Semantic Technologies Part 9: RDF(S) Semantics

Werner Nutt

These slides are based on the Latex version of slides by Sebastian Rudolph of TU Dresden

Why Formal Semantics?

- After the introduction of RDF(S), criticism of tool developers: different tools were incompatible (despite the existing specification)
- E.g., query engines:
 - same RDF document
 - same SPARQL query
 - different answers
- \rightarrow Thus a model-theoretic formal semantics was defined for RDF(S)

This means, RDF and RDFS are viewed als logic languages

See "RDF 1.1 Semantics" (http://www.w3.org/TR/rdf11-mt/)

RDFS Semantics

Building Blocks of a Logic 1: Syntax

Syntax defines the formulas of the logic

Propositional logic: propositions like

 $p \wedge q$ $p \wedge q
ightarrow q \lor \neg q$

• First order (predicate) logic: formulas with predicates/relations, variables, and quantifiers, e.g.,

$$\begin{split} hasFriend(john, mary) \\ \exists x(hasFriend(john, x)) \\ hasFriend(john, x) \\ \forall x(hasFriend(john, x) \rightarrow likes(x, john)) \\ \forall x(Person(x) \rightarrow \exists y(Person(y) \land hasFriend(x, y))) \end{split}$$

Sentences (= formulas with bound variables)

Building Blocks of a Logic 2: Interpretations

Interpretations define about what scenarios the logic talks:

• Propositional logic: Formulas are interpreted by **truth assignments** which assign a truth value to every proposition, e.g.

 $\alpha : p \mapsto true, q \mapsto false$

- Predicate logic interpretations ${\cal I}$ consist of
 - a **domain** $\Delta^{\mathcal{I}}$ of the interpretation (a nonempty set)
 - an interpretation function $\cdot^{\mathcal{I}}$, which maps

every constant c to a domain element $c^{\mathcal{I}}$

- predicate interpretations, which are relations on $\Delta^{\mathcal{I}}$, e.g.
 - Person is interpreted by \mathcal{I} as a unary relation $Person^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - *likes* is interpreted by \mathcal{I} as a binary relation $likes^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

In addition, there are **variable assignments** α , which assign to each variable a domain element

RDFS Semantics

Building Blocks of a Logic 3: Satisfaction

For every logic, there is a **satisfaction** relationship ("⊨") that defines when an interpretation satisfies a formula

Case 1: Satisfaction in propositional logic

Let $\alpha : p \mapsto true, q \mapsto false$. Then

- $\alpha \models p \land q \to q \lor \neg q$ • $\alpha \nvDash p \land q$
- Note: This is due to the definition of
 - when α satisfies a proposition p (base case)
 - how satisfaction of a complex formula φ ∧ ψ, φ ∨ ψ, ¬φ, etc.
 depends on the satisfaction of the components φ, ψ (inductive step)

Building Blocks of a Logic 3: Satisfaction

Case 2: Satisfaction in predicate logic

• Let
$$\Delta^{\mathcal{I}} = \{1, 2, 3\}$$
, let $john^{\mathcal{I}} = 1$, $mary^{\mathcal{I}} = 2$, and let
 $Person^{\mathcal{I}} = \{1, 2, 3\}$, $hasFriend^{\mathcal{I}} = \{(1, 2), (2, 1)\}$, and
 $likes^{\mathcal{I}} = \{(1, 2), (2, 1), (2, 3), (3, 1)\}$.
Also, let $\alpha : x \mapsto 3, y \mapsto 2$. Then

$$\begin{split} \mathcal{I}, \alpha &\models hasFriend(john, mary) \\ \mathcal{I}, \alpha &\models \exists x(hasFriend(john, x)) \\ \mathcal{I}, \alpha &\models hasFriend(john, x) \\ \mathcal{I}, \alpha &\models \forall x(hasFriend(john, x) \rightarrow likes(x, john)) \\ \mathcal{I}, \alpha &\models \forall x(Person(x) \rightarrow \exists y(Person(y) \land hasFriend(x, y))) \end{split}$$

Note: For sentences (= formulas without free variables), α has no influence (and could be dropped)

Let ϕ , ψ be formulas in predicate logic. Then

• $\mathcal{I}, \alpha \models R(x, y)$ iff $(\alpha(x), \alpha(y)) \in R^{\mathcal{I}}$

... similarly for constants and mixtures of constants and variables

- $\bullet \ \mathcal{I}, \alpha \models \phi \land \psi \quad \text{ iff } \quad \mathcal{I}, \alpha \models \phi \text{ and } \mathcal{I}, \alpha \models \psi$
- $\bullet \ \mathcal{I}, \alpha \models \phi \lor \psi \quad \text{ iff } \quad \mathcal{I}, \alpha \models \phi \text{ or } \mathcal{I}, \alpha \models \psi$
- $\mathcal{I}, \alpha \models \neg \phi$ iff $\mathcal{I}, \alpha \not\models \phi$
- $\mathcal{I}, \alpha \models \exists x(\phi)$ iff there exists a $d \in \Delta^{\mathcal{I}}$ such that $\mathcal{I}, \alpha[x/d] \models \phi$ where $\alpha[x/d](x) = d$ and $\alpha[x/d](y) = \alpha(y)$ for $y \neq x$
- $\mathcal{I}, \alpha \models \forall x(\phi)$ iff for all $d \in \Delta^{\mathcal{I}}$ it holds that $\mathcal{I}, \alpha[x/d] \models \phi$ where $\alpha[x/d]$ is defined as above

Satisfaction in propositional logic is defined similarly

Properties of Logical Formulas

Let ϕ be a formula in predicate logic. We say that

- \mathcal{I}, α is a **model** of ϕ if \mathcal{I}, α satisfies ϕ
- ϕ is **satisfiable** if ϕ has **some** model
- ϕ is **unsatisfiable** if ϕ has **no** model
- ϕ is **valid** if for all \mathcal{I} , α it holds that

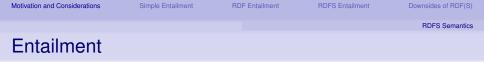
$$\mathcal{I}, \alpha \models \phi,$$

that is, every pair \mathcal{I}, α is a model of ϕ

The same properties are defined analogously for propositional logic

What can you say about $\neg \phi$ if ϕ is satisfiable, unsatisfiable, or valid?

BDES Semantics



What does it mean that a formula ψ logically follows from a formula ϕ ?

We say that ψ follows from ϕ , written

 $\phi \models \psi$

if every model of ϕ is a also a model of ψ . We then also say that ϕ **entails** ψ .

This can be generalized to sets Φ of formulas.

• \mathcal{I}, α is a model of Φ if \mathcal{I}, α is a model for every $\phi \in \Phi$

• Φ entails ψ , written $\Phi \models \psi$, if every model of Φ is also model of ψ Intuition: Φ is considered as the conjunction of all its elements.

Consider

$$\begin{split} \phi_1 &= hasFriend(john, mary) \\ \phi_1 &= \forall x(hasFriend(john, x) \rightarrow likes(x, john)) \\ \psi_1 &= likes(john, mary) \\ \psi_2 &= likes(mary, john) \end{split}$$

What can you say about $\Phi = \{\phi_1, \phi_2\}$ entailing ψ_1, ψ_2 ?

How can we find out, for arbitrary Φ and ψ , whether

 $\Phi \models \psi$?

Trying out all interpretations (and assignments) is

- complex in propositional logic
- impossible in predicate logic.

However, sometimes rules allow us to **infer** that a formula follows from other formulas.

Example:

$$\frac{\phi \quad \phi \to \psi}{\psi}$$

An inference rule has the form

$$\frac{\phi_1 \quad \dots \quad \phi_n}{\psi}$$

We call ϕ_1, \ldots, ϕ_n the **premises** of the rule ψ the conclusion of the rule.

An inference rul is sound if

• every model of ϕ_1, \ldots, ϕ_n is also a model of ψ

Intuition: With a sound rule, we infer true conclusions from true premises.

How is RDF(S) Linked to a Logic?

- To start with: what are the sentences/formulas in RDF(S)?
 - Basic syntactic elements (vocabulary V): IRIs, bnodes and literals (these are not sentences/formulas themselves)
 - Every triple

```
(s, p, o) \in (IRI \cup bnode) \times IRI \times (IRI \cup bnode \cup literal)
```

is a sentence

• Every finite set of triples (denoted: graph) is a sentence

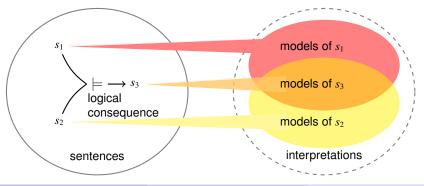
BDES Semantics

How is RDF(S) Linked to a Logic?

What is the semantics? A consequence relation that defines

• when an RDF(S) graph G' logically follows from another RDF(S) graph G (written $G \models G'$)

To introduce this semantics, we define a set of interpretations and specify under which conditions an interpretation is a model of a graph.



• We proceed stepwise:

sim	ble	inter	pret	atio	ns
•••••			p. 0.	ano	

RDF interpretations

RDFS interpretations

 The more we restrict the set of interpretations, the stronger the consequence relation becomes

RDFS Semantics

Semantics of the Simple Entailment

Definition (Simple Interpretation)

A simple interpretation ${\mathcal I}$ for a vocabulary V consists of

- IR, a non-empty set of resources, also referred to as domain, with
- LV ⊆ IR, the set of *literal values*, that contains (at least) all untyped literals from V, and
- IP, the set of *properties* of \mathcal{I} ;
- I_S, a function, mapping IRIs from V to the union of the sets IR and IP, i.e., I_S: V \to IR \cup IP,
- $I_{EXT},$ a function, mapping every property to a set of pairs from IR, i.e., $I_{EXT}\colon I\!P\to 2^{I\!R\times I\!R}$ and
- I_L, a function mapping typed literals from V into the set IR of resources.

- IR, the set of resources, is also called domain or universe of discourse of I
- I_{EXT}(*p*) is also referred to as the *extension* of the property *p*

Remark

In summary:

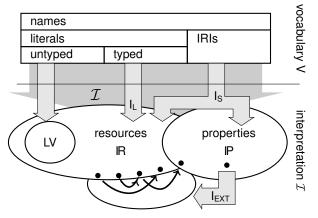
- There is a domain IR, consisting of *resources*, which may include numbers, booleans, and other values
- There are also properties
- Some IRIs are interpreted as domain elements, others as or properties
- Properties are interpreted as binary relations on the domain

Definition (Interpretation Function)

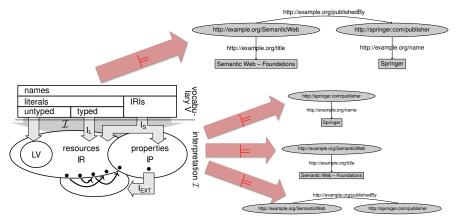
Based on I_L and $I_S,$ we define $\cdot^{\mathcal{I}}$ as follows:

- every untyped literal "a" is mapped to a : $("a")^{\mathcal{I}} = a$
- every untyped literal with language information "a"@t is mapped to the pair $\langle a, t \rangle$, that is: ("a"@t)^{\mathcal{I}} = $\langle a, t \rangle$,
- every typed literal *l* is mapped to $I_L(l)$, that is: $l^{\mathcal{I}} = I_L(l)$ and
- every IRI *i* is mapped to $I_{S}(i)$, hence: $i^{\mathcal{I}} = I_{S}(i)$.

Interpretation (schematic):



- Question: When is a given interpretation a model of a graph?
- ... if it is a model for every triple of the graph!



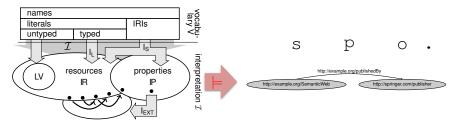
RDFS Semantics

RDFS Semantics

Semantics of the Simple Entailment

Question: When is a given interpretation a model of a triple?

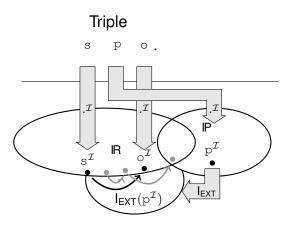
- ... if subject, predicate, and object are contained in V
- \bullet \ldots and additionally $\langle \texttt{s}^\mathcal{I}, \texttt{o}^\mathcal{I} \rangle \in I_{\text{EXT}}(\texttt{p}^\mathcal{I})$ holds



RDFS Semantics

Semantics of Simple Entailment

Schematically:



... oops, we forgot the bnodes!

- Assume, A is a function mapping all bnodes to elements of IR
- Given an interpretation \mathcal{I} ,
 - let $\mathcal{I} + A$ behave just like \mathcal{I} on the vocabulary,
 - and additionally, for every bnode _:label, let (_:label)^{*I*+A} = A(_:label)
- Now, an interpretation I is a model of an RDF graph G,
 if there exists an A such that all triples are satisfied w.r.t. I + A

In other words, we have extended \mathcal{I} by an interpretation A for the bnodes

RDFS Semantics

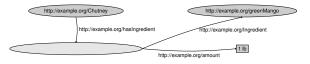
Simple Interpretations: Example

Given graph G:

and interpretation \mathcal{I} :

Is \mathcal{I} a model of G?

Simple Interpretations: Example

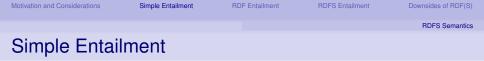


IR	=	$\{c,g,h,z,l,m,{\scriptstyle 1\rm lb}\}$	I_{S}	=	ex:Chutney	$\mapsto c$
IP	=	$\{h, z, m\}$			ex:greenMango	$\mapsto g$
LV	=	{ 1 lb }			ex:hasIngredient	$\mapsto h$
I_{EXT}	=	$h \mapsto \{\langle c, l \rangle\}$			ex:ingredient	$\mapsto z$
		$z \mapsto \{\langle l, g \rangle\}$			ex:amount	$\mapsto m$
		$m\mapsto \{\langle l,{\scriptscriptstyle 1}{\scriptscriptstyle \mathrm{lb}} angle\}$	ΙL		is the "empty function"	

• If we pick $A: _:idl \mapsto l$, then we get $\langle ex:Chutney^{\mathcal{I}+A}, _:idl^{\mathcal{I}+A} \rangle = \langle c, l \rangle \in I_{EXT}(h) = I_{EXT}(ex:hasIngredient^{\mathcal{I}+A})$ $\langle .:idl^{\mathcal{I}+A}, ex:greenMango^{\mathcal{I}+A} \rangle = \langle l, g \rangle \in I_{EXT}(z) = I_{EXT}(ex:ingredient^{\mathcal{I}+A})$ $\langle .:idl^{\mathcal{I}+A}, "1 \ lb "^{\mathcal{I}+A} \rangle = \langle l, 1 \ lb \rangle \in I_{EXT}(m) = I_{EXT}(ex:amount^{\mathcal{I}+A})$

• Therefore, \mathcal{I} is a model of G.

- The definition of simple interpretations fixes the notion of simple entailment for RDF graphs
- Question: How can this (abstractly defined) semantics be turned into something computable?
- Answer: Deduction rules



Deduction rules for simple entailment:

se1	х.	а	u
301	_:n .	а	u
se2	х.	а	u
362	х.	а	_:n

 Precondition for applying these rules: the bnode has not yet been associated with another IRI or literal

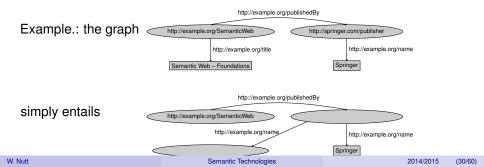
Motivation and Considerations	Simple Entailment	RDF Entailment	RDFS Entailment	Downsides of RDF(S)
				RDFS Semantics
Simple Entai	Iment			

Theorem

[Soundness and Completeness of Inference Rules] A graph G_2 is simply entailed by a graph G_1

if and only if

 G_1 can be extended to a graph G'_1 by applying the rules se1 and se2 such that G_2 is contained in G'_1 .



RDF interpretations are specific simple interpretations, where additional conditions are imposed on the URIs of the RDF vocabulary

rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq rdf:Bag rdf:Alt rdf:_1 rdf:_2 ...

in order to realize their intended semantics.

We present the conditions together with corresponding inference rules

An RDF interpretation for a vocabulary V is a simple interpretation for the vocabulary V \cup V_{RDF} that additionally satisfies the following conditions:

1. $x \in \mathbb{P}$ exactly if $\langle x, \text{rdf:Property}^{\mathcal{I}} \rangle \in \mathsf{I}_{\mathsf{EXT}}(\text{rdf:type}^{\mathcal{I}})$.

"For every triple predicate we can infer that it is an member of the class of all properties."

> u a y ardf:typerdf:Property rdf1

2. If "s"^rdf:XMLLiteral is contained in V and s is a well-formed XML literal, then

• IL("s"^rdf:XMLLiteral) is the XML value of s;

⟨I_L("s"[^]rdf:XMLLiteral), rdf:XMLLiteral^I⟩ ∈
 I_{EXT}(rdf:type^I)

Oops, literals must not occur in subject position!

- 2. If "s"^rdf:XMLLiteral is contained in V and s is a well-formed XML literal, then
 - IL("s"^rdf:XMLLiteral) is the XML value of s;
 - $I_L("s"^rdf:XMLLiteral) \in LV;$
 - $\langle I_L("s"^rdf:XMLLiteral), rdf:XMLLiteral^{\mathcal{I}} \rangle \in I_{EXT}(rdf:type^{\mathcal{I}})$

1 a literal, _:n

If rule lg has assigned .:n to the XML Literal 1

Rule Ig is called the "literal generalization rule"

- 3. If "s"^rdf:XMLLiteral is contained in V and s is an *ill-formed* XML literal, then
 - $I_L(\texttt{"s"^rdf:XMLLiteral}) \not\in LV$ and
 - ⟨I_L("s"[^]rdf:XMLLiteral), rdf:XMLLiteral^I⟩ ∉
 I_{EXT}(rdf:type^I).

- Note: *x* is a property exactly if it is linked to the resource denoted by rdf:Property via the rdf:type property (this has the direct consequence that in every RDF interpretation IP ⊆ IR holds).
- The value space of the rdf:XMLLiteral datatype contains for every well-formed XML string exactly one so-called XML value. The RDF specs only require that this value is neither an XML string itself nor a data value of any XML Schema datatype nor a Unicode string.

 Additional requirement: every RDF interpretation must be a model of the following "axiomatic" triples:

rdf:type	rdf:type	rdf:Property .	
rdf:subject	rdf:type	rdf:Property .	
rdf:predicate	rdf:type	rdf:Property .	
rdf:object	rdf:type	rdf:Property .	
rdf:first	rdf:type	rdf:Property .	
rdf:rest	rdf:type	rdf:Property .	
rdf:value	rdf:type	rdf:Property .	
rdf:_1	rdf:type	rdf:Property .	
rdf:_2	rdf:type	rdf:Property .	
	rdf:type	rdf:Property .	
rdf:nil	rdf:type	rdf:List .	

every axiomatic triple "u a x ."	
can always be derived	

W. Nutt

rdfax

uax

Theorem (Soundness and Completeness of RDF Inference Rules)

A graph G_2 is RDF-entailed by a graph G_1 , written $G_1 \models G_2$, if and only if there is a graph G'_1 , such that

- G'_1 can be derived from G_1 via lg, rdf1, rdf2 and rdfax and
- G_2 is simply entailed by G'_1 .

Note: The deduction process has two stages

RDFS interpretations are specific RDF interpretations, where additional constraints are imposed for the URIs of the RDFS vocabulary

rdfs:domain	rdfs:range	rdfs:Resource
rdfs:Literal	rdfs:Datatype	rdfs:Class
rdfs:subClassOf	rdfs:subPropertyOf	rdfs:Container
rdfs:member	rdfs:ContainerMembe	rshipProperty
rdfs:comment	rdfs:seeAlso	rdfs:isDefinedBy
rdfs:label		

such that the intended semantics of these URIs is realized.

For the sake of easier representation, we introduce for each interpretation $\ensuremath{\mathcal{I}}$

- the function I_{CEXT} and
- the set IC.

They are defined as follows:

I_{CEXT} maps resources to sets of resources, i.e.,

 $\label{eq:lcext} I_{\text{CEXT}} \colon I\!R \to 2^{I\!R},$

where $I_{CEXT}(y)$ contains exactly those elements x, for which $\langle x, y \rangle$ is contained in $I_{EXT}(rdf:type^{\mathcal{I}})$. We call $I_{CEXT}(y)$ the *(class) extension* of y.

• IC is the extension of the specific IRI rdfs:Class, hence:

$$IC = I_{CEXT}(\texttt{rdfs:Class}^{\mathcal{I}}).$$

Note: both I_{CEXT} as well as IC are fully determined by $\cdot^{\mathcal{I}}$ and I_{EXT}.

An *RDFS interpretation* for a vocabulary V is an RDF interpretation for the vocabulary $V \cup V_{RDFS}$ that additionally satisfies the following criteria:

• $I\!R = I_{CEXT}(\texttt{rdfs}:\texttt{Resource}^\mathcal{I})$

Every resource is of type rdfs:Resource.

• $LV = I_{CEXT}(rdfs:Literal^{\mathcal{I}})$

Every untyped and every well-formed typed literal is of type rdfs:Literal.

If ⟨x, y⟩ ∈ I_{EXT}(rdfs:domain^I) and ⟨u, v⟩ ∈ I_{EXT}(x), then u ∈ I_{CEXT}(y).
 If the property rdfs:domain connects x with y, and the property x connects the resources u and v, then u is of type y.

- If $\langle x, y \rangle \in I_{EXT}(rdfs:range^{\mathcal{I}})$ and $\langle u, v \rangle \in I_{EXT}(x)$, then $v \in I_{CEXT}(y)$. If the property rdfs:range connects x with y and the property x connects the resources u and v, then v is of type y.
- I_{FXT}(rdfs:subPropertyOf^{*I*}) is reflexive and transitive on IP.

The rdfs:subPropertyOf property connects every property with itself.

Moreover, if rdfs:subPropertyOf connects a property x with a property y and additionally y with a property z, then rdfs:subPropertyOf also connects x directly with z.

- If $\langle x, y \rangle \in I_{EXT}(rdfs:subPropertyOf^{\mathcal{I}})$, then $x, y \in \mathbb{P}$ and $I_{\mathsf{FXT}}(x) \subset I_{\mathsf{FXT}}(y)$.
 - If rdfs:subPropertyOf connects x with y, then both x and y are properties.
 - Every pair of resources contained in the extension of x.
 - is also contained in the extension of y.
- If $x \in IC$, then $\langle x, rdfs: Resource^{\mathcal{I}} \rangle \in I_{FXT}(rdfs: subClassOf^{\mathcal{I}})$.
 - If x represents a class,
 - then it has to be a subclass of the class of all resources.
 - i.e., the pair containing x and rdfs:Resource is in the extension of rdfs:subClassOf.

• If $\langle x, y \rangle \in I_{EXT}(rdfs:subClassOf^{\mathcal{I}})$, then $x, y \in IC$ and $I_{CEXT}(x) \subset I_{CEXT}(y)$.

If x and y are connected via the rdfs:subClassOf property, then both x and y are classes and the (class) extension of x is a subset of the (class) extension of y.

• I_{FXT}(rdfs:subClassOf^I) is reflexive and transitive on IC. The rdfs:subClassOf property connects every class to itself. Moreover, whenever this property connects a class x with a class y and a class y with a class z, then it also directly connects x with z.

- If $x \in I_{CEXT}(rdfs:ContainerMembershipProperty^{\mathcal{I}})$, then $\langle x, rdfs:member^{\mathcal{I}} \rangle \in I_{EXT}(rdfs:subPropertyOf^{\mathcal{I}})$.
 - If x is a property of the type rdfs:ContainerMembershipProperty, then it is rdfs:subPropertyOf-connected with the property rdfs:member.
- If $x \in I_{CEXT}(rdfs:Datatype^{\mathcal{I}})$, then $\langle x, rdfs:Literal^{\mathcal{I}} \rangle \in I_{EXT}(rdfs:subClassOf^{\mathcal{I}})$.

If some x is typed as element of the class rdfs:Datatype, then it must be a subclass of the class of all literal values (denoted by rdfs:Literal).

• ... additionally we require satisfaction of the following axiomatic triples:

RDFS Interpretations/8

rdf:type rdfs:domain rdfs:range rdfs:subPropertyOf rdfs:subClassOf rdf:subject rdf:predicate rdf:object rdfs:member rdf:first rdf.rest rdfs:seeAlso rdfs:isDefinedBy rdfs.comment rdfs:label rdf value rdfs:domain

rdfs:domain rdfs:domain rdfs.domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs.domain rdfs:domain rdfs:domain rdfs.domain rdfs:domain

RDFS Interpretations/8

rdf:type rdfs.domain rdfs:range rdfs:subPropertvOf rdfs:subClassOf rdf:subject rdf:predicate rdf:object rdfs:member rdf first rdf.rest rdfs:seeAlso rdfs:isDefinedBv rdfs.comment rdfs:label rdf value

rdfs:domain rdfs:domain rdfs.domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs:domain rdfs.domain rdfs:domain rdfs:domain rdfs.domain rdfs:domain rdfs.domain

- rdfs:Resource . rdf:Property . rdf:Property . rdfs:Class . rdf:Statement . rdf:Statement . rdf:Statement . rdf:List . rdf:List . rdfs:Resource . rdfs:Resource . rdfs:Resource . rdfs:Resource . rdfs:Resource .
- rdfs:Resource .

RDFS Interpretations/9

rdf:type	rdfs:range
rdfs:domain	rdfs:range
rdfs:range	rdfs:range
rdfs:subPropertyOf	rdfs:range
rdfs:subClassOf	rdfs:range
rdf:subject	rdfs:range
rdf:predicate	rdfs:range
rdf:object	rdfs:range
rdfs:member	rdfs:range
rdf:first	rdfs:range
rdf:rest	rdfs:range
rdfs:seeAlso	rdfs:range
rdfs:isDefinedBy	rdfs:range
rdfs:comment	rdfs:range
rdfs:label	rdfs:range
rdf:value	rdfs:range

RDFS Interpretations/9

rdf:type rdfs:domain rdfs:range rdfs:subPropertyOf rdfs:subClassOf rdf:subject rdf:predicate rdf:object rdfs:member rdf:first rdf:rest rdfs•seeAlso rdfs:isDefinedBy rdfs.comment rdfs:label rdf:value

rdfs:range rdfs Class rdfs:Class . rdfs:Class . rdf:Property . rdfs:Class . rdfs:Resource . rdfs Besource rdfs:Resource . rdfs:Resource . rdfs:Resource . rdf:List . rdfs Besource rdfs:Resource . rdfs:Literal . rdfs:Literal . rdfs:Resource .

Motivation and Considerations	Simple Entailment	RDF Entailment	RDFS Entailment	Downsides of RDF(S)
				RDFS Semantics

rdfs:ContainerMembershipProperty rdfs:subClassOf			
rdf:Alt	rdfs:subClassOf		
rdf:Bag	rdfs:subClassOf		
rdf:Seq	rdfs:subClassOf		
rdfs:isDefinedBy	rdfs:subPropertyOf		
rdf:XMLLiteral	rdf:type		
rdf:XMLLiteral	rdfs:subClassOf		
rdfs:Datatype	rdfs:subClassOf		
rdf:_1	rdf:type		
rdf:_1	rdfs:domain		
rdf:_1	rdfs:range		
rdf:_2	rdf:type		

. . .

.

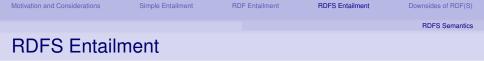
RDFS Semantics

RDFS Interpretations/10

rdfs:ContainerMembershipProperty rdfs:subClassOf rdf:Property . rdfs:Container . rdf:Alt rdfs:subClassOf rdf:Bag rdfs:subClassOf rdfs:Container . rdf:Seq rdfs:subClassOf rdfs:Container . rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso . rdf:XMLLiteral rdf:type rdfs:Datatype . rdf:XMLLiteral rdfs:subClassOf rdfs:Literal . rdfs:Datatype rdfs:subClassOf rdfs:Class .

rdf:_1	rdf:type	
	rdfs:Containe	erMembershipProperty .
rdf:_1	rdfs:domain	rdfs:Resource .
rdf:_1	rdfs:range	rdfs:Resource .
rdf:_2	rdf:type	
	rdfs:Containe	erMembershipProperty .

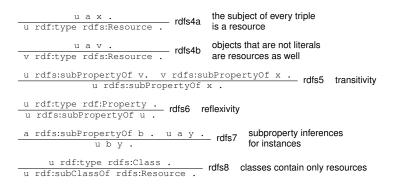
. . .



Automatic inference is again realized via deduction rules:

- <u>u a x</u> . rdfsax every axiomatic triple "u a x." can always be derived
$\label{eq:linear} \begin{array}{ccc} \underline{u \ a \ _:n} & \underline{.} \\ \underline{u \ a \ l} & \underline{.} \end{array} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
u a l rdfs1 applies if _:n has been assigned (via Rule lg) to the untyped literal 1
a rdfs:domain x . u a y .implements the semantics ofu rdf:type x .rdfs2
$\frac{\text{a rdfs:range x . u a v .}}{\text{v rdf:type x .}} \text{ rdfs3} \begin{array}{c} \text{implementis the semantics of} \\ \text{property ranges} \end{array}$
a, b IRIs x, y IRI, blank node or literal u, v IRI or blank node 1 literal .:n blank nodes

Motivation and Considerations	Simple Entailment	RDF Entailment	RDFS Entailment	Downsides of RDF(S)
				RDFS Semantics
RDFS Entail	ment/2			



Motivation and Considerations	Simple Entailment	RDF Entailment	RDFS Entailment	Downsides of RDF(S)
				RDFS Semantics
RDFS Entail	ment/3			

<u>u</u> rdfs:subClassOf x . v rdf:type u . rdfs9 subclassen inferences
v rdf:type x . for instances
u rdf:type rdfs:Class . u rdfs:subClassOf u . rdfs10
u rdfs:subClassOf v. v rdfs:subClassOf x . u rdfs:subClassOf x .
u rdf:type rdfs:ContainerMembershipProperty . u rdfs:subPropertyOf rdfs:member .
u rdf:type rdfs:Datatype . u rdfs:subClassOf rdfs:Literal . rdfs10 every datatype is a subclass of rdfs:Literal

RDFS Entailment: XML Clash

There is one possibility for a data graph to be inconsistent:

ex:hasSmiley rdfs:range rdfs:Literal.

ex:evilRemark ex:hasSmiley ">:->"^rdf:XMLLiteral.

a node of type <code>rdfs:Literal</code> gets assigned an ill-formed literal value This is called an *XML* clash

Theorem:

A graph G_2 is RDFS entailed by G_1 , if there is a graph G'_1 obtained by applying the rules lg, gl, rdfax, rdf1, rdf2, rdfs1 – rdfs13 and rdfsax to G_1 , such that

- G₂ is simply entailed by G'₁ or
- G'_1 contains an XML clash.

• Certain seemingly sensible consequences are not RDFS-entailed, e.g.

ex:talksTo rdfs:domain ex:Homo. ex:Homo rdfs:subClassOf ex:Primates.

should imply

ex:talksTo rdfs:domain ex:Primates.

- possible solution: use a stronger, so-called "extensional" semantics (but this would be outside the standard)
- No possibility to express negation