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Abstract

We present a diff algorithm for XML data. This work is
motivated by the support for change control in the context of
the Xyleme project that is investigating dynamic warehouses
capable of storing massive volume of XML data. Because of
the context, our algorithm has to be very efficient in terms
of speed and memory space even at the cost of some loss
of “quality”. Also, it considers, besides insertions, dele-
tions and updates (standard in diffs), a move operation on
subtrees that is essential in the context of XML. Intuitively,
our diff algorithm uses signatures to match (large) subtrees
that were left unchanged between the old and new versions.
Such exact matchings are then possibly propagated to an-
cestors and descendants to obtain more matchings. It also
uses XML specific information such as ID attributes. We
provide a performance analysis of the algorithm. We show
that it runs in average in linear time vs. quadratic time for
previous algorithms. We present experiments on synthetic
data that confirm the analysis. Since this problem is NP-
hard, the linear time is obtained by trading some quality.
We present experiments (again on synthetic data) that show
that the output of our algorithm is reasonably close to the
“optimal” in terms of quality. Finally we present experi-
ments on a small sample of XML pages found on the Web.

1 Introduction

Users are often not only interested in the current value
of data but also in changes. Therefore, there has been a lot
of work around diff algorithm for all kinds of data. With
the Web and standards such as HTML and XML, tree data
is becoming extremely popular which explains a renewed
interest for computing changes in tree-structured data. A
particularity of the Web is the huge volume of data that has
to be processed. For instance, in the Xyleme project [31],
we were lead to compute the diff between the millions of
documents loaded each day and previous versions of these
documents (when available). This motivates the study of an

extremely efficient, in terms of speed and memory space,
diff algorithm for tree data.
As mentioned above, the precise context for the present

work is the Xyleme project [32] that is studying and build-
ing a dynamic World Wide XML warehouse, i.e., a data
warehouse capable of storing massive volume of XML data.
XML, the new standard for semistructured data exchange
over the Internet [28, 2], allows to support better quality
services and in particular allows for real query languages
[11, 23] and facilitates semantic data integration. In such a
system, managing changes is essential for a number of rea-
sons ranging from traditional support for versions and tem-
poral queries, to more specific ones such as index mainte-
nance or support for query subscriptions. These motivations
are briefly considered in Section 2.
The most critical component of change control in

Xyleme is the diff module that needs to be extremely ef-
ficient. This is because the system permanently receives
XML data from the Web (or internal) crawlers. New ver-
sions of the documents have to be compared to old ones
without slowing down the whole system.
Observe that the diff we describe here is for XML docu-

ments. It can also be used for HTML documents by XML-
izing them, a relatively easy task that mostly consists in
properly closing tags. However, the result of diff for a
true XML document is semantically much more informa-
tive than for HTML. It includes pieces of information such
as the insertion of a new product in a catalog.
Intuitively, our algorithm works as follows. It tries to de-

tect (large) subtrees that were left unchanged between the
old and new versions. These are matched. Starting from
there, the algorithm tries to match more nodes by consider-
ing ancestors and descendants of matched nodes and taking
labels into consideration. Our algorithm also takes advan-
tage of the specificities of XML data. For instance, it knows
of attributes and attribute updates and treat them differently
from element or text nodes. It also takes into account ID at-
tributes to match elements. The matching of nodes between
the old and new version is the first role of our algorithm.
Compared to existing diff solutions [13, 20], our algorithm
is faster and has significantly better matchings.



The other role of our algorithm is a representation of
the changes using a delta. We use the delta representa-
tion of [19] that is based on inserts, deletes, updates and
moves. For completeness, we present it in Section 4. Given
a matching of nodes between the two documents, a delta
describes a representation of changes from the first to the
second. A difficulty occurs when children of a node are
permuted. It is computationally costly to find the minimum
set of move operations to order them.
We show first that our algorithm is “correct” in that it

finds a set of changes that is sufficient to transform the old
version into the new version of the XML document. In other
words, it misses no changes. Our algorithm runs in

time vs. quadratic time for previous algorithms.
Indeed, it is also noticeable that the running time of our
algorithm significantly decreases when documents have few
changes or when specific XML features like ID attributes
are used. In Section 3, we recall that the problem is NP-
hard. Therefore, to obtain these performance we have to
trade-in something, an ounce of “quality”. The delta’s we
obtain are not “minimal”. In particular, we may miss the
best match and some sets of move operations may not be
optimal. It should be observed that any notion of minimality
is somewhat artificial since it has to rely on some arbitrary
choice of a distance measure. We present experiments that
show that the delta’s we obtain are of very good quality.
There has been a lot of work on diff algorithms for

strings, e.g., [12, 10, 1], for relational data, e.g., [17], or
even for tree data, e.g., [29, 7]. The originality of our work
comes from the particular nature of the data we handle,
namely XML, and from strict performance requirements
imposed by the context of Xyleme. Like the rest of the sys-
tem, the diff and the versioning system are implemented in
C++, under Linux, with Corba for communications. Some
of the programs described in this paper are available for
download at [8].
We performed tests to validate our choices. We briefly

present some experimentation. The results show that the
complexity of our algorithm is indeed that determined by
the analysis, i.e., quasi linear time. We also evaluate ex-
perimentally the quality of the diff. For that, we ran it on
synthetic data. As we shall see, the computed changes are
very close in size to the synthetic (perfect) changes. We
also ran it on a small set of real data (versions of XML doc-
uments obtained on the web). The size is comparable to that
of the Unix Diff. This should be viewed as excellent since
our description of changes typically contains muchmore in-
formation than a Unix Diff. We also used the diff to analyze
changes in portions of the web of interest, e.g., web sites
described as XML documents (Section 6).
We present motivations in Section 2 and consider spe-

cific requirements for our diff. A brief overview of the
change model of [19] is given in Section 4. In Section 5,

we present our diff algorithm, and its analysis. We com-
pare it to previous diff algorithms in Section 3. Measures
are presented in Section 6. The last section is a conclusion.

2 Motivation and Requirements

In this section, we consider motivations for the present
work. Most of these motivations for changes detection and
management are similar to those described in [19].
As mentioned in the introduction, the role of the diff al-

gorithm is to provide support for the control of changes in a
warehouse of massive volume of XML documents. Detect-
ing changes in such an environment serves many purposes:
Versions and Querying the past: [19] One may want

to version a particular document, (part of) a Web site, or
the results of a continuous query. This is the most standard
use of versions, namely recording history. Later, one might
want to ask a query about the past, e.g., ask for the value of
some element at some previous time, and to query changes,
e.g., ask for the list of items recently introduced in a catalog.
Since the diff output is stored as an XML document, namely
a delta, such queries are regular queries over documents.
Learning about changes: The diff constructs a possible

description of the changes. It allows to update the old ver-
sion and also to explain the changes to the user. This is in
the spirit, for instance, of the Information and Content Ex-
change, ICE [30, 14, 16]. Also, different users may modify
the same XML document off-line, and later want to syn-
chronize their respective versions. The diff algorithm could
be used to detect and describe the modifications in order to
detect conflicts and solve some of them [26].
Monitoring changes: We implemented a subscription

system [22] that allows to detect changes of interest in XML
documents, e.g., that a new product has been added to a cat-
alog. To do that, at the time we obtain a new version of some
data, we diff it and verify if some of the changes that have
been detected are relevant to subscriptions. Related work on
subscription systems that use filtering tools for information
dissemination have been presented in [33, 4].
Indexing: In Xyleme, we maintain a full-text index over

a large volume of XML documents. To support queries us-
ing the structure of data, we store structural information for
every indexed word of the document [3]. We are consider-
ing the possibility to use the diff to maintain such indexes.

To offer these services, the diff plays a central role in the
Xyleme system. Consider a portion of the architecture of
the Xyleme system in Figure 1. When a new version of a
document is received (or crawled from the web), it is
installed in the repository. It is then sent to the diff module
that also acquires the previous version from the
repository. The diffmodules computes a delta, i.e., an XML
document describing the changes. This delta is appended to



the existing sequence of delta for this document. The old
version is then possibly removed from the repository. The
alerter is in charge of detecting, in the document or in
the delta, patterns that may interest some subscriptions [22].
Efficiency is here a key factor. In the system, one of the
web crawlers loads millions of Web or internal pages per
day. Among those, we expect many to be XML. The diff
has to run at the speed of the indexer (not to slow down
the system). It also has to use little memory so that it can
share a PC with other modules such as the Alerter (to save
on communications).

Diff Alerter
V(n)

V(n)

Indexer

V(n-1)

System
Subscription

Repository Delta(V(n-1), V(n))

XML Loader

Web Crawler

Figure 1. Xyleme-Change architecture

These performance requirements are essential. The con-
text also imposes requirements for the deltas: they should
allow (i) reconstructing an old version, and (ii) constructing
the changes between some versions and . These issues
are addressed in [19]. The diff must be correct, in that it
constructs a delta corresponding to these requirements, and
it should also satisfy some quality requirements. Typically,
quality is described by some minimality criteria. More pre-
cisely, the diff should construct a minimum set of changes to
transform one version into the next one. Minimality is im-
portant because it captures to some extent the semantics that
a human would give when presented with the two versions.
It is important also in that more compact deltas provide sav-
ings in storage. However, in our context, it is acceptable to
trade some (little) minimality for better performance.
We will see that using specificities of the context (in par-

ticular the fact that documents are in XML) allows our algo-
rithm to obtain changes that are close to the minimum and
to do that very efficiently. The specific aspects of our diff
algorithm are as follows:

Our diff is, like [6, 7], tailored to tree data. It also takes
advantage of specificities of XML such as ID attributes
defined in the DTD, or the existence of labels.

The diff has insert/delete/update operations as in other

tree diff such as [7], and it supports amove operation as
in [6]. Our move operation is tailored to large subtrees
of data.

3 State of the art

In a standard way, the diff tries to find a minimum edit
script between the versions at time and . The basis
of edit distances and minimum edit script is the string edit
problem [5, 12, 10, 1]. Insertion and deletion correspond to
inserting and deleting a symbol in the string, each operation
being associated with a cost. Now the string edit problem
corresponds to finding an edit script of minimum cost that
transforms a string into a string . A solution is obtained
by considering prefixes substrings of and up to the i-th
symbol, and constructing a directed acyclic graph (DAG)
in which path is evaluated by the
minimal cost of these three possibilities:

Note that for example is zero when the
symbols are equals. The space and time complexity are

.
Detecting changes in an XML document, i.e., a string,

can be compared to string pattern matching. Using several
steps of string pattern matching algorithm on an XML doc-
ument allows to detect all changes in the document, and it is
possible to take into account the structure of the document
by adding unique identifiers to the XML structure delimiters
of both documents. But then the cost of understanding the
structure of the document is added to the cost of detecting
the changes, whereas the structure of the XML document
is already known and we should use it to improve our al-
gorithm’s efficiency. So it is preferable to consider specific
algorithms for tree pattern matching.
Kuo-Chung Tai [27] gave a definition of the edit distance

between ordered labeled tree and the first non-exponential
algorithm to compute it. The insert and delete operations
are similar to the operations on strings: deleting a node
means making its children become children of the node’s
parent. Inserting is the complement of deleting. The diffi-
culty is when nodes are involved in substitution, and con-
sidering two documents and , the resulting algo-
rithm has a complexity of

in time and space. Lu’s algorithm [18] uses
another edit based distance. The idea is, when a node in
subtree matches with a node in subtree , to use the
string edit algorithm to match their respective children.
In Selkow’s variant [24], insertion and deletion are re-

stricted to the leaves of the tree. Thus, applying Lu’s algo-



rithm in the case of Selkow’s variant results in a time com-
plexity of . Depending on the considered
tree data, this definition may be more accurate. It is used
for example, in Yang’s [34] algorithm to find the syntactic
differences between two programs. Due to XML structure,
it is clear that the definition is also accurate for XML doc-
uments. An XML Document structure may be defined by
a DTD, so inserting and deleting a node and changing its
children level would change the document’s structure and
may not be possible. However, inserting and deleting leaves
or subtrees happens quite often, because it corresponds to
adding or removing objects descriptions, e.g. like adding or
removing people in an address book.
Recently, Sun released an XML specific tool named

DiffMK [20] that computes the difference between two
XML documents. This tool is based on the unix standard
diff algorithm, and uses a list description of the XML docu-
ment, thus losing the benefit of tree structure of XML.
We do not consider here the unordered tree [35, 25] nor

the tree alignment [15] problems.
Perhaps the closest in spirit to our algorithm is LaDiff

or MH-Diff [7, 6]. It is also designed for XML documents.
It introduces a matching criteria to compare nodes, and the
overall matching between both versions of the document is
decided on this base. The faster version of the matching
algorithm uses longest common subsequence computations
for every element node starting from the leaves of the doc-
ument. Its cost is in where is the total num-
ber of leaf nodes, and a weighted edit distance between
the two trees. is the sum of the number of deleted and
inserted subtrees, and the total size of subtrees that moved
for the shortest edit script.
Then an edit script conforming to the given matching is

constructed in a cost of where is the total num-
ber of nodes, and the total number of children moving
within the same parent. Like most other algorithms, the
worst case cost, obtained here considering that large sub-
trees have moved, is quadratic in the size of the data.
The main reason why few diff algorithm supportingmove

operations have been developed earlier is that most formu-
lations of the tree diff problem are NP-hard [36, 6] (by re-
duction from the ’exact cover by three-sets’).MH-Diff, pre-
sented in [6] provides an efficient heuristic solution based
on transforming the problem to the edge cover problem,
with a worst case cost in in .
Our algorithm is in the spirit of Selkow’s variant, and

ressembles Lu’s algorithm. The differences come from the
use of the structure of XML documents. In Lu’s algorithm,
once a node is matched, we try to match its children using
the string algorithm. For this, children are identified using
their label. But this would not apply in practice on XML
documents, as many nodes may have the same label. So
we use a signature computed over the children’s subtree.

But then, children may not be matched only because of a
slight difference in their subtree, so we had to extend our
algorithm by taking into consideration those children and
their subtree and matching part of it if possible.
Using this edit definition, we could add the support of

move operations. Note that a move operation can be seen
as the succession of a deletion and an insertion. However
it is different in that we consider the cost of to be
much less than the sum of deleting and inserting the subtree.
Thus it is clear that previous algorithm wouldn’t compute
the minimal edit script as we defined it.
Last but not least, our algorithm goal is slightly different

from previous algorithms in that for performance reasons,
we do not necessarily want to compute the very minimal
edit script. The reasons why our algorithm does not obtain
the “perfect” result are as follows. First, we may miss the
best match. Also some sets of move operations may not be
optimal.

4 Brief overview of the change representa-
tion model

In this section, we present some aspects of the change
model [19] that we use in the present paper. The presenta-
tion will be very brief and omit many aspects of the com-
plete model.
The simple model for XML data we consider roughly

consists of ordered trees (each node may have a list of chil-
dren) [2]. Nodes also have values (data for text nodes and
label for element nodes). We will briefly mention later
some specific treatment for attributes. The starting point
for the change model is a sequence of snapshots of some
XML data. A delta is an XML document that represents the
changes between two snapshot versions of an XML docu-
ment. It uses persistent node identifiers, namely XIDs, in a
critical way. We consider next the persistent identification
of XML nodes, and then the deltas, a novel representation
of changes in XML documents.

Persistent identification of nodes The persistent identi-
fication of nodes is the basis of the change representation
for XML documents we use. Persistant identifiers can be
used to easily track parts of an XML document through
time. We start by assigning to every node of the first ver-
sion of an XML document a unique identifier, for example
its postfix position. When a new version of the document
arrives, we use the diff algorithm to match nodes between
the two versions. As previously reported, matched nodes in
the new document thereby obtain their (persistent) identi-
fiers from their matching in the previous version. New per-
sistent identifiers are assigned to unmatched nodes. Given
a set of matchings between two versions of an XML doc-



ument, there are only few deltas that can describe the cor-
responding changes. The differences between these deltas
essentially come frommove operations that reorder a subse-
quence of child nodes for a given parent [19]. More details
on the definition and storage of our persistent identifiers,
that we call XIDs, are given in [19]. We also define the
XID-map, a string attached to a subtree that describes the
XIDs of its nodes.

Representing changes The delta is a set of the following
elementary operations: (i) the deletion of subtrees; (ii) the
insertion of subtrees; (iii) an update of the value of a text
node or an attribute; and (iv) a move of a node or a part of
a subtree. Note that it is a set of operations. Positions in
operations are always referring to positions in the source or
target document. For instance,move specifies
that node is moved from being the -th child of node
to being the -th child of . The management of positions
greatly complicates the issue comparing to, say, changes in
relational systems. Note also that the model of change we
use relies heavily on the persistent identification of XML
nodes. It is based on “completed” deltas that contain redun-
dant information. For instance, in case of updates, we store
the old and new value. Indeed, a delta specifies both the
transformation from the old to the new version, but the in-
verse transformation as well. Nice mathematical and prac-
tical properties of completed deltas are shown in [19]. In
particular, we can reconstruct any version of the document
given another version and the corresponding delta, and we
can aggregate and inverse deltas. Finally, observe that the
fact that we consider move operations is a key difference
with most previous work. Not only is it necessary in an
XML context to deal with permutations of the children of
a node (a frequently occurring situation) but also to handle
more general moves as well. Moves are important to de-
tect from a semantic viewpoint. For example consider the
following XML document:

<Category>
<Title>Digital Cameras</Title>
<Discount>

<Product>
<Name>tx123</Name><Price>$499</Price>
</Product></Discount>

<NewProducts>
<Product>

<Name>zy456</Name><Price>$799</Price>
</Product></NewProducts></Category>

Its tree representation is given in the left part of Figure 2.
When the document changes, Figure 2 shows how we iden-
tify the subtrees of the new version to subtrees in the previ-
ous version of the document. This identification is the main
goal of the diff algorithm we present here. Once nodes from
the two versions have been matched, it is possible to pro-
duce a delta. The main difficulty, shown in Section 5, is to
manage positions. Assuming some identification of nodes

in the old version (namely postfix order in the example), the
delta representing changes from the old version to the new
one may be:
<delete XID=7 XID-map="(3-7)" parentXID=8 pos=1>

<Product>
<Name>tx123</Name><Price>$499</Price>
</Product>

</delete>
<insert XID=20 XID-map="(16-20)" parentXID=14 pos=1>

<Product>
<Name>abc</Name><Price>$899</Price>
</Product>

</insert>
<move XID=13 fromParent=14 fromPos=1

toParent= 8 toPos =1 />
<update XID=11>

<oldval>$799</oldval><newval>$699</newval>
</update>

It is not easy to evaluate the quality of a diff. Indeed, in
our context, different usages of the diff may use different
criteria. Typical criteria could be the size of the delta or
the number of operations in it. Choices in the design of
our algorithm or in its tuning may result in different deltas,
and so different interpretations of the changes that happened
between two versions.

5 The BULD Diff Algorithm

In this section, we introduce a novel algorithm that com-
putes the difference between two XML documents. Its use
is mainly to match nodes from the two documents and con-
struct a delta that represents the changes between them. We
provide a cost analysis for this algorithm. A comparison
with previous work is given in Section 3. Intuitively, our al-
gorithm finds matchings between common large subtrees of
the two documents and propagate these matchings. BULD
stands for Bottom-Up, Lazy-Down propagation. This is be-
cause matchings are propagated bottom-up and (most of the
time) only lazily down. This approach was prefered to other
approaches we considered because it allows to compute the
diff in linear time. We next give some intuition, then a more
detailed description of our algorithm.

5.1 Intuition

To illustrate the algorithm, suppose we are computing
the changes between XML document and XML docu-
ment , being the most recent version.
The starting point of the algorithm is to match the largest

identical parts of both documents. So we start by register-
ing in a map a unique signature (e.g. a hash value) for every
subtree of the old document . If ID attributes are defined
in the DTD, we will match corresponding nodes accord-
ing to their value, and propagate these matching in a simple
bottom-up and top-down pass.
Then we consider every subtree in , starting from the

largest, and try to find whether it is identical to some of the
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New Version of the XML DocumentOld Version of the XML Document

Figure 2. Matching subtrees

registered subtrees of . If so, we match both subtrees.
(This results in matching every node of the subtree in
with the respective node of the subtree in .) For exam-
ple, in Figure 2, we do not find an identical subtree for the
tree starting at Category, but the subtree starting at Title is
matched.
We can then attempt to match the parents of two matched

subtrees. We do that only if they have the same labels.
Clearly, there is a risk of forcing wrong matches by doing
so. Thus, we control the propagation of a matching bottom-
up based on the length of the path to the ancestor and the
weight of the matching subtrees. For example, a large sub-
tree may force the matching of its ancestors up to the root,
whereas matching a small subtree may not even force the
matching of its parent.
The fact that the parents have been matched may then

help detect matchings between descendants because pairs
of such subtrees are considered as good candidates for a
match. The matching of large identical subtrees may thus
help matching siblings subtrees which are slightly differ-
ent. To see an example, consider Figure 2. The subtree
Name/zy456 is matched. Then its parentProduct is matched
too. The parents being matched, the Price nodes may even-
tually be matched, although the subtrees are different. (This
will allow detecting that the price was updated.) When both
parents have a single child with a given label, we propagate
the match immediately. (It is possible to use data structures
that allow detecting such situations at little cost.) Other-
wise, we do not propagate the matching immediately (lazy
down). Future matchings (of smaller subtrees) may eventu-
ally result in matching them at little cost.
The lazy propagation downward of our algorithm is an

important distinction from previous work on the topic. Note

that if the two matched nodes have and children with
the same label , we have pairs to consider. Attempt-
ing this comparison on the spot would result in a quadratic
computation.
We start by considering the largest subtrees in . The

first matchings are clear, because it is very unlikely that
there is more than one large subtree in with the same
signature. However it is often the case that when the al-
gorithm goes on and considers smaller subtrees, more than
one subtrees of are identical to it. We say then that these
subtrees are candidates to matching the considered subtree
of . At this point, we use the precedent matches to de-
termines the best candidate among them, by determining
which is closest to the existing matches. Typically, if one
of the candidate has its parent already matched to the par-
ent of the considered node, it is certainly the best candidate.
And thanks to the order in which nodes are considered, the
position among siblings plays an important role too.
When this part of the algorithm is over, we have consid-

ered and perhaps matched every node of . There are two
reasons why a node would have nomatching: either because
it represents new data that has been inserted in the docu-
ment, or because we missed matching it. The reason why
the algorithm failed may be that at the time the node was
considered, there was no sufficient knowledge or reasons
to allow a match with one of its candidates. But based on
the more complete knowledge that we have now, we can do
a peephole optimization pass to retry some of the rejected
nodes. Aspects on this bottom-up and top-down simple pass
are considered in Section 5.3.
In Figure 2, the nodesDiscount has not been matched yet

because the content of its subtrees has completely changed.
But in the optimization phase, we see that it is the only sub-



tree of node Category with this label, so we match it.
Once no more matchings can be obtained, unmatched

nodes in (resp. ) correspond to inserted (resp.
deleted) nodes. For instance, in Figure 2, the subtrees for
products tx123 and abc could not be matched and so are re-
spectively considered as deleted and inserted data. Finally,
a computationally non negligible task is to consider each
matching node and decide if the node is at its right place, or
whether it has been moved.

5.2 Detailed description

The various phases of our algorithm are detailed next.
Phase 1 (Use ID attributes information): In one traver-

sal of each tree, we register nodes that are uniquely identi-
fied by an ID attribute defined in the DTD of the documents.
The existence of ID attribute for a given node provides a
unique condition to match the node: its matching must have
the same ID value. If such a pair of nodes is found in the
other document, they are matched. Other nodes with ID
attributes can not be matched, even during the next phases.
Then, a simple bottom-up and top-down propagation pass is
applied. Note that if ID attributes are frequently used in the
documents, most of the matching decision have been done
during this phase.
Phase 2 (Compute signatures and order subtrees by

weight): In one traversal of each tree, we compute the sig-
nature of each node of the old and new documents. The sig-
nature is a hash value computed using the node’s content,
and its children signatures. Thus it uniquely represents the
content of the entire subtree rooted at that node. A weight is
computed simultaneously for each node. It is the size of the
content for text nodes and the sum of the weights of children
for element nodes.
We construct a priority queue designed to contain sub-

trees from the new document. The subtrees are represented
by their roots, and the priority is given by the weights. The
queue is used to provide us with the next heaviest subtree
for which we want to find a match. (When several nodes
have the same weight, the first subtree inserted in the queue
is chosen.) To start, the queue only contains the root of the
entire new document.
Phase 3 (Try to find matchings starting from heaviest

nodes): We remove the heaviest subtree of the queue, e.g.
a node in the new document, and construct a list of candi-
dates, e.g. nodes in the old document that have the same
signature. From these, we get the best candidate (see later),
and match both nodes. If there is no matching and the node
is an element, its children are added to the queue. If there
are many candidates, the best candidate is one whose parent
matches the reference node’s parent, if any. If no candidate
is accepted, we look one level higher. The number of levels
we accept to consider depends on the node weight.

v’v

v1  v2  v3  v4  v-  v5  v-  v6  w-  w2  w3  w1  w4  w5 w6 w- 

Figure 3. Local moves

When a candidate is accepted, we match the pair of sub-
trees and their ancestors as long as they have the same label.
The number of ancestors that we match depends on the node
weight.
Phase 4 (Optimization: Use structure to propagate

matchings): We traverse the tree bottom-up and then top-
down and try to match nodes from the old and new docu-
ments such that their parents are matching and they have the
same label. This propagation pass significantly improves
the quality of the delta and more precisely avoids detecting
unnecessary insertions and deletions. The main issue of this
part is to avoid expensive computations, so specific choices
are explained in Section 5.3.
Phase 5 (Compute the delta): This last phase can itself

be split in 3 steps:

1. Inserts/Deletes/Updates: Find all unmatched nodes in
the old/new document, mark them as deleted/inserted;
record the effect of their deletion/insertion to the posi-
tion of their siblings. If a text node is matched but its
content has changed, we will mark it as updated.

2. Moves: Find all nodes that are matched but with non
matching parents. These correspond to moves. Nodes
that have the same parent in the new document as in
the old document may have been moved within these
parents. This is discussed further.

3. These operations are reorganized and the delta is pro-
duced. (Details omitted.)

Let us now consider the issue of moves within the same
parents. For this, consider two nodes (in the old) and
(in the new) that have been matched. There may have

been deletions and moves from , insertions and moves
to . The remaining children of and are the same.
More precisely, they match each other. However, they need
not be in the same order. When they are not, we need to
introduce more moves to capture the changes. See Fig-
ure 3 where the lines represent matchings. To compute
a minimum number of moves that are needed, it suffices
to find a (not necessarly unique) largest order preserving
subsequence. Here such a sequence is
that matches while preserving the or-
der. Then we need only to add move operations for the other
pair of nodes, here . We also use a more general



definition and algorithm where the cost of a move corre-
sponds to the weight of the node. This gives us an optimal
set of moves.
Finding the largest order preserving subsequence is ex-

pensive for large sequences. Thus, for performance reasons,
we use a heuristic which does not guarantee optimality, but
is faster and proves to be sufficient in practice. It is used
when the number of children is too large, and it works by
cutting it into smaller subsequences with a maximum length
(e.g. 50). We apply on them the longest common subse-
quence algorithms(see Section 5.3), and merge the result-
ing subsequences. The subsequence obtained is clearly a
common subsequence of the two original lists of children.
In our example, by cutting both lists in two parts,

we would find subsequences and
, and thus we miss compared to

the optimal solution.

Tuning The details of our algorithm require some choices
that we describe next. We also consider the tuning of some
parameters of the system.
First, we have to select an appropriate definition for

weight. The choice of a weight has impact on accuracy of
matches, and therefore both on the quality and speed of the
algorithm. We will see in Section 5.3, that the weight of an
element node must be no less than the sum of its children.
It should also grow in where is the size of the docu-
ment. We use . For text nodes
(i.e. leaves), we consider that when the text is large (e.g. a
long description), it should have more weight than a simple
word. We use as a measure.
Also, when matching two subtrees, it is not easy to

choose how far to go up in matching ancestor nodes in the
hierarchy. A too small distance would result in missing
matches whereas a too large one may generate erroneous
matches (e.g. matching many ascendants because two in-
significant text are identical). For complexity reasons, we
show in Section 5.3 that the corresponding depth value must
stay in where is the weight of the cor-
responding subtree, and the weight for the whole doc-
ument. Note that for a given subtree with weight , the
upper bound decreases when grows to infinity. In 5.3
we explain how to use indexes to handle the case when
the distance would go to zero. More precisely, we use

.

Other XML features We briefly mention here two other
specific aspects of XML that have impacts on the diff,
namely attributes and DTDs.
First, consider attributes. Attributes in XML are differ-

ent from element nodes in some aspects. First, a node may
have at most one attribute of label for a given . Also, the
ordering for attributes is irrelevant. For these reasons, we do

not provide persistent identifiers to attributes, i.e., a particu-
lar attribute node is identified by the persistent identifier of
its parent and its label (so in our representation of delta, we
use specific update operations for attributes). When two el-
ements are matched between two consecutive versions, the
attributes with the same label are automatically matched.
We also use ID attributes (XML identifiers) to know if the
nodes owning these attributes should (or can’t) be matched
as well.
Now consider DTDs, a most important property of XML

documents that allows to type them. We have considered
using this information to improve our algorithm. For in-
stance, it may seem useful to use the information that an el-
ement of label has at most one child of label to perform
matching propagation. Such reasoning is costly because it
involves the DTD and turns out not to help much because
we can obtain this information at little cost on the docu-
ment itself, even when the DTD does not specify it. On the
other hand, the DTD or XMLSchema (or a data guide in ab-
sence of DTD) is an excellent structure to record statistical
information. It is therefore a useful tool to introduce learn-
ing features in the algorithm, e.g. learn that a price node is
more likely to change than a description node.

5.3 Complexity analysis

In this part we determine an upper bound for the cost
of our algorithm. For space reasons, we do not present the
algorithmic of the different functions here.
Note that the number of nodes is always smaller than

where is the size of both document files. Reading both
documents, computing the hash value for signatures, and
registering ID attributes in a hash table is linear in time and
space. The simple bottom-up and top-down pass -used in
the first and fourth phase- works by considering some spe-
cific optimization possibilities on each node. These passes
are designed to avoid costly tests. They focus on a fixed set
of features that have a constant time and space cost for each
(child) node, so that their overall cost is linear in time and
space:

1. propagate to parent: Consider that node is not
matched. If it has a children matched to some node
we will match to the parent of . If has many

matched children , then there are many pos-
sibilities for . So we will prefer the parent of the
larger (weight) set of children . The compu-
tation is done in postfix order with a tree traversal.

2. propagate to children: If a node is matched, and both
it and its matching have a unique children with a given
label, then these two children will be matched. Again
the cost is no more than of a tree traversal.



During the BULD algorithm, the worst-case occurs when
no node is matched. In this case, every node is placed into
the priority queue, with an inserting cost of (ordered
heap). This results in a total upper bound of . The
memory usage is linear in the size of the documents.
For every node, a call is made to the function that finds

the best candidate (the set of candidates is obtained using a
hash table created in the first phase). The general definition
of this function would be to enumerate all candidates and
choose the best one as the one with the closest ascendant.
It works by enumerating candidates and testing the ascen-
dant up to a given depth. Thus the time cost is in
where is the number of candidates, and the maximum
path length allowed for ancestor’s look-up. As previously
described, we make depend on the weight of the sub-
tree. Thanks to the first rules defined in previous section,
and because identical subtrees can not overlap, is smaller
than where is the weight for the subtree rep-
resenting the whole document. The second rule states that

. So the cost of a function call is
in . The overall cost is then in .
But the upper limit for means that when the document’s
size increases and goes to infinity, goes to zero. To
achieve this result, it is not possible to evaluate all candi-
dates. The issue occurs when there are multiple occurances
of a short text node in a large document, e.g. the product
manufacturer for every product in a catalog. Our solution
to support is to use a secondary index (a hash
table) which is created during initialization, and gives ac-
cess by their parent’s identifier to all candidate nodes for a
given signature. Thus we can find (if it exists) the first can-
didate with a matching parent in constant time. This generic
solution works for any lower bound of by using as many
indexes to access nodes by their grand-parent or ascendant
identifier.
The second part consists of constructing the delta using

the matchings obtained previously. Finding nodes that have
been deleted or inserted only requires to test if nodes of both
documents have been matched. It is also clear that a node
has moved if its parent and the parent of its matching do not
match. So this first step is linear in time and space. The
difficulty comes with nodes that stay within the same par-
ent. If their order has changed, it means that some of them
have ’moved’. As mentioned above, to obtain the optimal
delta, we should apply a ’longest common subsequence’ al-
gorithm on this sequence of children [19]. These algorithms
have typically a time cost of , where is the
number of children, and a space cost of . However,
in practical applications, applying this algorithm on a fixed-
length set of children (e.g. 50), and merging the obtained
subsequences, provides excellent results and has a time and
space cost in . We choosed this heuristic, so the total
cost for the document is then in .

So the overall worst-case cost is where
is the size of the document files (including the DTD, if any,
that we also have to read). The memory usage is linear in
the total size of both documents.

6 Experiments

In this section we present an experimental study of the
algorithm. We show that it achieves its goals, in that it runs
in linear time, and computes good quality deltas. (The linear
space bound is obvious and will not be discussed.) We first
present result on some synthesized data (changes simulated
on XML documents). We then briefly consider changes ob-
served on the web. Due to space limitations only a small
portion will be presented here. However, they illustrate rea-
sonably well what we learned from the experiments.

6.1 Measures on simulated changes

Our measures show that our algorithm is very fast, al-
most linear in the size of data. Also, since it does not guar-
antee an optimal result, we analyze the quality of its result
and show experimentally that it is excellent. For these ex-
periments, we needed large test sets. More precisely, we
needed to be able to control the changes on a document
based on parameters of interest such as deletion rate. To
do that, we built a change simulator that we describe next.

Change simulator The change simulator allows to gen-
erate changes on some input XML document. Its design
is very important as any artifact or deviation in the change
simulator may eventually have consequences in the test
set. We tried to keep the architecture of the change sim-
ulator very simple. The change simulator reads an XML
document, and stores its nodes in arrays. Then, based on
some parameters (probabilities for each change operations)
the four types of simulated operations are created in three
phases:
[delete]Given a delete probability, we delete some nodes

and its entire subtree.
[update] The remaining text nodes are then updated

(with original text data) based on their update probability.
[insert/move] We choose random nodes in the remain-

ing element nodes and insert a child to them, depending on
the insert and move probability. The type of the child node
(element or text) has to be chosen according to the type of
its siblings, e.g. we can’t insert a text node next to another
text node, or else both data will be merged in the parsing
of the resulting document. So according to the type of node
inserted, and the move probability we do either insert data
that had been deleted, e.g. that corresponds to a move, or we
insert “original” data. For original data, we try to match to
the XML style of the document. If the required type is text,



we can just insert any original text using counters. But if the
required node has to be a tag, we try to copy the tag from
one of its siblings, or cousin, or ascendant; this is important
for XML document in order to preserve the distribution of
labels which is, as we have seen, one of the specificities of
XML trees.
Note that because we focused on the structure of data, all

probabilities are given per node. A slightly different model
would be obtained if it was given per byte of data. Note
also that because the number of nodes after the first phase is
less than the original number of nodes of the document, we
recompute update and insert probabilities to compensate.
The result of the change simulator is both a delta rep-

resenting the exact changes that occurred, which will be
useful to compare later with the algorithmically computed
delta, and a new version of the document. It is not easy
to determine whether the change simulator is good or not.
But based on statistical knowledge of changes that occurs
in the real web (see next) we will be able to improve its
quality. We tried to verify both by human evaluation of re-
sulting documents and by the control of measurable param-
eters (e.g. size, number of element nodes, size of text nodes,
...) that the change simulator behaves properly. The change
simulator we used here was the result of a few iterations. It
seems now to conform reasonably to our expectations.

Performance We verify next that the complexity is no
more than the expected time. To do that, we
use our change simulator to create arbitrary sized data and
measure the time needed to compute the diff algorithm. In
the experiment we discuss next, the change simulator was
set to generate a fair amount of changes in the document,
the probabilities for each node to be modified, deleted or
have a child subtree inserted, or be moved were set to 10
percent each. Measures have been conducted many times,
and using different original XML documents.
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The results (see Figure 4) show clearly that our algo-
rithm’s cost is almost linear in time. 1 We have analyzed
precisely the time spent in every function, but due to lack
of space we do not provide full details here. Phases ,
the core of the diff algorithm, are clearly the fastest part of
the whole process. Indeed, most of the time is spent in parts
that manipulate the XML data structure: (i) in phase 1 and
2, we parse the file [9] and hash its content; (ii) in phase 5,
we manipulate the DOM tree [9]. The progression is also
linear. The graph may seem a bit different but that comes
from the fact that the text nodes we insert are on average
smaller than text nodes in the original document.
A fair and extensive comparison with other diff programs

would require a lot more work and more space to be pre-
sented. An in-depth comparison, would have to take into
account speed, but also, quality of the result (“optimality”),
nature of the result (e.g., moves or not). Also, the com-
parison of execution time may be biased by many factors
such as the implementation language, the XML parser that
is used, etc. Different algorithms may perform differently
depending on the amount and nature of changes that oc-
cured in the document. For example, our diff is typically
excellent for few changes.

QualityWe analyze next the quality of the diff in various
situations, e.g. if the document has almost not changed, or
if the document changed a lot. We paid particular attention
to move operations, because detecting move operations is a
main contribution of our algorithm.
Using our change simulator, we generated different

amounts of changes for a sequence of documents, including
a high proportion of move operations. In Figure 5, we com-
pare the size of the delta obtained by using our algorithm to

1A few values are dispersed because of the limitations of our profiling
tool.



the size of the original delta created by the change simulator.
The delta obtained by the simulator captures the edit script
of operations that has been applied to the original document
to change it, and, in that sense, it can be viewed as per-
fect. Delta’s sizes are expressed in bytes. The original doc-
ument size varies from a few hundred bytes, to a megabyte.
The average size of an XML document on the web is about
twenty kilobytes. The points in Figure 5 are obtained by
varying the parameters of the change. Experiments with
different documents presented the same patterns.
The experiment shows that the delta produced by diff is

about the size of the delta produced by the simulator. This is
the case even when there are many updates including many
move operations. For an average number of changes, when
about thirty percent of nodes are modified, the delta com-
puted by the diff algorithm is about fifty percent larger. This
is precisely due to the large number of move operations that
modify the structure of the document. But when the change
rate increases further, the delta gains in efficiency again, and
is even sometimes more accurate than the original delta, in
that it finds ways to compress the set of changes generated
by the simulator. Note that the efficiency lost in the middle
of the range is very acceptable, because (i) the correspond-
ing change rate is much more than what is generally found
on real web documents; and (ii) the presence of manymoves
operations modifying the structure of the document is rare
on real web documents.

6.2 Measures on real web data

We mention next results obtained by running our al-
gorithm over more than ten thousands XML documents
crawled on the web [21]. Unfortunately, few XML docu-
ments we found changed during the time-frame of the ex-
periment. We believe that it comes from the fact that XML
is still in its infancy and XML documents on the web are
less likely to change than HTML documents. This is also
due to the fact that the time-frame of the experiment was
certainly too short. We are currently running a longer term
set of experiments.
We present here results obtained on about two hundred

XML documents that changed on a per-week basis. This
sample is certainly too small for statistics, but its small size
allowed a human analysis of the diff outputs. Since we do
not have here a “perfect” delta as in the case of synthesized
changes, we compare to Unix Diff. Our test sample also
contains about two hundred large XML documents repre-
senting metadata about web sites. We also applied the diff
on a few large XML files (about five megabytes each) rep-
resenting metadata about the entire INRIA web site.
The most remarkable property of the deltas is that they

are on average roughly the size of the Unix Diff result (see
Figure 6). The outputs of Unix Diff and of our algorithm
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Figure 6. Delta over Unix Diff size ratio

are both sufficient to reconstruct one version from another,
but deltas contain a lot of additional information about the
structure of changes. It is interesting to note that the cost
paid for that extra information is very small in average.
It is also important to compare the delta size to the

document’s size, although this is very dependent on how
much the document changed. Other experiments we con-
ducted [19] showed that the delta size is usually less than the
size of one version. In some cases, in particular for larger
documents (e.g. more than 100 kilobytes), the delta size is
less than 10 percent of the size of the document.
One reason for the delta to be significantly better in size

compared to the Unix Diff is when it detects moves of big
subtrees, but in practice, this does not occur often. A draw-
back of the Unix Diff is that it uses newline as separator,
and some XML document may contain very long lines. The
worst case size for the Unix Diff output is twice the size of
the document. Our worse case is marginally worse due to
the storage overhead for structural information.
We have also tested our diff on XML documents describ-

ing portions of the web, e.g., web sites. We implemented
a tool that represents a snapshot of a portion of the web as
a set of XML documents. Given two such snapshots, our
diff computes what has changed in the time interval. For
instance, using the site www.inria.fr that is about fourteen
thousands pages, the XML document is about five million
bytes. Given the two XML snapshots of the site, the diff
computes the delta in about thirty seconds. Note that the
core of our algorithm is running for less than two seconds
whereas the rest of the time is used to read and write the
XML data. The delta’s we obtain for this particular site are
typically of size one millions bytes. To conclude this sec-
tion, we want to stress the fact that the test set was very
small and that more experiments are clearly needed.



7 Conclusion

All the ideas described here have been implemented and
tested. A recent version of our diff program can be down-
loaded at [8]. We showed by comparing our algorithm with
existing tree pattern matching algorithms or standard diff
algorithms, that the use of XML specificities leads to sig-
nificant improvements.
We already mentioned the need to gather more statistics

about the size of deltas and in particular for real web data.
To understand changes, we need to also gather statistics on
change frequency, patterns of changes in a document, in a
web site, etc. Many issues may be further investigated. For
example we can extend our use of DTDs to XMLSchema.
Other aspects of the actual implementation could be im-
proved for a different trade-off in quality over performance,
e.g. we could investigate the benefits of intentionally miss-
ing move operations for children that stay with the same
parent. We are also extending the diff to observe changes
between websites compared to changes to pages here.
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