patent li
enses, in e�e
t making the program proprietary. To prevent this,we have made it
lear that any patent must be li
ensed for everyone's free use ornot li
ensed at all.The pre
ise terms and
onditions for
opying, distribution and modi�
ationfollow.Terms and
onditions for
opying, distribution and mod-i�
ation0. This Li
ense applies to any program or other work whi
h
ontains a noti
epla
ed by the
opyright holder saying it may be distributed under the termsof this General Publi
 Li
ense. The \Program", below, refers to any su
hprogram or work, and a \work based on the Program" means either theProgram or any derivative work under
opyright law: that is to say, a work
ontaining the Program or a portion of it, either verbatim or with modi�-
ations and/or translated into another language. (Hereinafter, translationis in
luded without limitation in the term \modi�
ation".) Ea
h li
ensee isaddressed as \you".A
tivities other than
opying, distribution and modi�
ation are not
overedby this Li
ense; they are outside its s
ope. The a
t of running the Programis not restri
ted, and the output from the Program is
overed only if its
ontents
onstitute a work based on the Program (independent of havingbeen made by running the Program). Whether that is true depends onwhat the Program does.1. You may
opy and distribute verbatim
opies of the Program's sour
e
odeas you re
eive it, in any medium, provided that you
onspi
uously andappropriately publish on ea
h
opy an appropriate
opyright noti
e anddis
laimer of warranty; keep inta
t all the noti
es that refer to this Li
enseand to the absen
e of any warranty; and give any other re
ipients of theProgram a
opy of this Li
ense along with the Program.You may
harge a fee for the physi
al a
t of transferring a
opy, and youmay at your option o�er warranty prote
tion in ex
hange for a fee.2. You may modify your
opy or
opies of the Program or any portion of it,thus forming a work based on the Program, and
opy and distribute su
hmodi�
ations or work under the terms of Se
tion 1 above, provided thatyou also meet all of these
onditions:

APPENDIX A. GNU GENERAL PUBLIC LICENSE 74(a) You must
ause the modi�ed �les to
arry prominent noti
es statingthat you
hanged the �les and the date of any
hange.(b) You must
ause any work that you distribute or publish, that in wholeor in part
ontains or is derived from the Program or any part thereof,to be li
ensed as a whole at no
harge to all third parties under theterms of this Li
ense.(
) If the modi�ed program normally reads
ommands intera
tively whenrun, you must
ause it, when started running for su
h intera
tive use inthe most ordinary way, to print or display an announ
ement in
ludingan appropriate
opyright noti
e and a noti
e that there is no warranty(or else, saying that you provide a warranty) and that users may redis-tribute the program under these
onditions, and telling the user howto view a
opy of this Li
ense. (Ex
eption: if the Program itself isintera
tive but does not normally print su
h an announ
ement, yourwork based on the Program is not required to print an announ
ement.)These requirements apply to the modi�ed work as a whole. If identi�ablese
tions of that work are not derived from the Program, and
an be reason-ably
onsidered independent and separate works in themselves, then thisLi
ense, and its terms, do not apply to those se
tions when you distributethem as separate works. But when you distribute the same se
tions aspart of a whole whi
h is a work based on the Program, the distributionof the whole must be on the terms of this Li
ense, whose permissions forother li
ensees extend to the entire whole, and thus to ea
h and every partregardless of who wrote it.Thus, it is not the intent of this se
tion to
laim rights or
ontest yourrights to work written entirely by you; rather, the intent is to exer
ise theright to
ontrol the distribution of derivative or
olle
tive works based onthe Program.In addition, mere aggregation of another work not based on the Programwith the Program (or with a work based on the Program) on a volume ofa storage or distribution medium does not bring the other work under thes
ope of this Li
ense.3. You may
opy and distribute the Program (or a work based on it, underSe
tion 2) in obje
t
ode or exe
utable form under the terms of Se
tions 1and 2 above provided that you also do one of the following:(a) A

ompany it with the
omplete
orresponding ma
hine-readable sour
e
ode, whi
h must be distributed under the terms of Se
tions 1 and 2above on a medium
ustomarily used for software inter
hange; or,(b) A

ompany it with a written o�er, valid for at least three years, togive any third party, for a
harge no more than your
ost of physi
allyperforming sour
e distribution, a
omplete ma
hine-readable
opy ofthe
orresponding sour
e
ode, to be distributed under the terms ofSe
tions 1 and 2 above on a medium
ustomarily used for softwareinter
hange; or,

APPENDIX A. GNU GENERAL PUBLIC LICENSE 75(
) A

ompany it with the information you re
eived as to the o�er todistribute
orresponding sour
e
ode. (This alternative is allowed onlyfor non
ommer
ial distribution and only if you re
eived the programin obje
t
ode or exe
utable form with su
h an o�er, in a

ord withSubse
tion b above.)The sour
e
ode for a work means the preferred form of the work for makingmodi�
ations to it. For an exe
utable work,
omplete sour
e
ode meansall the sour
e
ode for all modules it
ontains, plus any asso
iated interfa
ede�nition �les, plus the s
ripts used to
ontrol
ompilation and installationof the exe
utable. However, as a spe
ial ex
eption, the sour
e
ode dis-tributed need not in
lude anything that is normally distributed (in eithersour
e or binary form) with the major
omponents (
ompiler, kernel, andso on) of the operating system on whi
h the exe
utable runs, unless that
omponent itself a

ompanies the exe
utable.If distribution of exe
utable or obje
t
ode is made by o�ering a

ess to
opy from a designated pla
e, then o�ering equivalent a

ess to
opy thesour
e
ode from the same pla
e
ounts as distribution of the sour
e
ode,even though third parties are not
ompelled to
opy the sour
e along withthe obje
t
ode.4. You may not
opy, modify, subli
ense, or distribute the Program ex
eptas expressly provided under this Li
ense. Any attempt otherwise to
opy,modify, subli
ense or distribute the Program is void, and will automati-
ally terminate your rights under this Li
ense. However, parties who havere
eived
opies, or rights, from you under this Li
ense will not have theirli
enses terminated so long as su
h parties remain in full
omplian
e.5. You are not required to a

ept this Li
ense, sin
e you have not signed it.However, nothing else grants you permission to modify or distribute theProgram or its derivative works. These a
tions are prohibited by law ifyou do not a

ept this Li
ense. Therefore, by modifying or distributing theProgram (or any work based on the Program), you indi
ate your a

ep-tan
e of this Li
ense to do so, and all its terms and
onditions for
opying,distributing or modifying the Program or works based on it.6. Ea
h time you redistribute the Program (or any work based on the Pro-gram), the re
ipient automati
ally re
eives a li
ense from the original li
en-sor to
opy, distribute or modify the Program subje
t to these terms and
onditions. You may not impose any further restri
tions on the re
ipients'exer
ise of the rights granted herein. You are not responsible for enfor
ing
omplian
e by third parties to this Li
ense.7. If, as a
onsequen
e of a
ourt judgment or allegation of patent infringementor for any other reason (not limited to patent issues),
onditions are imposedon you (whether by
ourt order, agreement or otherwise) that
ontradi
tthe
onditions of this Li
ense, they do not ex
use you from the
onditionsof this Li
ense. If you
annot distribute so as to satisfy simultaneously yourobligations under this Li
ense and any other pertinent obligations, then as

APPENDIX A. GNU GENERAL PUBLIC LICENSE 76a
onsequen
e you may not distribute the Program at all. For example, if apatent li
ense would not permit royalty-free redistribution of the Programby all those who re
eive
opies dire
tly or indire
tly through you, then theonly way you
ould satisfy both it and this Li
ense would be to refrainentirely from distribution of the Program.If any portion of this se
tion is held invalid or unenfor
eable under anyparti
ular
ir
umstan
e, the balan
e of the se
tion is intended to apply andthe se
tion as a whole is intended to apply in other
ir
umstan
es.It is not the purpose of this se
tion to indu
e you to infringe any patentsor other property right
laims or to
ontest validity of any su
h
laims; thisse
tion has the sole purpose of prote
ting the integrity of the free softwaredistribution system, whi
h is implemented by publi
 li
ense pra
ti
es. Manypeople have made generous
ontributions to the wide range of softwaredistributed through that system in relian
e on
onsistent appli
ation ofthat system; it is up to the author/donor to de
ide if he or she is willing todistribute software through any other system and a li
ensee
annot imposethat
hoi
e.This se
tion is intended to make thoroughly
lear what is believed to be a
onsequen
e of the rest of this Li
ense.8. If the distribution and/or use of the Program is restri
ted in
ertain
oun-tries either by patents or by
opyrighted interfa
es, the original
opyrightholder who pla
es the Program under this Li
ense may add an expli
itgeographi
al distribution limitation ex
luding those
ountries, so that dis-tribution is permitted only in or among
ountries not thus ex
luded. Insu
h
ase, this Li
ense in
orporates the limitation as if written in the bodyof this Li
ense.9. The Free Software Foundation may publish revised and/or new versions ofthe General Publi
 Li
ense from time to time. Su
h new versions will besimilar in spirit to the present version, but may di�er in detail to addressnew problems or
on
erns.Ea
h version is given a distinguishing version number. If the Programspe
i�es a version number of this Li
ense whi
h applies to it and \anylater version", you have the option of following the terms and
onditionseither of that version or of any later version published by the Free SoftwareFoundation. If the Program does not spe
ify a version number of thisLi
ense, you may
hoose any version ever published by the Free SoftwareFoundation.10. If you wish to in
orporate parts of the Program into other free programswhose distribution
onditions are di�erent, write to the author to ask forpermission. For software whi
h is
opyrighted by the Free Software Founda-tion, write to the Free Software Foundation; we sometimes make ex
eptionsfor this. Our de
ision will be guided by the two goals of preserving the freestatus of all derivatives of our free software and of promoting the sharingand reuse of software generally.

APPENDIX A. GNU GENERAL PUBLIC LICENSE 77NO WARRANTY11. Be
ause the Program is li
ensed free of
harge, there is no war-ranty for the Program, to the extent permitted by appli
able law.ex
ept when otherwise stated in writing the
opyright holdersand/or other parties provide the program \as is" without war-ranty of any kind, either expressed or implied, in
luding, but notlimited to, the implied warranties of mer
hantability and �tnessfor a parti
ular purpose. The entire risk as to the quality andperforman
e of the Program is with you. Should the Programprove defe
tive, you assume the
ost of all ne
essary servi
ing,repair or
orre
tion.12. In no event unless required by appli
able law or agreed to inwriting will any
opyright holder, or any other party who maymodify and/or redistribute the program as permitted above, beliable to you for damages, in
luding any general, spe
ial, in
iden-tal or
onsequential damages arising out of the use or inabilityto use the program (in
luding but not limited to loss of data ordata being rendered ina

urate or losses sustained by you or thirdparties or a failure of the Program to operate with any other pro-grams), even if su
h holder or other party has been advised ofthe possibility of su
h damages.END OF TERMS AND CONDITIONS

Appendix BSample Input and OutputThe following shows some example input and output of the di�xml utility. Theoutput for the pat
hxml utility is not shown, as this is simply the original XML�le again.An example of di�eren
ing two small XML �les:diffxml
orr.xml
orr2.xmlWhere
orr.xml is the �le:<?xml version="1.0"?><parent>This element has <
hild>embedded text</
hild> withinit.</parent>And
orr2.xml is the �le:<?xml version="1.0"?><parent><!--This element has--><
hild>embedded text</
hild>within it.</parent>Whi
h produ
es the output:<?xml version="1.0" en
oding="UTF-8"?><delta><insert
harpos="1"
hildno="1" name="#
omment" nodetype="8"parent="/node()[1℄">This element has</insert><delete node="/node()[1℄/node()[2℄"></delete></delta>Whi
h is
orre
t (represents inserting the
omment and deleting the text).An example of adding elements and attributes:diffxml attr.xml attr2.xmlWhere attr.xml is the �le:<?xml version="1.0"?><parent>This element has <
hild t="test">embedded text</
hild>within it.</parent> 78

APPENDIX B. SAMPLE INPUT AND OUTPUT 79And attr2.xml is the �le:<?xml version="1.0"?><parent>This element has <new
hild t="test2">embedded text</new
hild> within it.</parent>Whi
h produ
es the output:<?xml version="1.0" en
oding="UTF-8"?><delta><insert
harpos="18"
hildno="2" name="new
hild" nodetype="1"parent="/node()[1℄"></insert><insert name="t" nodetype="2" parent="/node()[1℄/node()[2℄">test2</insert><move
hildno="1" new
harpos="1" node="/node()[1℄/node()[3℄/node()[1℄"parent="/node()[1℄/node()[2℄"></move><delete
harpos="1" node="/node()[1℄/node()[3℄"></delete></delta>Whi
h is
orre
t (shows the insertion the new element and attribute, followed bymoving of the text node
hild).Larger examples are not given here as the output size qui
kly grows andredu
es in legibility. However, more test
ases are available from the websitehttp://www.diffxml.sour
eforge.net.

Bibliography[1℄ World Wide Web Consortium web-pages on XML
ir
a Nov 2001.http://www.w3.org/XML[2℄ David T. Barnard, Gwen Clarke and Ni
holas Dun
an. Tree-to-Tree Cor-re
tion for Do
ument Trees. Queen's University, Ontario, Canada, January1995.[3℄ Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editingdistan
e between trees and related problems. SIAM Journal of Computing18(6):1245-1262, De
ember 1989.[4℄ xmldi� by Logilab. http://www.logilab.org/xmldiff[5℄ Sudarshan S. Chawathe, Anand Rajaraman, He
tor Gar
ia-Molina, and Jen-nifer Widom. Change Dete
tion in Hierar
hi
ally Stru
tured Information.Stanford University, California, June 1996.[6℄ Sudarshan S. Chawathe. Comparing Hierar
hi
al Data in External Memory.University of Maryland. Pro
eedings of the 25th VLDB Conferen
e pages90-101, Edinburgh, S
otland, September 1999.[7℄ Ri
hard Cole, Ramesh Hariharan and Piotr Indyk. Tree pattern mat
hingand subset mat
hing in deterministi
 O(n log3 n)-time. O
tober 2000.[8℄ Sudarshan S. Chawathe and He
tor Gar
ia-Molina. Meaningful Change De-te
tion in Stru
tured Data. Pro
eedings of the ACM SIGMOD InternationalConferen
e on Management of Data, p ages 26-37, Tu
son, Arizona, May1997.[9℄ Mihut D. Iones
u. xProxy: A Transparent Ca
hing and Delta Transfer Sys-tem for Web Obje
ts. University of California at Berkeley, De
ember 2000.[10℄ The Do
ument Obje
t Model Level 2 Core. World Wide WebConsortium, November 2000. http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113[11℄ XyDi� by INRIA. http://www-ro
q.inria.fr/~
obena/
drom/www/xydiff/eng.htm[12℄ INRIA. Fren
h national institute for resear
h into data pro
essing and au-tomation. http://www-ro
q.inria.fr/en/
ampus/index.htm[13℄ Xer
es by Apa
he. XML Parsers in Java and C++. http://xml.apa
he.org80

BIBLIOGRAPHY 81[14℄ Xalan by Apa
he. XSLT stylesheet pro
essors, in Java and C++. http://xml.apa
he.org[15℄ Common API for XML Pull Parsing. XML Pull.org. http://www.xmlpull.org/index.shtml[16℄ XML Pull Parser 3. An XMLPULL parsing engine. http://www.extreme.indiana.edu/xgws/xsoap/xpp/index.html[17℄ Xyleme. http://www.xyleme.
om[18℄ di�mk by Sun Mi
rosystems. http://www.sun.
om/xml/developers/diffmk[19℄ XML Di� and Merge Tool by Dommitt In
. http://www.dommitt.
om[20℄ XML Di� and Merge Tool by IBM. http://alphaworks.ibm.
om/te
h/xmldiffmerge[21℄ VM Tools by VM Systems. http://www.vmguys.
om/vmtools/.[22℄ XML TreeDi� by IBM. http://alphaworks.ibm.
om/te
h/xmltreediff[23℄ DeltaXML by Mosell EDM ltd. http://www.deltaxml.
om[24℄ Andreas Laux and Lars Martin. XUpdate Working Draft. XML:DB Initia-tive, September 2000.[25℄ XML:DB Initiative for XML Databases. http://www.xmldb.org[26℄ Referen
e implementation for XUpdate. http://www.xmldb.org/xupdate/index.html[27℄ Mi
hael J. Pont. Software Engineering with C++ and CASE Tools. 1996.ISBN 0-201-87718-X.[28℄ Myers E.W. An o(nd) di�eren
e algorithm and its variations. 1986. Algo-rithmi
a 1, pages 251-266.[29℄ XML Path Language (XPath). World Wide Web Consortium, November1999. http://www.w3.org/TR/xpath[30℄ Namespa
es in XML. World Wide Web Consortium, January 1999. http://www.w3.org/TR/REC-xml-names/[31℄ Extensible Stylesheet Language Transformation (XSLT). World Wide WebConsortium, November 1999. http://www.w3.org/TR/xslt[32℄ Open Sour
e Initiative. http://www.opensour
e.org[33℄ Sour
eForge. Open sour
e development environment. http://sour
eforge.net[34℄ The GNU General Publi
 Li
ense. Free Software Foundation, June 1991.http://www.gnu.org/li
enses/gpl.txt

