(CS4 Dissertation

XML Diff and Patch Utilities

Adrian Mouat

Supervisor: Dr. Joe Wells

June 4, 2002

Declaration

I, Adrian Mouat, confirm that this work submitted for assessment is my own and
is expressed in my own words. Any uses made within it of the works of other
authors in any form (e.g., ideas, equations, figures, text, tables, programs) are
properly acknowledged at any point of their use. A list of the references employed

is included.

Abstract

Standard UNIX tools exist for comparing (diff) and patching (patch) files,
which operate on a line by line basis using well-studied methods for computing
the longest common subsequence (LCS). Using these tools on hierarchically struc-
tured data leads to sub-optimal results, as they are incapable of recognizing the
tree-based structure of these files. This document introduces a project to create
XML diff and patch utilities which operate on the hierarchical structure of XML

documents.

Acknowledgements

I would like to thank Dr. Joe Wells for his help and guidance,
CS4 for putting up with my constant whinging,
Mustafa Igbal for proof-reading the document, and “The Black Rebel Motorcycle

Club”, whose music kept me (somewhat) sane.

Contents

1 Introduction & Background

1.1
1.2
1.3
1.4
1.5

XML . .
Trees and Differencing L oL
Output Format
Patching
Applications e

2 Related Work

2.1

2.2

2.3

2.4

Tree Correction Algorithms,
2.1.1 The Extended Zhang and Shasha Algorithm
2.1.2 The Fast Match Edit Script Algorithm
2.1.3 The xmdiff Algorithm
2.1.4 Other Algorithms
Existing Products oo oo
221 DeltaXML
222 xmldiff. . ..o
223 XML TreeDiff oo
224 XyDiff . .. oo
225 diffmk . ..o
2.2.6 XML Diff and Merge Tool
227 VMTools
Output Formats
2.3.1 DeltaXML
Conclusion

3 Requirements

3.1

3.2

3.3

3.4

3.5

Aims and Objectives Lo
311 Aim ...
3.1.2 Objectives
Input and OQutput o
321 Input
Output
3.3.1 Diff Utility
Functional Requirements
3.4.1 Diff Utility
3.4.2 Patch Utility o
Non-Functional Requirements

11
11
11
12
14
14
15
15
16
16
16
17
17
17
18
18
21

CUNLLINLD

4 Design
4.1 Diagrams and Charts.
4.2 Relating XML documents to trees
4.3 Description of Algorithms
4.3.1 The Fast Match Edit Script (FMES) Algorithm
432 xmdiff
5 Output Format
5.1 Delta Update Language (DUL)
5.1.1 Imsert e
5.1.2 Delete
5.1.3 Update
5.1.4 Move
5.1.56 DUL Example
5.1.6 Namespaces
5.1.7 Entity Referenceso 0oL
5.1.8 Adding Context Information
5.1.9 Extensionsto DUL
5.1.10 XUpdate
5.2 Human Readable Output
6 Implementation
6.1 Technology
6.2 Command Line Invocation
6.2.1 Diff Tool
6.2.2 Patch Tool
6.3 PublicRelease o .
7 Testing
7.1 Black Box Testing
7.2 White Box Testing
7.3 Regression Testing
8 Discussion
8.1 Fulfilment of Requirements
8.2 Limitations and Further Work
8.3 Conclusion

A GNU General Public License

B Sample Input and Output

29
29
30
31
33
35

37
37
38
41
42
44
46
47
47
48
54
56
56

58
o8
99
59
62
62

64
64
65
66

67
67
68
70

72

78

Chapter 1

Introduction & Background

The aim of this dissertation was to create XML-based equivalents of the UNIX
diff and patch tools. The utilities and source code are available on-line at http:
//diffxml.sourceforge.net.

This document is comprised of 8 chapters, covering different aspects related

to the design and creation of the tools:

e The rest of this chapter is dedicated to an introduction to XML and tree-

differencing, as well as an overview of possible applications.

e Chapter 2 discusses related work, both in terms of tree-differencing algo-

rithms and existing software for comparing XML documents.

e Chapter 3 details the aims and objectives of the project, and the functional

requirements.
e Chapter 4 covers the design of the tools and the algorithms implemented.

e Chapter 5 is a detailed specification for a generalised output format for

showing the difference between XML documents.

e Chapter 6 reviews the implementation of the utilities; the technology used,

how the programs are called and the public release of the utilities.
4

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND 8]

e Chapter 7 details the testing of the programs; both the process used and

the results.

e Chapter 8 reviews the achievements and limitations of the work, and sug-

gests possible extensions.

e The appendix contains a copy of GNU General Public License, under which

the tools were released.

1.1 XML

As stated by the World Wide Web Consortium (W3C) [1], “The Extensible
Markup Language (XML) is the universal format for structured documents and
data on the Web.” XML is designed to be interoperable with both SGML and
HTML. A section of a possible XML document is shown in figure 1.1.

<media type=“CD” >
<length>10m15s</length>
<artist>Exemplar< /artist>
<track num=%“1">
<title>Hello< /title>
<length>5m32s</length>
</track>
<track num=2">
<title>Goodbye< /title>
<length>4m43s< /length>
< [track>
</media>

Figure 1.1: Part of an XML document

XML documents are made up of one or more elements which are delimited by
tags. Attributes can be included inside tags to give further information about the
element. Elements are ordered whilst attributes are unordered. In the previous

example ‘<length>’ is a tag with no attributes whilst ‘<track num=%1">’is a

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND Y]

tag with one attribute. Note that the structure of XML is strictly nested, for
example the document in figure 1.2 would be illegal, as the “media” element is

terminated inside a child element.

<media type=“CD” >
<length>10m15s</length>
<artist>Exemplar< /artist>
<track num=“1">

<title>Hello< /title>
<length>5m32s< /length>
</track>
<track num=2">
</media>
<title>Goodbye< /title>
<length>4m43s< /length>
</track>

Figure 1.2: Part of an illegal XML document

1.2 Trees and Differencing

The strict nesting of XML allows us to represent XML documents as ordered
trees. Our first example in figure 1.1 could be shown as the tree in figure 1.3
(ignoring attributes).

It is clear that the problem of finding the changes between two XML doc-
uments can be seen as the “Tree-to-tree Correction Problem” [2] for ordered

labeled trees.
Consider the two trees in figures 1.4 and 1.5:

We wish to apply a set of operations to Tree 1 to create Tree 2. The most

basic operations we can apply are:

e change the label of a node

e delete a leaf node

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND "

media

lethh arTst track track

“10m15s” “Exemplar”

tiwle lenfth tiwle lenfth

“Hello” “5m32s” “Goodbye” “4m43s”

Figure 1.3: Tree representation of an XML document

e insert a leaf node

We will call a set of such operations an edit script. The set of edit scripts
which transform Tree 1 into Tree 2 is infinite; we could continuously add and
delete nodes. However we want to find a minimal edit script which transforms
Tree 1 into Tree 2. An example edit script to change the tree in figure 1.4 into
the tree in figure 1.5 could be:

e delete L(a), the first child of node 2,
e add L(f) as the 1st child of node 3,
e relabel the 2nd child of node 4 from A(e) to A(g).

1.3 Owutput Format

To be of more value to users, we need to be able to show the edit script in a more
intuitive, visual and immediately discernible format. An obvious and flexible
method of solving this problem is to change the edit script into a format which is
valid XML and can be used by other programs. This format can then be modified,
e.g. by an XSLT transformation into a format which displays the changes in a

form which is easy to read by users.

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND o]

(1)
(2) (3) (4)

(5 6) (7) (8 9)
L(a) A(b) A(c) L(d) Ale)
Figure 1.4: Tree 1

(2))

M
(3 (4
%) (6//\\7) 8 9)
L(f) Ac) L(d)

A(g)
Figure 1.5: Tree 2

We use the term delta in the revision control sense to mean a representation
of the differences between two objects, in our case XML documents. This sense
of the word probably came from its use in mathematics and engineering where it

can mean a “quantifiable change”.

1.4 Patching

The problem and action of applying a delta to a file in order to produce a new
version of the file with the changes incorporated is known as patching. The file

can be, but is not necessarily, one of the files used in the creation of the delta.

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND J

A delta used in this context may be called a patch, and the file with the
changes incorporated may be referred to as the patched file.
The term patching is used to refer to the problem and action of applying such

a patch.

1.5 Applications

There are many possible applications for XML differencing and patching tools,

some conceivable uses are:

Version Control: Text based version control systems use the standard UNIX
diff and patch tools extensively. Version Control systems covering XML
would greatly benefit from an XML diff tool. Although the UNIX diff
utility will produce valid output for XML files, the output will be sub-
optimal in comparison to a diff utility cognizant of the hierarchical structure
of the data. The hierarchical delta should also capture the “essence” of any
changes - what the users intentions were when modifying the file - much

better than the line-oriented diff.

Document Comparison and Updating: XML documents written by an au-
thor or co-author can be checked to find the changes between versions.
“Patches” can be distributed containing the changes made by an author,
and others can choose whether or not they wish to apply the changes to

their copy of the document.

Databases: XML is increasingly used for storing data in databases. Detecting
changes to data is important for many database applications. The XyDiff
[11] program was developed specially for the Xyleme [17] data warehousing

project. For example if the database returns XML documents for query

vaoarioiy 1. IINITRUDUULIUIN & DAUVNGRUUND

results, we can identify the nature of any changes to a standing query e.g.

detect when a new name is added to a mailing list.

Web Caching: Currently web caches must request complete documents if they
do not hold a current version of the requested page. Using a differencing
utility, they need only request a delta between the cached page and the
new page. This could create a large reduction in the amount of web traffic,
and result in improved transfer times for users. Such a system could cache

dynamic as well as static web objects. See [9] for more information.

Transaction Data: If a user has a common query against an application it
would be possible to send only a delta of any changes to the previous query
result rather than send the complete document again. For example a sports
ticker application could send information on only the current event (e.g. a
goal being scored, a yellow card given), rather than send the full account

of the match to date. This can result in significant bandwidth savings.

Chapter 2

Related Work

This chapter details previous work carried out in areas relevant to the project.
First we look at tree-correction algorithms that can be used in differencing XML
documents, before moving on to look at existing products for differencing XML

and their output formats.

2.1 Tree Correction Algorithms

As explained in the previous chapter, the problem of finding the changes between
two XML documents can be seen as the tree-to-tree correction problem. This

section covers several algorithms created to solve this problem.

2.1.1 The Extended Zhang and Shasha Algorithm

Barnard, Clarke and Duncan’s paper [2] gives a concise overview of early (pre-
1995) work on the tree-to-tree correction problem. As the early work has largely
been superseded by later algorithms and papers, we will not consider it here.
However the paper also proposes an algorithm based on Zhang and Shasha’s

work [3] which we will refer to as the Extended Zhang and Shasha (EZS') algo-

!The name EZS is coined in the zmldiff [4] documentation

11

vaoArinon 4. RELALVD VWURKA

rithm.
The original algorithm by Zhang and Shasha [3] runs in time O(n?log?n) for
balanced trees [5], where n is the number of tree leaves (worse for unbalanced

trees). The algorithm uses the following primitives (basic operations):

e change change the “value” of a node to a new value, e.g. replace the text

of a sentence
e delete a leaf node
e insert a leaf node

Barnard, Clark and and Duncan extended Zhang and Shasha’s algorithm by

adding the following primitives which act on subtrees rather than just nodes:
o deleteTree deletes a subtree
e InsertTree inserts a subtree
e swap swaps a subtree with another subtree

These operations were added to give better edit scripts for documents; they allow
operations closer to those a user could be expected to perform, such as merging
and moving whole sections of text at a time.

The impact these extensions have on the overall time is relatively negligible
compared to the benefits. Note that the EZS algorithm will always produce a
edit script that is minimal in terms of the costs of the operations.

This algorithm is implemented in the xmldiff [4] program.

2.1.2 The Fast Match Edit Script Algorithm

Chawathe, Rajaraman, Garcia-Molina and Widom’s paper [5] covers the Fast

Match Edit Script or FMES? algorithm. The FMES algorithm was created after

2The name FMES is coined in the zmldiff [4] documentation

vaoArinon 4. R[RELALVD VWURKA

the EZS algorithm and is intended to be complementary to it.

The FMES algorithm uses the following primitives:

Insert inserts a new leaf node

Delete deletes a leaf node

Update changes the “value” of a node to a new value, e.g. replace the text

of a sentence

e Move moves a subtree from one parent to another

The algorithm splits the tree-to-tree correction problem into two parts; finding
a good matching between trees (Good Matching problem) and finding a Minimum
Conforming Edit Script (MCES). A description of the operation of the algorithm
can be found in section 4.3.1

In order to achieve good performance from the algorithm, it is assumed that
for a leaf [in a document, there exists at most one leaf in the other document
which “closely” resembles [. This assumption allows the algorithm to perform
efficiently, but in cases where this assumption does not hold it may not produce
a minimal edit script.

The FMES algorithm runs in order O(ne + €?) time where n is the number
of tree leaves and e is the “weighted edit distance” (described in the paper).
Because of the tradeoffs between performance and minimality of edit scripts, the
authors suggest using the EZS algorithm in domains where the amount of data
is small and the FMES algorithm in domains where there is a large amount of
data.

The FMES algorithm is also implemented in the zmldiff [4] program.

voarinoiy 2. oAl WURKN
2.1.3 The xmdiff Algorithm

The xmdiff algorithm presented in [6] is unique in that it defines an external-
memory algorithm which can handle arbitrarily long files. The paper is written
by Sudarshan Chawathe, a co-author of [5], and represents some subsequent work
he has carried out in the area.

The following primitives are used by xmdiff:

e Insert inserts a leaf node
e Delete deletes a leaf node

e Update changes the “value” of a node to a new value

The algorithm uses the idea of edit graphs to reduce the problem of finding a
minimum-cost edit script to the problem of finding a shortest path from one end
of the edit graph to the other.

In an external-memory algorithm the overriding performance factor is the
number of I/O operations. The algorithm can make use of surplus RAM to
reduce I/0 cost. Given a block size of S, input trees of size M and N respectively,

m = M/S and n = N/S, the costs are:
e I/O 4mn + Tm + 5n
e RAM 6S

e CPU O(MN + (M + N)S'9)

2.1.4 Other Algorithms

There exist many other algorithms and papers on the tree-to-tree correction prob-
lem, which, due to lack of space, are not covered in depth here, but two in par-

ticular deserve a mention:

vaoArinon 4. R[RELALVD VWURKA

e Cole, Hariharan and Indyk’s paper [7] is recent and achieves an impressive
time bound, but is heavily mathematical and it would take some time to

understand well enough to create an implementation based on it.

e Chawathe and Garcia-Molina’s paper [8] covers the MH-DIFF algorithm.
They include primitives to move and copy entire subtrees, which as dis-
cussed in the EZS algorithm, can lead to more appropriate deltas for docu-
ments. Their work covers unordered trees which are not always applicable

to XML documents.

2.2 Existing Products

There are several existing products for finding changes between XML products.
All of these tools are designed to take two XML files as input and somehow
display the changes between them.

IBM’s XML Diff and Merge Tool [20] is not covered as it is not designed to
produce standalone delta files. Instead the program highlights the differences
within a Java GUIL However, IBM’s other product XML TreeDiff [22] is consid-

ered.

2.2.1 DeltaXML

DeltaXML [23] is proprietary software created by Monsell EDM Ltd.
Interestingly it can handle both ordered and unordered trees. If a Document

Type Definition (DTD) is present it is used to obtain entity expansions and

default attribute values. Output is either a delta or the original document with

changes tagged. The delta format is considered in section 2.3.

vaoArinon 4. R[RELALVD VWURKA

2.2.2 xmldiff

The xmldiff [4] product is GPL-licensed free software created by Logilab as part
of the NARVAL project.

The program was written in Python and implements the FMES and EZS
algorithms. It has two output formats for deltas, one of which is not in XML
format and the other is in the XUpdate [24] language (considered later).

The program needs to hold the XML files in an internal structure in memory,
hence it cannot handle very large files. Also there are several cases where the
program produces incorrect output, due to coalescing of text nodes in XPath (see

the XPath standard [29] for more information).

2.2.3 XML TreeDiff

XML TreeDiff [22] product is proprietary software created by IBM.

The program was written as a set of Java Beans intended to mimic the func-
tionality of the traditional UNIX diff and patch programs. It purportedly achieves
good performance by the use of “fuzzy subtree matching”. The program has 2
output formats, FUL and XUL, of which we consider XUL later, as XUL is the

successor of FUL.

2.2.4 XyDiff

The XyDiff program [11] was developed by the VERSO team for INRIA [12].

The program was developed for the Xyleme [17] XML data warehousing
project. The utility uses the Xerces [13] C++ parser. At its heart is a very
fast algorithm able to difference large (>10Mb) documents. However the algo-
rithm often produces non-minimal output.

XyDiff was released under the open source Q Public License.

vaoArinon 4. R[RELALVD VWURKA 1/

2.2.5 diffmk

The diffmk utility [18] is a Perl program written by Norman Walsh of Sun Mi-
crosystems.

Although the source code is available, it does not appear to have an Open
Source [32] license and remains the copyright of Sun Microsystems. The program
uses a Perl algorithm for computing the Longest Common Subsequence (LCS) of
two strings. It does not always produce minimal, or even correct output. The
output is the original document with changes marked. Distributed with a utility
which displays the differences between the files using colours in a way which is

easy to read by humans.

2.2.6 XML Diff and Merge Tool

The XML Diff and Merge Tool [19] is proprietary software created by Dommitt
Inc.

There is no downloadable evaluation, only an on-line demonstration which
invites the user to upload XML files. It uses the xmdiff [6] algorithm. The

output is the original document with changes marked.

2.2.7 VM Tools

The VM Tools [21] package contains XML differencing and patching tools.

The tools are written in Java and have a defined API for integration with other
java programs. The package is released under their own VM Systems software
license. VM Tools does not support differencing of XML processing instructions

or comments, nor does it have support for large files.

ovoAarifin . nvvl.Adlid) VWURN
2.3 Output Formats

All of these products have separate output formats. In this section we consider
and contrast the best of them. I have kept this section separate from the dis-
cussion of the products as the output formats can stand independent of their
implementations.

None of the output formats produce enough context information to produce
accurate patches on files considerably different from those used in creating the
delta. More useful context information would be, for example, showing any parent
and sibling nodes.

For the sake of clarity the examples given in this section have been indented
and formatted; the reader should not expect the programs to produce identical

output.

2.3.1 DeltaXML

An example of the Delta XML output format is given in figure 2.1. The program
has been used to produce a delta between 2 HI'ML documents where the only
change is that the text of a “<td>” element has been changed from “td 3” to
“td 3a”.

Delta files produced by DeltaXML always have a namespace for DeltaXML
associated with them.

The DeltaXML format conveys change information in a non-complex fashion
and precisely. However it does not make good use of XPath [29], and seems
to contain a lot of redundant information (the unchanged nodes), yet does not
provide the context information that is needed for patching changed files.

Mousell have applied for a patent on the Delta XML output format.

vaoArinon 4. R[RELALVD VWURKA

<xhtml:html xmlns:deltaxml=“http://www.deltaxml.com/ns/well-formed-delta-v1”
xmlns: xhtml=*“http://www.w3.0rg/1999/xhtml” deltaxml:delta=“WFmodify” >
<xhtml:html deltaxml:delta=“WFmodify” >
<xhtml:head deltaxml:delta=“unchanged” > </xhtml:head>
<xhtml:body deltaxml:delta=“WFmodify” >
<xhtml:table deltaxml:delta=“WFmodify” >
<xhtml:tr deltaxml:delta=“WFmodify” >
<xhtml:td deltaxml:delta=“unchanged” > </xhtml:td>
<xhtml:td deltaxml:delta=“unchanged” > </xhtml:td>
<xhtml:td deltaxml:delta=“WFmodify” >
<deltaxml:PCDATAmodify>
<deltaxml:PCDATAold>
td 3
< /deltaxml:PCDATAold >
<deltaxml:PCDATAnew>
td 3a
</deltaxml:PCDATAnew>
< /deltaxml:PCDATAmodify >
</xhtml:td>
</xhtml:tr>
< /xhtml:table>
</xhtml:body>
</xhtml:html>

Figure 2.1: DeltaXML output

XUpdate

The XUpdate [24] format is used by zmldiff and has the advantage of being fully
specified in a recommendation created by the XML:DB [25] initiative. XUp-
date can be shaped to a certain extent by the implementation, but it essentially
consists of commands as shown in 2.2. The delta represents adding an element
“<town>” with the value “San Francisco” inside an element “<address>”, fol-
lowed by appending another element “<address>” as the last child of “<addresses>".
The recommendation for XUpdate is easy to understand, and makes use of
the XPath standard. The fact that there exists a standard for XUpdate enables
it to be easily adopted by others.
XUpdate’s disadvantages are its verbosity and lack of support for context

information for the purpose of patching documents other than those from which

vaoArinon 4. R[RELALVD VWURKA

<7Txml version=%1.0"7>
<xupdate:modifications version=%1.0"
xmlns:xupdate=“http://www.xmldb.org/xupdate” >
<xupdate:element name=“address” >
<town>San Francisco</town>
< /xupdate:element >
<xupdate:append select=*/addresses” child=*“last()” >
<xupdate:element name=“address” >
<town>San Francisco</town>
< /xupdate:element >
< /xupdate:append> </xupdate:modifications>

Figure 2.2: XUpdate Output Format

the original delta was computed. Also there is no support for selecting only part

of a text node, which is useful in creating small deltas.

XUL

The XUL output format is used by the IBM XML TreeDiff program. IBM have
spent a reasonable amount of time developing XUL, using XUL to replace FUL
as the default output format for XML TreeDiff.

An example of XUL output is given in figure 2.3.

<node id=“/*[1]" />
<node id=*/*[1]/*[2]" />
<node op=*“add” name=“B” type=*“3" />
<node id=*/*[1]/*[3]" />
<node op=*“add” name=“G” type=“3" />
</node>
</node>

Figure 2.3: XUL Output Format

An understanding of XPath [29], not covered here, is required to understand
this output format.

The format is not very readable as nodes are referred to as numbers, not by
their names or values. Although this output format is of limited help to a user,

from the machine’s point of view it could make for faster and easier patching,

vaoArinon 4. R[RELALVD VWURKA 41

when patching one of the same documents on which the delta was produced. An
important point of this format is that the delta itself is in a hierarchical format,

which is helpful if we are to add context information.

2.4 Conclusion

From the algorithms covered earlier, the most appropriate algorithms seem to be
xmdiff [6] and FMES [5].

The xmdiff algorithm allows differencing of large files and produces minimal
edit scripts, both points which are important to creating a useful diff utility.

The FMES algorithm does not always produce minimal deltas and only works
in main memory, but should run substantially faster. In many applications it is
preferable to quickly see the changes at a glance rather than wait longer and be
given a slightly more minimal delta.

From the output formats described earlier the two most apt formats are XUp-
date and XUL.

XUpdate gives a more textual account of changes and is to some extent a
standard, whilst XUL gives a precise and less verbose account of changes that is
more appropriate for programs.

Neither of the output formats support extra context information, which is
necessary to produce good patches for documents other than those from which
the delta was computed.

Overall, although algorithms exist which are capable of efficiently calculating

changes, there is no product which includes all of the following qualities:
e An output format that is good for patching changed files,
e A fast and accurate algorithm,

e The ability to handle large files,

vaoArinon 4. R[RELALVD VWURKA

e An open source license,

e Not strongly tied to a particular XML parser,

e Has an independent and fully specified output format.

Chapter 3

Requirements

This chapter covers the aims and objectives of the project and the requirements
for the utilities. The requirements are broken into input and output of the pro-

grams, functional requirements and non-functional requirements.

3.1 Aims and Objectives

3.1.1 Aim

e Provide GPL-licensed [34] free software implementations of XML oriented

diff and patch utilities.

3.1.2 Objectives

e Create an XML “diff” utility which finds and outputs the changes between

2 XML documents.

— Implement algorithm(s) for solving the tree-to-tree correction problem.

— Define an output format for displaying a delta of the 2 documents.
The output format is intended to be used by other programs and not

directly read by humans.

23

CoArinn o, RUEGULINIVIVIIZIN 1O

e Create an XML “patch” utility which applies a delta from the diff utility

to an arbitrary XML document.

3.2 Input and Output

The various inputs and output to the program are detailed in this section.

3.2.1 Input
Diff Utility
e 2 XML documents to be differenced.

e Command line switches for the various options defined in the Functional

Requirements section 3.4.

Patch Utility

e Delta output from the diff utility.
e XML document that the delta is to be applied to.

e Command line switches for the various options defined in the Functional

Requirements section 3.4.

3.3 Output

The various program outputs are detailed in this section.

3.3.1 Diff Utility

e A delta of the changes between the documents or

o A statement of whether the two documents differ if in “silent mode”.

CoArinn o, RUEGULINIVIVIIZIN 1O

The output format must be concise yet allow for the addition of context data.
The addition of context data is important to allow patches of files which were
not used in the creation of the delta. This context data must be enough to find
an appropriate point in the document to apply each change.

It should be possible to easily change the output into a format more easily
read by a user. XSL Transformations (XSLT) [31] could be used to transform
a generic XML output format into different formats, more appropriate for other
purposes. For example we could have transformations to create untagged ASCII
output or formats designed to highlight certain aspects of the delta, such as added

nodes.

3.4 Functional Requirements

This section describes requirements which directly affect the functionality of the
tool. The requirements are broken into primary and secondary requirements,
reflecting their relative importance. Some discussion of why the requirements are

necessary is included.

3.4.1 Diff Utility

Primary Requirements

e The tool must be able to read in 2 well-formed XML documents, filel and
file2, and output a set of differences that can be used to create file2 from

filel. This is the base functionality required from the program.

e The utilities must take a similar form to the existing UNIX diff and patch
tools. This will make the program much more intuitive and usable by UNIX

users.

e The program must operate on the tree-structure of the XML files as opposed

CoArinn o, RUEGULINIVIVIIZIN 1O

to its flat line-based structure. This is necessary to produce deltas which

properly embody the meaning of the changes between the files.

e The tool must be able to handle arbitrary length files. A utility which only

works on small files is of limited use.

e The ability to add context information to deltas. This will allow accurate

patching of documents which are not filel or file2.

Secondary Requirements

e A choice of algorithms should be available, one which always produces min-
imal deltas, and one which is faster but may not always produce minimal
deltas. In some cases users will want a minimal delta, in other cases they

may want to sacrifice minimalness for speed.

e Options to ignore whitespace and character case within nodes. Various

options for the stripping of whitespace are possible, e.g;

— Never strip whitespace.

— Always strip leading and trailing whitespace.

Only strip whitespace if parent element is in a given list.

— Ounly keep whitespace if parent element is in a given list.

e An option to ignore changes to XML comments in a delta. Users may not
be interested in changes between comments, and may want to turn this

functionality off.

e A “silent mode” which outputs only whether or not two files differ. It would
be useful to include a simple check to tell if two files differ, that does not

output an entire delta.

CoArinn o, RUEGULINIVIVIIZIN 1O 4l

3.4.2 Patch Utility

Primary Requirements

e The tool must be able to take deltas from the diff tool and apply them to
XML documents. In cases where the delta is applied to the same document
used as filel in the diff, the patch program must produce output equivalent

to file2. This is the most basic function required of the program.

e The tool should be able to reverse the sense of a patch; e.g. change all adds

to deletes and vice-versa.

e The tool should be able to apply patches to XML documents other than
those used to complete the original delta. Patching such documents may
necessarily be less exact and whether or not to apply a particular change will
depend on the mode of operation and the accuracy of the match. Discarded

changes should be placed in a “reject” file.

e The tool should include controls over its level of “interactivity”. “Interac-
tivity” is defined as the ability to query the user on whether or not a change
should be applied. The user should be able to specify the level of interac-
tivity, ranging from always query to never query. This option is useful if

the user needs to have control over which changes are to be applied.

Secondary Requirements

e Options to ignore whitespace and character case. The user should be able
to specify if changes in whitespace and case are unimportant, and should

not be applied.

e The tool should mimic the original UNIX “patch” controls which include

a “fuzz-factor” which determines when a match is a good one, based on

CoArinn o, RUEGULINIVIVIIZIN 1O

context. If the match is not good, the change is rejected or the user is
consulted. It makes sense to keep this functionality the same if it does not

affect usability.

3.5 Non-Functional Requirements

This section covers requirements which do not affect the functionality of the tool,

but are nonetheless important.

e The tools will be put under the GPL license, which allows others to freely

use and extend the program.

e The tool’s usage, output and structure will be clearly documented, to help

others who may wish to extend or modify the tool, as well as normal users.

e The tools must run on the departmental Linux machines.

Chapter 4

Design

The utilities were designed using the process oriented method put forth in [27].
This method was chosen due to previous experience with it, and because the
structure of the program readily breaks down into a hierarchical, functional flow
modelled well by this method.

An object-oriented methodology, such as the UML, was not used mainly be-
cause I have little experience of using such a methodology. The program also
does not decompose as readily into objects as a functional flow, as it is mainly

composed of two large, inalterable algorithms.

4.1 Diagrams and Charts

All diagrams and the data dictionary can be found online at http://diffxml.

sourceforge .net/design/. There are three types of diagram used:

e Data Flow Diagrams (DFDs): Model the logical process of the pro-
gram. Shows the processes which compose the program and how data is
passed between them. For each DFD with a control process, an STD is
also included. A data dictionary contains definitions for the dataflows and

stores in the DFDs.
29

vaoAaArioiy 4. DJoLIN

e State Transition Diagrams (STDs): Records the control information
required within the real-time logical process model. Shows the various

states a program can pass through.

e Structure Charts: Models the system as hierarchical, synchronous, in-
teracting modules. As opposed to a DFD which is asynchronous and has

no explicit hierarchy.

4.2 Relating XML documents to trees

Both the FMES and the xmdiff algorithms work on rooted, ordered, labeled trees
where each can contain some “value”.

A rooted tree has exactly one node that has been selected as the basis of the
document, as opposed to a “free tree” or acyclic graph. An ordered tree is where
the children of nodes have a designated order. In a labeled tree each node has a
name (label) which is not necessarily unique but in some sense defines its “type”,
for example a sentence or paragraph in a document tree. By the value of a node
we mean whatever information it holds, for example the contents of a sentence
in a document tree.

It is important that we relate these concepts to XML files, so as to remove any
ambiguity. To do so we will reference definitions given in the Document Object
Model (DOM) Level 2 Core Specification [10].

Firstly, XML can be seen in a hierarchical format because XML is strictly
nested; XML elements must always be properly closed and may not overlap.
XML files can always be seen as rooted trees as there is always exactly one
root element (the “document element” in DOM) corresponding to the root of
the tree. The labels of an XML document are the values returned by the DOM

getNodeName() method. The exception to this rule is attributes, which, in our

vaoAaArioiy 4. DJoLIN ol

context, are not defined as nodes but as the “value” of an element. The value of
nodes, other than attributes and elements are the same as that returned by the
DOM getNode Value() method.

The breakdown of value and label for each considered node type is:

Node Type Label Value

Element tag name ((attribute title)(attribute
value))*

Comment #comment content of the comment

Text #text content of text node

Processing target entire content excluding the

Instruction target

Several node types are not considered, either as they are only applicable to
DTDs!, or are not considered leaf nodes. The value of Element nodes, “((attribute
title)(attribute value))*”, represents an associative array of attribute titles with
their values.

Using these definitions it is possible to build a tree of the form usable by the

FMES and xmdiff algorithms from an XML file.

4.3 Description of Algorithms

The following section briefly describes the working of the FMES and xmdiff al-
gorithms. The algorithms build upon or make use of similar concepts which are
described first. Both algorithms create Edit Scripts, a sequence of edit operations
which transform one tree into another. We use the definition of edit operations
as described in [5].

We consider four main edit operations:

'"Document Type Definition, see the XML specification [1]

vaoAaArioiy 4. DJoLIN

e Insert: The insertion of a new leaf node z into 77, denoted by INS((z,l,v),y,k).
A node z with label [and value v is inserted as the kth child of node y of 17 .
Where z is some unique node identifier. More precisely, if uy,...,u,, are
the children of y in 77, then 1 <k <m+1 and w1, ..., Uk _1,T, Uk, -, U
are the children of y in T,. The value of v is optional and is assumed to be

null if omitted.

e Delete: The deletion of a leaf node z of T, denoted by DEL(z). The result
T, is the same as T7, except that it does not contain node z. DEL(z) does
not change the relative ordering of the remaining children of p(z). This
operation deletes only a leaf node; to delete an interior node we must first

move its descendants to their new locations or delete them.

e Update: The update of the value of a node z in T}, denoted by UPD(z,val).
T, is the same as T} except that in T, v(z) = val, where v(z) denotes the

value of a node x.

e Move: The move of a subtree from one parent to another in 7%, denoted
by MOVE(z,y,k). Ty is the same as T}, except z becomes the kth child of
y. The entire subtree rooted at z is moved along with z. This operation is

not supported by the xmdiff algorithm.

In most cases there are many edit scripts that will change 77 into 7. We want
to choose an edit script which does the minimum amount of work necessary. In
order to formalize this notion it is necessary to have a cost model which assigns

a cost to each operation. This requires the functions:

e ci(z): which returns a positive number representing the cost of inserting a

node z.

vaoAaArioiy 4. DJoLIN

e cd(z): which returns a positive number representing the cost of deleting a

node z.

e c¢m(z): which returns a positive number representing the cost of moving a

subtree rooted at z.

e cu(vy,vy): which returns a positive number representing the cost of updat-

ing a value from v; to vs.

The numbers returned should be consistent with regards to each other, for
example the cost of updating a node’s value to a similar value should be less than
the cost of deleting the node and inserting a new node. The cost of an edit script

is the sum of the costs of its individual operations.

4.3.1 The Fast Match Edit Script (FMES) Algorithm

The FMES algorithm is fully described in [5].
The algorithm splits the problem of finding the minimum cost edit distance

between ordered trees into two subproblems:

e The “good” matching problem.

e The minimum “conforming” edit script problem.

The “good” matching problem is finding an appropriate matching between
the nodes of two trees, 17 and 75, that can be used in solving the minimum
“conforming” edit script problem. Two nodes are said to have a matching if the
nodes have similar or identical values. Matchings exist on a one-to-one basis. A
set of matchings M can be considered better than a set of matchings M’ if using
M to compute the edit script results in a cheaper edit script than using M’.

For reasons of efficiency, the algorithm assumes that for any given leaf node

y € T3, there is at most one node z € 17 which is computed to match y. This

vaoAaArioiy 4. DJoLIN

assumption will not hold for all documents. In such cases the algorithm may
generate non-minimal output, in these cases we trade minimality for speed.

The matching algorithm works by traversing 77 bottom-up, looking for matches
with so far unmatched nodes in T5, which are added to M. The nodes are then
marked as “matched”. This basic algorithm can be improved by creating “chains”
of nodes with the same label and using Longest Common Subsequence (LCS) [28]
algorithms to get an initial matching between nodes.

The minimum “conforming” edit script problem is to create a minimum cost
edit script conforming to a set of matchings M, given the set M and two trees, T}
and T5, which transforms 7} into 75. There are five main stages in the algorithm
used to compute the edit script, £. In the following description of the stages,
p(x), I(x), v(z) denote the parent, label and value of a node x respectively.

The five stages are:

e Update: Look for matched pairs of nodes (formally (z,y) € M) which
have differing values (v(z) # v(y)). For each pair append the edit operation

UPD(z,v(y)) to E and apply the update to T7.

e Align: The children of a matched pair ((z,y) € M) are misaligned if x has
matched children v and v such that u is to the left of v in T} but the partner
of u is to the right of the partner of v in T5. Each pair of internal matched
nodes are checked to see if their children are misaligned. Misaligned children
are aligned via a move operation which is then appended to E. For details

on how the move operations are worked out, refer to the paper [5].

e Insert: Look for an unmatched node z € 75 such that its parent is matched.
Suppose y = p(z), and y’s partner in 77 is x. For each node append
edit operation INS((w,[(z),v(z)),z, k) to E, and apply the operation to T7.

Add (w,z) as a matched pair to M. Variable w denotes a new unique

vaoAaArioiy 4. DJoLIN

node identifier created for the node, and position k is determined with
respect to the children of x and z that have already been aligned. The
node inserted becomes a leaf node, any children of z will be inserted as a

separate operation.

e Move: Look for pairs of matched nodes ((z,y) € M) whose parents are
not matched. Append edit operation MOV (z,u, k) to E and apply the
operation to 77. Variable u denotes the matched node of the parent of
y in T7. The position £ is determined with respect to the already aligned
children, as in the insert phase. Both the parents are added to the matching

set M.

e Delete: Look for unmatched leaf nodes z in 7). For each such node add

DEL(z) to E and apply the delete operation to 7.

Once the algorithm has completed, 77 has been transformed into a copy of
T5, F is the final edit script and M is a matching between all nodes in the trees

to which E conforms.

4.3.2 xmdiff

The xmdiff algorithm [6] reduces the tree-to-tree correction problem to the prob-
lem of finding a shortest path in the edit graph of the two trees.

Edit graphs are used in several algorithms, notably the Myers LCS algorithm
[28]. For a full description of edit graphs refer to the Myers paper or the xmdiff
paper.

Intuitively an edit graph can be thought of as a simple grid, with the sequences
of nodes being compared as its axes. Suppose the sequence of nodes representing
Ty are on the horizontal axis, and the sequence of nodes representing 715 are on

the vertical axis. Therefore each point on the grid has a corresponding node in

vaoAaArioiy 4. DJoLIN

T} and in T5. There are directed edges between each node to the node (if any) to
the right, bottom and bottom-right. Naturally horizontal edges are directed to
the right, vertical edges to the bottom and diagonal edges to the bottom right.
Crossing an edge horizontally represents deleting the corresponding node of 77,
crossing an edge vertically represents inserting the corresponding node of T5 and
crossing an edge diagonally represents updating the value of the corresponding
node on 77 to the value of the corresponding node on T5. Weights are attached to
the edges equal to the cost of the edit operations they represent. Therefore any
minimum cost edit script will map to a path in the edit graph from the top-left
to the bottom-right.

The xmdiff algorithm can be broken into 2 components, computing the dis-
tance matriz and generating the edit script.

The distance matrix is a (M + 1) x (N + 1) matrix D, where M and N are
the number of nodes in the respective input trees. D(z,y) is the length of the
shortest path from (0,0) to (z,y) in the edit graph. The computation of the
distance matrix is by a simple algorithm which checks the weights assigned to
edges in the edit graph.

Generating the edit script is the relatively easy task of following the minimum
cost path through the graph matrix and outputting the appropriate edit operation
at each step.

This algorithm is extended to compute the differences in external memory by
several techniques based in buffering and computing nested-loop joins in relational
databases. These techniques are not covered here; for a full account consult the

xmdiff paper [6].

Chapter 5

Output Format

This chapter covers the output format options supported by the program. A
breakdown and motivation for each of the options is provided. Extensive use is
made of the XPath standard[29] and the DOM Level 2 Core Specification [10],

which the reader may wish to consult.

5.1 Delta Update Language (DUL)

The natural output of the algorithms is an Edit Script as previously defined. We
want our output format to be a well-formed XML document, so that it can be
easily used by other programs and modified into other forms, possibly by XSL
transformations. The basic XML elements in DUL are defined to be roughly
equivalent to the relevant edit script operations. The DUL attempts to model

the basic edit script operations as XML elements.

37

vaoaArioin o, UULrul FURMAL

5.1.1 Insert

Syntax

<insert
parent=“zpathexpr”
childno="*cn”
charpos=*“char”
nodetype="*“code”
name="“title”

>value< /insert>

Description

Inserts a leaf node into the document. The instruction is intended to be equivalent
to the edit script operation INS((z,/,v),y,k) described on page 31.

Attributes
parent:

The variable zpathezpr is an XPath expression that uniquely identifies the
parent element, equivalent to y in the edit script operation. The XPath expression
is restricted to having node tests of the form “node()”, which matches any XPath
node, followed by an abbreviated position predicate of the form [z] where x is the
position number of the node. The zpathexpr uniquely identifies the parent node.
childno:

The variable cn is the child number of y that the node is to be inserted as
(the old node at this index becomes the ¢n+1 node). The number represents
the XPath “node()” position taken as child of the parent node (as opposed to
the DOM node index). The child number is unused and may be omitted in cases
where an attribute is inserted, as attributes have no defined order. The variable
cn is equivalent to £ in the edit script operation.
charpos:

In cases where inserts are made in the middle, immediately after or immedi-

vaoaArioin o, UULrul FURMAL

ately before character data, it is necessary to hold the character position at which
to insert the node. The variable char is the numeric character position at which
to insert the node. The first character of a text node is 1, in accordance with the
XPath standard. Setting the attribute to 1 is equivalent to inserting before the
text. If omitted, char defaults to 1.
nodetype:

The variable code is the DOM code of the node returned by the DOM getN-
odeType() method, and is part of I(z) in the edit script operation. These codes

are given in figure 5.1:

Node Name Code
Element 1
Attribute 2
Text 3
Processing Instruction 7
Comment 8

Figure 5.1: Table of DOM codes

Document nodes, Document Type nodes and Document Fragment nodes (as
defined in the DOM Level 2 Core Specification) are not included, as they are
not appropriate leaf nodes. As DTDs are not considered within the scope of
DUL, we also do not include Notation nodes, Entity nodes, or Entity Reference
Nodes. CDATA Sections are seen as Text nodes to avoid problems when using
XPath, which does not differentiate between CDATA Sections and other text.
The difference algorithm considers attributes only as the value of their parent
nodes, but to preserve generality they are considered nodes distinct from their
associated elements in DUL.
name:

The “name” attribute is used in cases where an attribute, element or process-

vaoaArioin o, UULrul FURMAL

ing instruction is being inserted. The variable title gives the name of an attribute,
the tag name of an element, or the target of a processing instruction. In cases
where the node is not one of these types, it may be omitted. Default is the empty
string.

Content

The content of an insert element, value, is the DOM value of the node to be
inserted, as returned by the DOM getNodeValue() method. Equivalent to v in
the edit script operation.

The values are given in figure 5.2:

Node Name Value
Attribute value of attribute
Comment content of comment
Element null

Processing Instruction | entire content excluding target

Text content of text node

Figure 5.2: Table of DOM Node Values

In cases where the value is defined to be null, including node content has
no effect. In these cases the insert operation may be represented by an empty
element. Representing cases which do not have a null value by an empty tag is
equivalent to setting the value to the empty string.

Example
The implementation of the differencing algorithm does not attempt to match
attribute nodes by themselves, instead matching elements whose tag names and
attributes match. Therefore one edit script operation to insert an element may

be represented by several insert elements e.g:

Inserts the element:

“<section title="Poetry’ />”

vaoaArioin o, UULrul FURMAL al

<insert parent="“/node()[1]/node()[3]” childno=“2" nodetype=*“1”"
name= “section” />

<insert parent="“/node()[1]/node()[3]/node()[2]” nodetype=*“2"
name=*“title” />Poetry</insert>

into the document.

5.1.2 Delete

Syntax

<delete
node=“zpathexpr”
charpos="*“char”
length=*%len /| >

Description

Deletes a leaf node from the document. Elements with attributes but no child
nodes are considered leaf nodes for this purpose, and hence can be removed by
this operation. The instruction is intended to be equivalent to the edit script
operation DEL(z) described on page 31.

Attributes
node:

The variable zpathexpr is an XPath expression which uniquely identifies the
XPath node to be deleted. Attributes may be deleted by an appropriate zpathezpr,
which specifies their title. The variable zpathezpr is subject to the same restric-
tions as for an insert, with the exception that when an attribute is being deleted
it is specified as the last predicate of the zpathezpr.
charpos:

In cases where character data is being deleted, it is necessary to specify how
much of the text to delete. The attribute “charpos” is used in conjunction with

the “length” attribute to unambiguously specify what text to remove. The vari-

vaoaArioin o, UULrul FURMAL

able char is the index of the first character to delete, counting in the same way
as for the insert operation. Unused in cases where the node is not a text node.
If omitted it defaults to 1.

length:

This attribute is used whenever a text node is being deleted. The variable len
identifies the number of characters to delete, from and including the character
specified by the “charpos” attribute. If omitted defaults to 0. Hence if the
“length” attribute is unspecified when deleting a text node, no deletion takes
place.

Examples

Deleting an attribute:
<delete node=*/node()[1]/node()[2]/node()[3]/Qtitle />

Removes the “title” attribute of an element.

An example of deleting a text node is:
<delete node=*/node()[1]/node()[4]” charpos=*“1" length=%“7" />

Deletes the first 7 characters from the text node identified.

5.1.3 Update

Syntax

<update
node="“zpathexrpr”
charpos="*“char”
length="“length”

/ >value< /update>

Description
Updates the value associated with a node. The instruction is intended to be

equivalent to the edit script operation UPD(x,val) described on page 31.

vaoaArioin o, UULrul FURMAL

Attributes
node:

The variable zpathezpr uniquely identifies the node to be updated, equivalent
to z in the edit script operation. The XPath expression is restricted as for the
delete element, with the addition that elements may not be identified. This is
because elements have no “value” to update. This is in accordance with the
DOM specification where the getNode Value() method returns null for elements.
The names of elements and attributes may not be updated.
charpos:

In cases where character data is being updated, it is necessary to specify how
much of the text to change. The attribute charpos is used in conjunction with the
“length” attribute to unambiguously specify which text to update. The variable
char is the first character to change, counting in the same way as for the insert
operation. It is unused in cases where the node identified by zpathexpr is not a
text node. If omitted it defaults to 1.
length:

This attribute is used whenever a text node is being updated. The variable len
identifies the number of characters to update, from and including the character
specified by the “charpos” attribute. If omitted defaults to 0. The number of
characters specified by the “length” attribute are always changed, if the new text
is not len characters long, the old text is truncated. Similarly if the new text is
more than len characters, the extra text is inserted without overwriting. Hence
if the “length” attribute is unspecified when updating a text node, the new text
is inserted at the appropriate position, without overwriting the old text.

Content
The wvalue variable represents the new value for the node. The meaning of the

value is the same as for the insert operation. In cases where character data is

vaoaArioin o, UULrul FURMAL

being updated, the new text overwrites existing characters beginning at char.
Any characters not overwritten are kept in the original position. Any characters
left in value after overwriting the original final character are appended.

Examples

An example of updating a non-attribute node is:
<update node="*/node()[1]/node()[2]/node()[3]” >this is a comment< /update>

An example of updating an attribute is:

<update node=*“/node()[1]/node()[3]/node()[2]/@title” >Arch
Bishop</update>

Which changes the value of the “title” attribute to “Arch Bishop”.

5.1.4 Move

Syntax

<update
node=“zpathexpr”
old_charpos=*“ochar”
length="“len”
parent="“parzpathexpr”
childno="*“cn”
new_charpos=*“nchar />

Description

Moves the position of a subtree or leaf node within a document. The instruc-
tion is intended to be equivalent to edit script operation MOV (z,y,k) described
on page 31.

Attributes
node:

The variable zpathexpr uniquely identifies the node or subtree to be moved.

vaoaArioin o, UULrul FURMAL

The XPath expression is restricted as for the delete element, except that at-
tributes may not be moved.
old_charpos:

In cases where character data is being moved, it is necessary to specify how
much of the text to move. The attribute “old_charpos” is used in conjunction
with the “length” attribute to unambiguously specify what text is to be moved.
The variable ochar is the index of the first character to move, counting in same
way as for the insert operation. Unused in cases where the node is not a text
node. If omitted it defaults to 1.
length:

This attribute is used whenever a text node is being deleted. The variable
len identifies the number of characters that are to be moved. If omitted defaults
to 0. Hence if the “length” attribute is unspecified when moving a text node, no
move takes place.
parent:

The variable parzpathezpr uniquely identifies the element the node identified
by zpathezpr is to become a child of. The XPath expression is restricted as for
the insert element.
childno:

The variable cn is the child number of parzpathexpr that the node is to be
inserted as (the old node at this index becomes the cn+1 node). The number is
the XPath “node()” position that the node will have (as opposed to the DOM
node index). In cases where an attribute is inserted the child number is unused
and may be omitted, as attributes have no defined order. Any node currently at
position childno under parzpathezpr is moved to position childno+1.
new_charpos:

In cases where moves insert in the middle, immediately after or immediately

vaoaArioin o, UULrul FURMAL

before character data, it is necessary to hold the character position at which to
insert the node. The variable nchar is the numeric character position at which to
insert the node, counting in the same way as for the insert operation. The first
character of a text node is 1, in accordance with the XPath standard. Setting the
attribute to 1 is equivalent to inserting before the text. If omitted, char defaults

to 1.
Example

An example of a move operation is:

<move node=*/node()[1]/node()[3]/node()[2]”
parent="/node()[1]/node()[2]” childno="2">

which moves the subtree rooted at the 2nd child of the 3rd child of the root

element to be the 2nd child of the 2nd child of the root element.

5.1.5 DUL Example

An example of a complete DUL document is given in figure 5.3.

<?xml version="1.0"7>

<DUL>
<insert parent=*/node()[1]/node()[3]” childno=*2" charpos=“7"
nodetype=*“1" name= “section” />
<insert parent=*%/node()[1]/node()[3]/*[2]” nodetype=*“2”
name= “title” />Poetry</insert>
<delete node=*/node()[1]/node()[2]/node()[2]” charpos=*“3”
length=""7"/>
<update node=*/node()[1]/node()[3]/node()[2][@title]”
>Arch Bishop</update>
<move node=*/node()[1]/node()[3]/node()[2]”
parent="/node()[1]/node()[2]” childno="2">

</DUL>

Figure 5.3: Complete DUL Document

The order of internal elements is important as changes are processed with

vaoaArioin o, UULrul FURMAL al

respect to any previous changes. Note that it is not invalid to do operations

on previously modified or added nodes, even pointless cases like inserting then

immediately deleting the same element, although it may well be sub-optimal.
This simple representation holds all that is necessary for a delta. In many

cases this format will be sufficient. Its advantages are that it is simple and small.

5.1.6 Namespaces

Namespaces [30] are used in XML to qualify element and attribute names by as-
sociating them with namespaces identified by Uniform Resource Identifier (URI)
references. A namespace should be both unique and persistent.

When using context information in DUL, it is necessary to use namespaces
to differentiate between DUL elements and elements from the documents used to
create the delta. It is also possible that a user may wish to use a DUL document
or part of a DUL document within another XML document.

DUL’s namespace is currently identified as http://diffxml.sourceforge.
net/DUL. This meets the uniqueness characteristic for a namespace, but, as the
Internet host for the project may change, may not meet the persistence charac-
teristic. It was felt that the trade-off was worthwhile in order to provide a URI

which contained information on DUL.

5.1.7 Entity References

Currently DUL has no support for showing differences between entity references.

Because of this the current implementation either always resolves entities, or
removes external entities from the document. The attribute “resolve-entities” is
attached to the root element and is given the value “true” or ”false” depending if
entities are always resolved or removed respectively. Neither behaviour is entirely

correct. Always resolving entities could lead to problems when dealing with

vaoaArioin o, UULrul FURMAL

external entities with different URIs; although they may resolve to a certain
value at the minute, this value could change at any time. Also it is unclear what
should happen in the case that an external server cannot be reached.

Removing entities is also incorrect, as we may be ignoring differences between
the documents.

A better solution would involve comparing the URIs of external entities,
rather than the values to which the URIs correspond, and extending the DUL
to be able to show any differences. This was not implemented as the problem
was not realised until late on in the project, and because DTD processing is not

considered within the scope of the dissertation.

5.1.8 Adding Context Information

The major disadvantage of the previous output is that it contains very little
context information. When we want to apply deltas to documents other than
the original, context information helps us to accurately identify which nodes the
changes apply to. This reflects the line-oriented diff and patch utilities case where
extra lines of context information can be output.

The problem in our case is to decide what should constitute context informa-
tion.

Although I have not implemented context aware patching, it is worth dis-
cussing how context information could be output here.

The following defines several ways of adding context information to DUL

documents.

vaoaArioin o, UULrul FURMAL

Tag Name Expansion

One of the simplest meaningful additions is element names in place of the “node()”
node tests' which match any node. For example:

<delete node=*/doc[1]/chapter[3]/section[2]” />
<move node=*“/doc[1]/chapter[3]/section[2]”
parent="*/doc[1]/chapter[2]” childno=“2"/>

Note that the position predicates? in the XPath expressions now identify the
position with regards to the element name rather than the absolute node position,
e.g. in the delete operation we are now talking about the second section element
of the third chapter element as opposed to the second child node of the third child
node of the root element, which may or may not refer to the same node. Although
it would be possible to choose which node tests to expand into names, (e.g. only
expand the final step) this level of control is not considered immediately useful
enough to warrant the extra syntax and complexity required to include it.

This simple addition makes the meaning of the operation much clearer, but

there is still much more that can be added in terms of useful context information.

Reverse Patching

A common operation when patching using traditional line based deltas is to
“reverse” the sense of the delta, i.e. inserted lines are deleted and vice versa.
This allows the user to recreate the original document in a diff given a patch and
the resultant document. In order to reverse the sense of a DUL document, it is

necessary to store more information about deleted nodes and updated nodes.

!Node tests specify the node type and expanded-name of the nodes selected by the location

step, see XPath[29] for a full description

2Predicates use expressions to refine the set of nodes selected by the location step. See

XPath[29] for a full description

vaoaArioin o, UULrul FURMAL

To signify that a delta is in a suitable format for reverse patching, the attribute
“reverse-patch” with the value “true” should be added to the root element. This
attribute defaults to “false” if omitted.

In order to reverse a delete, we need to know the values returned by the DOM
methods getNodeName(), getNode Type(), and getNode Value() for the node to be
deleted.

Hence the syntax for the delete instruction becomes:

<delete
node=“zpathexpr”
charpos="*“char”
length="%“len”
nodetype=*“code”
name= “title”

/ >value< /delete>

Where the extra attributes are:
nodetype:

Which is defined as for the “nodetype” attribute for the insert operation. The
variable code is the DOM code of the node returned by the getNodeType method.
name:

Which is defined as for the “name” attribute for the insert operation. The
variable title is the DOM code returned by the getNodeName() method. Only
used in cases where the node to be deleted of type element, attribute or processing

instruction, and may be omitted in other cases. The default is the empty string.

The content of the delete element, value, is the DOM value of the node as
returned by the getNode Value() method. In cases where character data is being
deleted only the removed characters are included, not the entire contents of the
XPath text node. In cases where the value of the node is null, including node

content has no effect. In such cases the delete operation may be represented by

vaoaArioin o, UULrul FURMAL a1

an empty element. This is the same as the contents for the insert operation.

In order to reverse an update operation, we need to know the values returned
by the DOM methods getNodeValue() and getNodeName() for the node to be
updated. Hence the syntax for the update operation becomes:

<update
node=“zpathexpr”
charpos="*“char”
name= “title”
/ >walue<old>oldvalue</old>
</update>

Where the extra attribute is:
name:

Which is defined as for the “name” attribute for the insert operation. The
variable title is the DOM code returned by the getNodeName() method. Only
used in cases where the node to be deleted of type element, attribute or processing

instruction, and may be omitted in other cases. The default is the empty string.

The character data content of the update element value is the new DOM value
of the node as returned by the getNodeValue() method. The character data of
the “old” child element is the original DOM value of the node as returned by the
getNodeValue() method. In both cases, if character data is being updated only
the changed characters are included, not the entire contents of the XPath text

node.

Context Nodes

We now consider context information more akin to the flat text concept of out-
putting context lines surrounding the changed line. In the hierarchical world,
we want to be able to not only output the value of sibling nodes but also par-

ent/child nodes and their siblings. In order to provide context information we

vaoaArioin o, UULrul FURMAL

need to add extra attributes and elements containing both the context data and
information on the context data. Each DUL operation occurs within a context
element, which also contains any context nodes. Operations may also contain
elements which hold context information. What constitutes a context node is
specified by the attributes of the “dul” root element.

An example of a DUL document with context information is shown in 5.4.
The example is hard to read due to the absence of whitespace and indentation,

which is left out to avoid confusion in identifying context nodes.

<?xml version=%1.0"7>

<dul:DUL xmlns:dul=*“http://diffxml.sourceforge.net” sib_context="1"
par_context=%“1" par_sib_context=“1">

<dul:context
>text<section><a/><dul:delete
node=*“/doc[1]/chapter|2]/section[3]/text()[1]” charpos=“1" length=*3"
>234< /delete><!- comment —></section>more text<

/dul:context>

< /dul:context
>more text<chapter title=“Bits and Bobs”
><dul:insert parent=*/doc[1]/chapter[3]” childno=%1" nodetype=“1"
name=“section” /><data/></chapter>even more text<

/dul:context>

<dul:context
>text<section><dul:update
node=*“/doc[1]/chapter[2]/section[3]/comment()[1]”
> another comment <dul:old> comment </dul:old></update
>description of section< /section>more text<

/dul:context>

<dul:context
>text sibling<chapter><dul:move
node=*“/doc[1]/chapter[5]/section[7]” parent=*/doc[1]/chapter[4]”
childno=*1” ><dul:context>some text<chapter><sibling/><
dul:mark> <section>some <I> child </I> nodes </dul:mark
> <sibling/> < /chapter>end text</dul:context></dul:move>

< /dul:context>

</dul:DUL>

Figure 5.4: DUL document with context information

Namespaces are used to differentiate DUL elements from context information

elements. The attributes attached to the “dul” root element set the parameters

vaoaArioin o, UULrul FURMAL

for the context information:

e The attribute “sib_context” sets the number of sibling elements to output
around the referenced element. Sibling context is symmetrical; when pos-
sible the given number of siblings is output both before and after the given

element. The “sib_context” attribute defaults to the value 0.

e The attribute “par_context” sets the number of parent and child elements
to output around the referenced node. Again context is symmetrical but in
all cases except the move operation (and the extended operations considered
later), the element will have no child elements. The “par_context” attribute

defaults to 0.

e The attribute “par_sib_context” sets the number of sibling nodes to output
around the parent/child elements. Such siblings have their values given but
not any child elements. The “par_sib_context” attribute defaults to 0. The

attribute has no effect when “par_context” is set to 0.

Attributes are not considered to be context nodes within their own right, but
are output as part of elements which are context nodes.

The example starts by deleting the text node “234” from the document. Note
there are 1 preceding sibling, 1 following sibling, the parent element and the par-
ents preceding and following siblings shown as context. The example then inserts
the element “<section/>" into the document. The element has no preceding sib-
ling, so none is shown. This is followed by the updating of a comment node. The
format for the update is the same as for the reverse patching format described
previously. The final operation is to move a “section” element from “chapter”
parent to another. This requires the addition of an “context” child element to
the move operation in order to hold the original context of the node. The subtree

being inserted is highlighted by enclosure within a “mark” element.

vaoaArioin o, UULrul FURMAL

The context for the “insert” and “update” elements refer to the transformed
tree, i.e. the context of the node after the change has been applied. Conversely the
context for the “delete” element refers to the original tree i.e. the context of the
node before the change is applied. The surrounding context for a “move” element
refers to the transformed tree i.e. the new position of the moved node. The
context within a “move” element refers to the original tree i.e. the old position of
the node being moved. Care needs to be taken not to get false impressions from
context information. Note that the context information supplied is fragmented,

for example there may be more children associated with parent elements.

5.1.9 Extensions to DUL

It is possible to extend the operations in DUL by considering further operations
on subtrees rather than single elements. Rather than unnecessarily define new

operations, we overload the meaning of the insert and delete operations:

e Delete Subtree

Delete the subtree rooted at given element:
<delete node=*“zpathezpr” />

Where the XPath expression zpathexzpr specifies the root of the subtree to
remove. The XPath expression is restricted in the same way as the insert oper-
ation. The zpatherpr uniquely identifies the element at the root of the subtree
being removed. The delete subtree operation is contrasted from the delete node
operation as it identifies a non-leaf node.

An example of the delete subtree operation is:
<delete node=*/node()[1]/node()[2]/node()[2]” />

This example removes the second child of the second child of the root node

and all children below it. Context elements take a similar form to the “delete”

vaoaArioin o, UULrul FURMAL

element, but contain a subtree rather than a single node. As text nodes cannot

be specified by the zpatherpr, we do not need “charpos” and “length” attributes.

e Insert Subtree

Insert a subtree as the cnth child element of given parent:

<insert parent=“zpathezpr” childno=%“cn” >subtree</insert>

Where the XPath expression zpathezpr specifies the element to be parent of
the subtree. The XPath expression is restricted in the same way as the original
insert operation. The zpatherpr uniquely identifies the parent element. The
subtree is inserted as the cnth child of the parent. Any node previously at
position ¢n moves to position c¢n + 1. The subtree must be well-formed XML,
with exactly one root element. The insert subtree operation is contrasted from
the insert node operation as the content of the element is a subtree, as opposed

to the value of a single node. An example of the insert subtree operation is:

<insert parent=*%/node()[1]/node()[3]” childno=“2">

<section title=*“tools” ><bold><italic>Top Tips</italic>
</bold>< /section>
< /insert>

Which appends the given element and its children to become the second child
of the given parent. Context elements take a similar form to the original insert
operation, but note that all child nodes are shown already in order to perform
the insertion.

These elements do not represent the basic operations performed by the dif-
ferencing algorithms. Instead they build upon the existing operations. In the
standard output of the program, the insertion of a subtree has to be represented
by several “insert” elements, one for each node in the operation. Similarly the

deletion of a subtree has to be represented by several “delete” elements. It should

vaoaArioin o, UULrul FURMAL

be possible to replace multiple insertions and deletions of leaf nodes with the sub-

tree operations either by modifying the algorithms or post-processing the delta

file.

5.1.10 XUpdate

It was originally intended that the difference program would also support the
XUpdate output format. XUpdate is a specification created by the XML:DB
Initiative [25]. The current specification document is rather ambiguous, and
relies on a reference implementation called Lexus [26], which is devoid of any
supporting documentation. As XUpdate only allows a user to specify a XPath
text node (which coalesces adjacent text nodes), and not part of text node, we
ran into difficulties when trying to delete single DOM text nodes. There are cases
when more than a single DOM text node is referenced by a constrained XPath
expression. It should be possible to provide work-arounds for these cases but at
the time of writing this had not been investigated.

Hopefully XUpdate will be subject to continued improvement, and may gain

more widespread usage. For a full description of XUpdate see [24].

Contrast with DUL

The definition for DUL is more rigorous and restricted than that of XUpdate.
There is no move operation in XUpdate; it has to be modelled by a delete followed

by an insert.

5.2 Human Readable Output

Neither the DUL or XUpdate output format are of a format readable by humans
without further processing. As both the formats create well-formed XML doc-

uments, we can perform XSL Transformations [31] on the documents to create

vaoaArioin o, UULrul FURMAL)8

output more suited to human consumption. For example by processing the origi-
nal documents with the delta, it is possible to create an HTML file with changes

marked in different colours, e.g. deleted text shown in red, inserted in blue etc.

Chapter 6

Implementation

This chapter covers details of the implementation of the utilities. A breakdown of
the technology used in implementing the algorithms is given, as well as a section
on invoking the program. Details on the public release of the utilities are also

given.

6.1 Technology

In order to aid programming with XML and improve portability, it was decided
to make use of the standard Application Program Interfaces (APIs) available
for XML. The DOM Level 2 API is used in the implementation of the FMES
algorithm and the patch utility,. DOM was chosen as it allows XML files to
be easily and accurately represented as trees as well as providing easy traversal
methods between nodes and their relations.

Certain parts of the DOM Level 3 API were also used. Although DOM Level
3 is still a work-in-progress, certain features were of enough gain that its use was
justified despite the reliance on an unstable API. For example the DOM Level
3 methods getUserData and setUserData were used to avoid having to subclass

DOM nodes. The chosen DOM parser is Xerces [13], from the Apache group,
58

ovaoArioiy 0. LVIELIUIVIEIN 1AL LTUIN

simply because it is a mature and popular parser.

Java was used for almost all the programming. Java was chosen mainly be-
cause the DOM APIs are defined in terms of Java methods. Although there
are implementations of DOM available for other programming languages, these
are all slightly different interpretations of the Java APIs, and tie the utilities to
a given implementation. By using Java we therefore increase portability both
between platforms and API implementations.

The XML Pull API [15] was used in the implementation of the xmdiff algo-
rithm. DOM was not used as we needed an implementation which avoided storing
the document in main memory, in order to be able to process large documents.
The Simple API for XML (SAX) could not be used as it has no mechanism for
co-ordinating the parsing of multiple documents. The XML Pull API was used
as it covers both these issues. The chosen implementation of the XML Pull API
was XPP3 [16] a small and extremely fast parser.

XPath [29] is used heavily in our definition of DUL. We used Xalan’s [14]
XPath API in creation of the patch utility.

All programs used are freely available either under the Apache license (Xerces

and Xalan) or the “Indiana University Extreme! Lab Software License” (XPP3).

6.2 Command Line Invocation

This section describes how the tools are invoked from the command line, and the

options that can be set.

6.2.1 Diff Tool
Synopsis

diffxml [options] from-file to-file

ovaoArioiy 0. LVIELIUIVIEIN 1AL LTUIN

Finds differences between the XML documents from-file and to-file.

Options

A description of all the options “diffxml” accepts is below. The option names,
where sensible to do so, are kept close to those in the GNU diff program. Most
options have two equivalent names, one of which is a single letter prefixed with a
-7 character, and the other is a long name prefixed by '—. Multiple single letter
options which do not take arguments can be combined into a single command

line word, e.g. -vt is equivalent to -v -t.

Long Name Short Meaning
Name
—brief -q Report only if files differ, don’t
output the delta.
—ignore-all-whitespace -S Ignore all whitespace when

comparing nodes. Text nodes
with only whitespace are not
compared.
—ignore-leading-whitespace -w Leading and trailing whitespace
in text nodes is ignored when
comparing nodes. Text nodes
with only whitespace are not

compared.
—ignore-empty-nodes -e Ignore text nodes that contain
only whitespace.
—ignore-case -i Ignore changes in character

case, consider upper and lower
case to be equivalent.

—ignore-comments -r Ignore changes made to
comment elements.

—ignore-processing-instructions -1 Ignore changes made to
processing instruction elements.

—version -V Output version number of
program.

—help -h Print summary of options and
exit.

—fmes -f Use the FMES algorithm to

compute the changes.

ovaoArioiy 0. LVIELIUIVIEIN 1AL LTUIN

—xmdiff

—tagnames

—reverse-patch

—remove-entities

—sibling-context [=nodes]

—parent-context [=nodes]

—parent-sibling-context
[=nodes]

-X

-C nodes

-P nodes

-S nodes

01

Use the xmdiff algorithm to
compute the changes.

Output tag names of elements
rather than “node()” for node
tests in XPath expressions.
Create output with enough
information for reversing the
sense of a patch.

Remove all external entities
when processing. Allows
ignoring of changes to entities
and off-line processing, but
may produce incorrect results.
Create context information
output, with nodes (an integer)
sibling context nodes output to
each side of changed nodes. If
nodes is not given, it will
default to 2.

Create context information
output, with nodes (an integer)
parent and child context nodes
output. If nodes is not given it
will default to 1.

Create context information
output, with nodes (an integer)
sibling context nodes of any
parent or child context nodes.
If nodes is not given it will
default to 1.

Note that only the DUL output format may have context information.

Exit Status

An exist status of 0 means no differences were found, 1 means some differences

were found and 2 means some error occurred.

ovaoArioiy 0. LVIELIUIVIEIN 1AL LTUIN

6.2.2 Patch Tool
Synopsis

patchxml [options] [original file [patchfile]]

Apply an diffxml file to an original.

Options

A description of all the options “patchxml” accepts is below. The option names,
where sensible to do so, are kept close to those in the GNU patch program. Most
options have two equivalent names, one of which is a single letter prefixed with a
’-? character, and the other is a long name prefixed by '-’. Multiple single letter
options which do not take arguments can be combined into a single command

line word, e.g. -dR is equivalent to -d -R.

Long Name Short Meaning
Name
—version -V Output version number of program.
—help -h Print summary of options and exit.
—dry-run -d Print results of applying the changes without

modifying any files.
—reverse -R Assume that the delta file was created with the old
and new files swapped. Attempt to reverse sense of

change before applying it, e.g. inserts become

deletes.

6.3 Public Release

Complied jar files and source code for the diff and patch utilities are available
from http://diffxml.sourceforge.net. Documentation is also available. A

public announcement of the program was posted on http://freshmeat .net, as

ovaoArioiy 0. LVIELIUIVIEIN 1AL LTUIN

well as to the comp.text.xml newsgroup. The program is released under the open
source GNU General Public License, for which the full license can be found in
Appendix A.

I have retained lead developer status on the utilities, and intend to continue
their development. By releasing the programs into the environment created by
SourceForge [33], I hope to gain the involvement and support of the open source
community. Hopefully the programs will see continued improvement, not only by

the author but also by other contributors.

Chapter 7

Testing

Testing was focused both on checking that the programs met the requirements
in section 3 and on finding any implementation errors or bugs. Testing occurred
continuously and in more rigorous explicit testing phases. The following describes
the testing that was carried out on the utilities, an example of input and output

of the program is available in Appendix B.

7.1 Black Box Testing

Black box testing checks for requirements coverage. The name is derived from
the idea that we cannot see the code, only the inputs and outputs, hence the code
is a “black” box that we cannot see into. Black box testing therefore centres on
finding faults of omission, where parts of the specification have not been properly
met.

The initial intention was to test the programs with a very large data set.
However as cases which caused problems were found relatively quickly, the data
set did not become as large as intended. The current data set is available from
the project web page at http://diffxml.sourceforge.net, containing both

correctly handled and incorrectly handled cases.

64

vaoarioiy (. LESLIING

The following tests were carried out with the data sets:

Run diff program with all data sets for both output formats.

e Run patch program with deltas and XML documents from above test. En-

sure output corresponds to other XML document used in computing delta.

e Run patch program with option to “reverse” sense of patch. Ensure output

corresponds to other XML document used in computing delta.
e Run diff program with option to expand tag names in output.

e Run diff program with option to create context output. Values chosen for

sibling, parent and parent sibling context should range from 0 to 15.
e Run diff program in “brief” mode for all data sets.
e Run diff program with various options to ignore whitespace.
e Run diff program with options to ignore various elements.

e Run diff program with options to force algorithm used.

A small script which runs a reasonable subset of these tests is available from

the project web page http://diffxml.sourceforge.net.

7.2 White Box Testing

White box (sometimes known as clear or glass box) testing checks for implemen-
tation faults by exercising the boundary values of loops and other parts of the
code likely to cause errors. White box testing gets its name from the idea that
we can see “into” the code, hence the code is a “white box” we can see into as

opposed to a “black box” which we can’t.

vaoarioiy (. LESLIING

White box testing occurred continuously throughout development, with values
chosen to exercise code paths and boundary values in the module currently being
developed. Many bugs were discovered using this method, and nearly all were

solved.

7.3 Regression Testing

As the program was developed, a set of working test cases compiled, composing
a regression test suite. As changes were made to the program, it was rerun with
the old test suite to ensure no previous functionality had been broken. Any new
test cases with which the program worked were then added to the test suite.
This ensured that any previously fixed bugs did not reappear in newer versions
of the program. The current regression test suite is available from the project

web page.

Chapter 8

Discussion

In the final chapter of this document, we discuss the achievements of the project.
The initial objectives and requirements are revisited and compared to the out-
comes. We also look at possibilities for further development. The chapter con-
cludes with an overview of the project, its achievements and how it sits with

previous work.

8.1 Fulfilment of Requirements
In Chapter 3 we defined our objectives as being to:

e Create an XML “diff” utility which finds and outputs the changes between

2 XML documents.

— Implement algorithm(s) for solving the tree-to-tree correction problem.

— Define an output format for displaying a delta of the 2 documents.
The output format is intended to be used by other programs and not

directly read by humans.

e Create an XML “patch” utility which applies a delta from the diff utility

to an arbitrary XML document.
67

vaoariping o. DJIoUUJOIUIN

As detailed in 6.3, a working implementation of the utilities is available from
http://diffxml.sourceforge.net. A full definition of DUL, the output format
for deltas, is in 5.1. This fully meets all the objectives we laid out with the excep-
tion of the “patch” utility which can only apply deltas to the XML documents
that were used in creation of said delta.

In terms of the requirements we specified, all of the primary and secondary
requirements were met for the diff utility. The requirements for the patch utility
to work on XML documents used in creation of the delta and to be able to reverse
the sense of patches were met. The other requirements for the patch utility were
not fully met. All of the non-functional requirements were met.

Perhaps most important requirement not met was the ability to perform
patching on documents other than those used to create the delta. This func-
tionality is a large body of work in itself, and could not be completed due to time
constraints. The author believes the original project specification was too ambi-
tious in this respect, and that the timetable underestimated the amount of time
needed to fix the bugs. However, the ability of the diff utility to create context
output, needed for accurate patching in such cases, was implemented. The patch
utility does work correctly for cases where the document being patched was used

in creation of the delta.

8.2 Limitations and Further Work

This section covers the limitations and possible improvements of the current
implementation, as well as functionality additional to the initial requirements.
Further details on the limitations are available in 7. These suggestions could

take the form of further academic work, or future development of the tools.

e Various efficiency gains are possible.

vaoariping o. DJIoUUJOIUIN

Not all pairs of XML documents are handled properly; there are still some

bugs in the implementation.

Although the DUL has support for identifying single character changes, the

algorithm still works on a node by node basis; this could be improved.

Allow input of files over a URL.

Allow a file name of ‘-’ to stand for standard input and handle properly.

Creation of API for differencing XML documents. This would require some
reworking of existing code, and additional functions, e.g. the ability to

difference subtrees only.

Context patching. Extending the patch utility to be able to apply deltas
to documents other than those used to compute the delta. This would
require using the DUL context output to match sections of the document

with changes to be made.

Interactive patching. Allow the user to specify if a particular change is to
be applied. There should be different levels of interactivity depending on

the quality of the patch.

Options to ignore whitespace and character case in patching. The user
could choose whether or not a change is applied if it only affects whitespace

or character case.

Implementation of the DUL extensions described in 5.1.9. These could be
implemented by either post-processing the delta file or supporting directly

from within the algorithms.

Work around for XUpdate output format, which has problems when trying

to specify character data to delete/insert.

vaoariping o. DJIoUUJOIUIN v

More output formats. As the deltas produced by the diff utility are well-
formed XML, the deltas can be easily transformed into other formats by
XSL Transformations [31] or using XML APIs. Formats suitable for par-

ticular applications could be created, for example human readable output.

e Improve handling of entity references. This involves some extensions to

DUL.

e DUL namespaces properly output by diff utility. Currently they are ignored.

e Support for processing and differencing of XML Schema and DTDs.

e Support for processing and differencing of other hierarchical data formats,

e.g. HI'ML and ETEX.

e As in some other implementations, e.g. XyDiff, “keys” could be used to

force matching of subtrees.

8.3 Conclusion

This document represents the culmination of almost a year of research, design and
implementation. The body of work produced is substantial; the source code is in
excess of 4500 lines, largely comprised of the sophisticated differencing algorithms,
and the DUL specification was no small task in itself.

The project has old roots in both the UNIX diff and patch utilities and the
early work on the tree-to-tree correction problem by people such as Zhang and
Shasha [3]. The project is also cutting edge, many of the XML standards and
software used have only been completed in recent months, some are still at the
working draft stage and all are undergoing continued development. A full break-

down of the technology used can be found in section 6.1.

vaoariping o. DJIoUUJOIUIN (S

The utilities produced do not represent the only efforts at XML differencing
utilities. Existing efforts were covered in the related work section 2. Our work

stands out for several reasons, despite its current immaturity:

e [t is released under the GNU General Public License, in an environment

open to contribution and extensions by others.

e [t has its own independent and well defined output language, DUL, as well

as support for XUpdate.

e The DUL is unique in that in contains explicit support for context infor-

mation that can be used in aiding patching of changed files.

e The diff utility supports large documents via the xmdiff algorithm.

e It uses standard APIs to avoid tying itself to particular parsers.

Although the completion of this dissertation marks a milestone in the devel-
opment of the utilities, it does not mark the end. The author intends to continue
development of the programs, and hopefully other members of the open source

community or even future dissertations will also build on the current work.

Appendix A

GNU General Public License

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license doc-
ument, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software—to make sure the
software is free for all its users. This General Public License applies to most of
the Free Software Foundation’s software and to any other program whose authors
commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do
these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the software,
or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

72

ArrLINDIA A, GINU GLINERAL FUDLICO LIOINOL (]

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually
obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

Terms and conditions for copying, distribution and mod-
ification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the
Program or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with modifi-
cations and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this License
and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that
you also meet all of these conditions:

ArrLINDIA A, GINU GLINERAL FUDLICO LIOINOL [

(a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole
or in part contains or is derived from the Program or any part thereof,
to be licensed as a whole at no charge to all third parties under the
terms of this License.

(c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use in
the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redis-
tribute the program under these conditions, and telling the user how
to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be reason-
ably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution
of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under the
scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physically
performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software
interchange; or,

ArrLINDIA A, GINU GLINERAL FUDLICO LIOINOL (K]

(¢) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program
in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means
all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation
of the executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automati-
cally terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your accep-
tance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-
gram), the recipient automatically receives a license from the original licen-
sor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients’
exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict
the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as

ArrLINDIA A, GINU GLINERAL FUDLICO LIOINOL (Y]

10.

a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the
only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software
distributed through that system in reliance on counsistent application of
that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose
that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright
holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that dis-
tribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body
of this License.

The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address
new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software
Foundation.

If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Founda-
tion, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

ArrLINDIA A, GINU GLINERAL FUDLICO LIOINOL (N

11.

12.

NO WARRANTY

Because the Program is licensed free of charge, there is no war-
ranty for the Program, to the extent permitted by applicable law.
except when otherwise stated in writing the copyright holders
and/or other parties provide the program “as is” without war-
ranty of any kind, either expressed or implied, including, but not
limited to, the implied warranties of merchantability and fitness
for a particular purpose. The entire risk as to the quality and
performance of the Program is with you. Should the Program
prove defective, you assume the cost of all necessary servicing,
repair or correction.

In no event unless required by applicable law or agreed to in
writing will any copyright holder, or any other party who may
modify and/or redistribute the program as permitted above, be
liable to you for damages, including any general, special, inciden-
tal or consequential damages arising out of the use or inability
to use the program (including but not limited to loss of data or
data being rendered inaccurate or losses sustained by you or third
parties or a failure of the Program to operate with any other pro-
grams), even if such holder or other party has been advised of
the possibility of such damages.

END OF TERMS AND CONDITIONS

Appendix B

Sample Input and Output

The following shows some example input and output of the diffxml utility. The
output for the patchxml utility is not shown, as this is simply the original XML
file again.

An example of differencing two small XML files:

diffxml corr.xml corr2.xml

Where corr.xml is the file:

<?xml version="1.0"7>
<parent>This element has <child>embedded text</child> within
it.</parent>

And corr2.xml is the file:

<?xml version="1.0"7>
<parent><!--This element has--><child>embedded text</child>
within it.</parent>

Which produces the output:

<7?xml version="1.0" encoding="UTF-8"7>

<delta><insert charpos="1" childno="1" name="#comment'" nodetype="8"
parent="/node() [1]1">This element has</insert>

<delete node="/node () [1]/node () [2]"></delete>

</delta>

Which is correct (represents inserting the comment and deleting the text).

An example of adding elements and attributes:
diffxml attr.xml attr2.xml

Where attr.ximnl is the file:

<?xml version="1.0"7>
<parent>This element has <child t="test">embedded text</child>
within it.</parent>

78

ArFLINDIA D, oAMEP LI IINFU L AIND DU LU L J

And attr2.xml is the file:

<?xml version="1.0"7>
<parent>This element has <newchild t="test2">embedded text</
newchild> within it.</parent>

Which produces the output:

<?xml version="1.0" encoding="UTF-8"7>

<delta><insert charpos="18" childno="2" name='"newchild" nodetype="1"
parent="/node () [1]1"></insert>

<insert name="t" nodetype="2" parent="/node() [1]/node() [2]">test2</
insert>

<move childno="1" new_charpos="1" node="/node() [1]/node () [3]1/node() [1]"
parent="/node () [1]/node () [2] "></move>

<delete charpos="1" node="/node()[1]/node() [3]"></delete>

</delta>

Which is correct (shows the insertion the new element and attribute, followed by
moving of the text node child).

Larger examples are not given here as the output size quickly grows and
reduces in legibility. However, more test cases are available from the website
http://www.diffxml.sourceforge.net.

Bibliography

[1]

2]

[11]

[12]

[13]

World Wide Web Consortium web-pages on XML circa Nov 2001.http:
//www.w3.org/XML

David T. Barnard, Gwen Clarke and Nicholas Duncan. Tree-to-Tree Cor-
rection for Document Trees. Queen’s University, Ontario, Canada, January
1995.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing
distance between trees and related problems. STAM Journal of Computing
18(6):1245-1262, December 1989.

xmldiff by Logilab. http://www.logilab.org/xmldiff

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-
nifer Widom. Change Detection in Hierarchically Structured Information.
Stanford University, California, June 1996.

Sudarshan S. Chawathe. Comparing Hierarchical Data in External Memory.
University of Maryland. Proceedings of the 25th VLDB Conference pages
90-101, Edinburgh, Scotland, September 1999.

Richard Cole, Ramesh Hariharan and Piotr Indyk. Tree pattern matching
and subset matching in deterministic O(n log® n)-time. October 2000.

Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful Change De-
tection in Structured Data. Proceedings of the ACM SIGMOD International
Conference on Management of Data, p ages 26-37, Tucson, Arizona, May
1997.

Mihut D. Tonescu. xProxy: A Transparent Caching and Delta Transfer Sys-
tem for Web Objects. University of California at Berkeley, December 2000.

The Document Object Model Level 2 Core. World Wide Web
Consortium, November 2000. http://www.w3.0rg/TR/2000/
REC-DOM-Level-2-Core-20001113

XyDiff by INRIA. http://www-rocq.inria.fr/"cobena/cdrom/www/
xydiff/eng.htm

INRTA. French national institute for research into data processing and au-
tomation. http://www-rocq.inria.fr/en/campus/index.htm

Xerces by Apache. XML Parsers in Java and C++. http://xml.apache.org
80

DIDLIUGRALITY ol

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]
22]
[23]
[24]

[25]
[26]

[27]

28]

[29]

[30]

[31]

[32]
[33]

[34]

Xalan by Apache. XSLT stylesheet processors, in Java and C++. http:
//xml.apache.org

Common API for XML Pull Parsing. XML Pull.org. http://www.xmlpull.
org/index.shtml

XML Pull Parser 3. An XMLPULL parsing engine. http://www.extreme.
indiana.edu/xgws/xsoap/xpp/index.html

Xyleme. http://www.xyleme.com

diffmk by Sun Microsystems. http://www.sun.com/xml/developers/
diffmk

XML Diff and Merge Tool by Dommitt Inc. http://www.dommitt.com

XML Diff and Merge Tool by IBM. http://alphaworks.ibm.com/tech/
xmldiffmerge

VM Tools by VM Systems. http://www.vmguys.com/vmtools/.
XML TreeDiff by IBM. http://alphaworks.ibm.com/tech/xmltreediff
DeltaXML by Mosell EDM ltd. http://www.deltaxml.com

Andreas Laux and Lars Martin. XUpdate Working Draft. XML:DB Initia-
tive, September 2000.

XML:DB Initiative for XML Databases. http://www.xmldb.org

Reference implementation for XUpdate. http://www.xmldb.org/xupdate/
index.html

Michael J. Pont. Software Engineering with C++ and CASE Tools. 1996.
ISBN 0-201-87718-X.

Myers E.W. An o(nd) difference algorithm and its variations. 1986. Algo-
rithmica 1, pages 251-266.

XML Path Language (XPath). World Wide Web Consortium, November
1999. http://www.w3.org/TR/xpath

Namespaces in XML. World Wide Web Consortium, January 1999. http:
//www.w3.org/TR/REC-xml-names/

Extensible Stylesheet Language Transformation (XSLT). World Wide Web
Consortium, November 1999. http://www.w3.org/TR/xslt

Open Source Initiative. http://www.opensource.org

SourceForge. Open source development environment. http://sourceforge.
net

The GNU General Public License. Free Software Foundation, June 1991.
http://www.gnu.org/licenses/gpl.txt

