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Output Format SELECT

So far all results have been tables (solution sequences):
Output format SELECT

Syntax:
« SELECT <VariableList>
« SELECT *

Advantage
« Simple sequential processing of the results

Disadvantage

« Structure/relationships is lost
between the expressions in the result




Output Format CONSTRUCT

CONSTRUCT creates an RDF graph for the results

PREFIX ex: <http://example.org/>
CONSTRUCT { ?person ex:mailbox “email .

?person ex:telephone “tel. }
WHERE ({

Yperson ex:email “email .
Yperson ex:tel “tel.

}

Advantage

« Structured result data with relationships between the elements
Disadvantage

« Sequential processing of the results is harder

* No treatment of unbound variables (triples are omitted)
S




CONSTRUCT Templates with Blank Nodes

Data
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
_:a foaf:firstname "Alice";
foaf:surname "I-Iacker" .
:b foaf:-firstname "Bob";

foaf:surname "Hacker" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vecard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT {
X veard:N V.
v vecard:givenName “gname ;
vcard:familyName Yfname

} WHERE {
?X foaf:firstname “gname.
X foaf:surname ?fname }




Part 6 Semantics of SPARQL

CONSTRUCT Templates with Blank Nodes

Resuliing RDF Graph

@prefix vecard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
vl veard:N x1.
X1 veard:givenName "Alice" ;

vcard:familyName "Hacker" .
VR veard:N X2 .
X2 vecard:givenName "Bob" ;

vcard:familyName "Hacker" .
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Further Output Formats: ASK & DESCRIB]

&2

SPARQL supports two additional output formats:

« ASK only checks whether the query has at least one answer (true/
false result)

« DESCRIBE (informative) returns an RDF description for each
resulting URI (application dependent)

Sample Query ever DBpedia

PREFIX dbo:<http://dbpedia.org/ontology/>
PREFIX dbp:<http://dbpedia.org/property/>

DESCRIBE Yp WHERE {
P a dbo:Person .
?p dbp:nationality “n.
FILTER(REGEX(STR(%n),"ital","i"))
}




Output (just the beginning ...)

@prefix dbpprop: <http://dbpedia.org/property/> .
@prefix dbpedia: <http://dbpedia.org/resource/> .

dbpedia:Emanuela_Da,_Ros dbpprop:birthPlace dbpedia:Italy ;
dbpprop:placeOfBirth dbpedia:Italy .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

dbpedia:Emanuela_Da_Ros dbpedia-owl:birthPlace dbpedia:Italy .

dbpedia:European_route_EG6

dbpprop:countries dbpedia:ltaly .

<http.//d1f\v\nrq-;n An/nAacmniinnn/THaAani frnaara)N

A}\T\T\“I\T\onf\'! 11n+-rrr~r

The answer depends on the implementation
dopedia:t gnd is not defined by the standard

appedla-Oowl D1runriace

aopedla:ltaly .

dbpedia:Luigi_Cadorna dbpprop:deathPlace

dbpprop:placeOfBirth dbpedia:Italy ;
dbpprop:placeOfDeath dbpedia:Italy ;
dbpedia-owl:birthPlace dbpedia:Italy ;
dbpedia-owl:deathPlace dbpedia:Italy .
dbpedia:Matteo_Abbate dbpprop:birthPlace
dbpprop:placeOfBirth dbpedia:Italy ;
dbpedia-owl:birthPlace dbpedia:Italy .

dbpedia:Italy ;

dbpedia:Italy ;

Ahrnnandio.T+ ally ;
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Semantics of Query Languages

So far only informal presentation of SPARQL features

« User: “Which answers can | expect for my query?”

* Developer: “Which behaviour is expected from my SPARQL
implementation?”

« Marketing: “Is our product already conformant with the
SPARQL standard?”

= Formal semantics should clarify these questions ...
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Logic-based Semantics

Semantics of formal logics:
 Model-theoretic semantics: Which interpretations do
satisfy my given formulas?

* Proof-theoretic semantics: Which new formulas can be
derived from my given formulas?
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Semantics of Programming Languages

* Axiomatic semantics:
Which logical statements hold for my program?

* Operational semantics:
What happens during the processing
of my program??

« Denotational semantics:
How can we describe the input/output function
of the program in an abstract way?

14



Semantics of Query Languages (1)

Query Entailment

Logical view of queries and databases
— Query as description of allowed results
— Data as set of logical assumptions (axiom set/theory)
— Results as logical entailment

« OWL DL and RDF(S) as query languages

* Also logic programming view ...
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Semantics of Query Languages (2)

Query Algebra

Query as instruction for computing the results
* Queried data as input
* Results as output

=>» Relational algebra for SQL
= SPARQL algebra

See http://www.w3.0rg/2001/sw/DataAccess/rq23/rg24-algebra
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Translation into SPARQL Algebra

{ ?book ex:price ?price .
FILTER (?price < 15)
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

}

Semantics of a SPARQL query:

@ Transformation of the query into an algebra expression

@ Evaluation of the algebra expression

18




Part 6 Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book ex:price ?price .
FILTER (?price < 15)
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

}

Attention: Filters apply to the whole group in which they occur
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Translation into SPARQL Algebra

{ ?book ex:price ?price .
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

FILTER (?price < 15)

}

@ Expand abbreviated IRIs

Semantic Technologies 20



Part 6 Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book <http://ex.org/price> ?price
OPTIONAL { ?book <http://ex.org/title> ?title }
{ ?book <http://ex.org/author>
<http://ex.org/Shakespeare> } UNION
{ ?book <http://ex.org/author>
<http://ex.org/Marlowe> }
FILTER (?price < 15)

}
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Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book <http://ex.org/price> ?price
OPTIONAL { ?book <http://ex.org/title> ?title }

{ ?book <http://ex.org/author>
<http://ex.org/Shakespeare> } UNION

{ ?book <http://ex.org/author>
<http://ex.org/Marlowe> }

FILTER (?price < 15)
}

@ Replace triple patterns (= basic graph patterns)
with operator Bgp(-)
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Semantics of SPARQL

Translation into SPARQL Algebra

{Bgp (?book <http://ex
<http://ex

<http://ex
FILTER (?price < 15)

{ Bgp(?book <http://ex.org/price> ?price)
OPTIONAL {Bgp(?book <http://ex.org/title> ?title)}
.org/author>

.org/Shakespeare>)} UNION
{Bgp(?book <http://ex.

org/author>

.org/Marlowe>)}

Semantic Technologies
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Semantics of SPARQL

Translation into SPARQL Algebra

{Bgp (?book <http://ex
<http://ex

<http://ex
FILTER (?price < 15)

{ Bgp(?book <http://ex.org/price> ?price)
OPTIONAL {Bgp(?book <http://ex.org/title> ?title)}
.org/author>

.org/Shakespeare>)} UNION
{Bgp(?book <http://ex.

org/author>

.org/Marlowe>)}

@ Introduce the LeftJoin(-) operator for optional parts

Semantic Technologies
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Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> ?2title),
true)

{Bgp (?book <http://ex.org/author>
<http://ex.org/Shakespeare>)} UNION

{Bgp (?book <http://ex.org/author>
<http://ex.org/Marlowe>) }
FILTER (?price < 15)

}

@ Introduce the LeftJoin(-) operator for optional parts

Note: LeftdJoin(:, -, -) is a ternary operator

— 1stargument: mandatory part

— 2nd argument: Bgps of optional part

— 3" argument: the filters of the optional group
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. Part6
Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

{Bgp (?book <http://ex.org/author>
<http://ex.org/Shakespeare>)} UNION

{Bgp (?book <http://ex.org/author>
<http://ex.org/Marlowe>)}
FILTER (?price < 15)
}

@ Combine alternative graph patterns with the Union(-, -) operator

= Refers to neighbouring patterns and has higher precedence
than conjunction (left associative)

26




Semantics of SPARQL

Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe) )
FILTER (?price < 15)

Semantic Technologies
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Semantics of SPARQL

Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))
FILTER (?price < 15)
}

® Apply Join(-,-) operator to join non-filter elements

Semantic Technologies
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Semantics of SPARQL

Translation into SPARQL Algebra

{Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe)))
FILTER (?price < 15)

}

Semantic Technologies
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Translation into SPARQL Algebra

{Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>

http://ex.org/Marlowe)))
FILTER (?price < 15)

® Translate a group with filters with the Filter(-,-) operator

30




Translation into SPARQL Algebra

Filter(?price < 15 ,
Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))))

® Translate a group with filters with the Filter(-,-) operator
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Translation into SPARQL Algebra

Filter(?price < 15 ,
Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))))

Online translation tool:

http://sparqgl.org/query-validator.html
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Semantics of the SPARQL

Algebra Operations

Now we have an algebra expression,
but what do the algebra operations mean?

Algebra Operator Intuitive Semantics

Bgp(P) match/evaluate pattern P
Join(M,, M,) conjunctive join of solutions M, and M,
Union(M,, M,) union of solutions M, with M,

optional join of M, with M, with filter
constraint F (true if no filter given)

Filter(F, M) filter solutions M with constraint F

LeftJoin(M,, M., F)

Z empty pattern (identity for join)
Only Bgp(-) matches or evaluates graph fragments ...
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Semantics of the SPARQL
Algebra Operations

How can we define that more formally?

Output:
 “solution set” (formatting irrelevant)

Input:

* Queried (active) graph

« Partial results from previous evaluation steps

« Different parameters according to the operation

= How can we formally describe the “results™?

35



SPARQL Results

Intuition:

* Results are as for relational queries:
tables of variable assignments

Result:
List of solutions (solution sequence)

=» each solution corresponds to one table row

36



SPARQL Results

Formally:

"A solution is a partial function (also called “mapping”) with A
* Domain: relevant variables

\- Range: IRIs U blank nodes U RDF literals )

=» Unbound variables are those that have no assigned value
(partial function)

=>» Mappings are denoted by the greek letter u

37



Part 6

Evaluation of Basic Graph Patterns

Definition (Solution of a BGP)

/Let P be a basic graph pattern. \

A partial function/mapping u is a solution for Bgp(P)
over the queried (active) graph G if:

(D the domain of u is exactly the set of variables in P,

@ there exists an assignment o from blank nodes in P
to IRIs, blank nodes, or RDF literals such that:

@ the RDF graph u(o(P)) is a subgraph of G /

38




Remarks on the Definition

 If there were only variables, we would only talk about p.

« Since also the blank nodes need to be interpreted,
there is also o.

« ltis first o and then y because we want
— that o only binds blank nodes in P,
— not the blank nodes introduced by p.
* The result of evaluating Bgp(P) over G is written

[[Bgp(P)lls

* The result is a multiset of solutions p.

« The muiltiplicity of each solution uy corresponds
to the number of different assignments o

39



Multisets

Definition (Multi Set)

-

\_

A mulitiset over a set S is a function M that assigns to
every element s of S

— a natural number M(s) such that
M(s) =2 0 or M(s) = « (infinity)
* M(s) is the multiplicity of s in M.

~

/

Alternative notation: {{ a, b, b }} corresponds to the multiset

M over {a, b, c} with M(a) = 1, M(b) = 2, and M(c) = 0.

40



Semantics of SPARQL

Solution Mappings: Example

ex:Werner ex:gives [
a ex:Lecture ;
ex:hasTopic "SPARQL" ]
ex:Fariz ex:gives |

a ex:Lab ;

ex:hasTopic "Jena" ]
Bgp( ?who ex:gives :x . :xX ex:hasTopic ?what)
Question:

 What are the os and the ps?
« What are the solutions? And what is their multiplicity?

Hint: As a first step, write the data as a set of triples.

Semantic Technologies
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Semantics of SPARQL

Solution Mappings: Exercise

ex:Fariz ex:gives |
a ex:Lab ;
ex:hasTopic "RDF" ]
ex:Fariz ex:gives |

a ex:Lab ;

ex:hasTopic "Jena" ]
Bgp( ?who ex:gives :x . :xX ex:hasTopic ?what)
Question:

 What are the os and the ps?
« What are the solutions? And what is their multiplicity?

Hint: As a first step, write the data as a set of triples.

Semantic Technologies
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Union of Solutions (1)

Definition (Compatibility)

N

Two solutions u, and u, are compatible if
U4(x) = u,(x) for all variables x,
for which u, and u, are defined

Exercise: Find examples of u, and u, that are compatible/
not compatible

43




Union of Solutions (2)

Definition (Union)

4 N

The union of two compatible solutions u, and p, is a/the u
such that

o u(x) =, (x)if xis in dom(u,)

SRl
|+ MO0 = 0 f xis in dom(u,) ,

Where does the compatibility play a role?

44




Semantics of SPARQL

Evaluation of Join(-,-) (1)

To define the evaluation of a join expression Join(E,,E,)
over a graph G we proceed in two steps:

M We define the join Join(M,,M,) of
two multisets of mappings

(@ We define the evaluation [[Join(E,,E,)]]; of a
join expression as
the join of the evaluations [[E,]]; and [[E,]]; of
the arguments
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Evaluation of Join(-,") (2)

For a mapping y and multisets of mappings M,, M, we define
the set of join combinations of y as

JW) = { (q, 1p) | My(uy) > 0, My(u,) > 0,
U, and u, are compatible and y =y, U u,}

That is, J(u) consists of all possible ways to obtain y as a
combination of mappings in M,, M,
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Evaluation of Join(-,") (3)

For multisets of mappings M,, M, we define

Join(M;,My) = {(un) | n= 2 1 o conn (Ma(us) * My()) }

That is,

« Join(M,,M,) consists of all mappings u
that can be combined out of mappings in M, and M,

 If y can be combined out of y, and u,, and
U4 occurs n, times in M, and u, occurs n, times in M.,
then this combination contributes n, * n,
to the multiplicity of y in Join(M,,M,)
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Semantics of SPARQL

Evaluation of Join(-,) (4)
Let E,, E, be algebra expressions and let G be a graph.
Then we define

[[Join(E 4, E))llg := Join([[Eqllg, [[Eolls)
In words: we evaluate the join of E; and E, by

« first evaluating E, and E, separately
« and then taking the join of the resulting multisets of mappings

Semantic Technologies
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Exercise for Join(-,-)

We consider algebra expressions E,, E, and a graph G such that
[[E llc= M, and [[E,]]l; = M,. We want to compute Join(E,,E,) over G.
Suppose

M,={((u: ?x — ex:a, ?y — ex:b) ,2),
((uy: ?x — ex:a, 1) }

M, = { ( (us: ?y— ex:b, ?2z—ex:c,3)}

What is Join(M,,M.)?
|.e., which are the elements of the join?
And what is their multiplicity?
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Evaluation of Union (1)

We first define the union of two multisets of assignments,
and then the evaluation of a union expression.

Let M,, M, be multisets of mappings. Then

Union(My,M,) := { (u,n) | n = M,(u) + My(u) > 0 }

In words:
 the union contains the mappings that occur at least once in M, orM,

» the multiplicity of a mapping p in the union is the sum of the
multiplicities in M, and M,
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Evaluation of Union (2)

Let E,, E, be algebra expressions and let G be a graph.
Then we define

[[Union(E;,E)llg := Union( [[Eq]lg, [[E4llg)
In words: we evaluate the union of E; and E, by

« first evaluating E, and E, separately
« and then taking the union of the resulting multisets of mappings
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Evaluation of Filter(-,-) (1)

To define the evaluation of a filter expression Filter(F,E)
over a graph G we proceed in two steps:

@ We define the filter operation Filter(F,M) of a filter

condition F
and a multiset of mappings M

@ We define the evaluation [[Filter(F,E)]]; of a

filter expression as
the filter operation by F on the evaluation [[E]]
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Evaluation of Filter(-) (2)

For a filter condition F and multiset of mappings M we define
Filter(F,M) .={ (u,n) | M(u)=n>0and u(F)=T}

Here, u(F) is the truth value (i.e., one of T, E, F) obtained
from evaluating F with respect to .

The definition says that

@ all mappings survive that satisfy the filter condition, and
@ they survive with the multiplicity they had in M
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Semantics of SPARQL

Evaluation of Filter(-) (3)

Let E be an algebra expression, F a filter, and G a graph.
The we define

[Filter(F, E)]l; := Filter(F, [[E]ls)
In words,

« we first evaluate E and
 then apply the filter F
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Evaluation of Leftdoin(-) (1)

Again, to define the evaluation of a left join expression
Leftdoin(E,E,,F) over a graph G we proceed in two steps:

@M We define the left join LeftJoin(M,,M,,F) of
two multisets of mappings and a filter condition

@ We define the evaluation [[Join(E;, E,, F)]]; of a
left join expression as

the left join of the evaluations [[E,]]; and [[E,]]; of
the arguments with respect to F
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Evaluation of Leftdoin(-) (2)

Let M,, M, be multisets of mappings and let F be a filter expression.

We define

LeftJoin(M,, M,, F)

Filter(F, Join(M,, M,)) U
{ (U, My(uy)) | for all u, with M, (u,) > 0: y, and y, are incompatible
or (uy U tp)(F) =T}
That is
« we join and filter as usual, and
* we keep those mappings from M, that
— either do not find a match in M., or
— for which none of the combinations with a match satisfies F
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Part 6 Semantics of SPARQL

Evaluation of LeftdJoin(:) (3)

Let E,,E, be algebra expressions, F a filter, and G a graph.
Then we define

[Leftdoin(E,,E,,F)]l

= Leftdoin([[E/llg, [[Eollg, F)
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Example

@prefix ex:

<http://eg.org/>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

ex

ex
ex

ex

ex

:Hamlet ex:
ex:
:Macbeth ex:
:Tamburlaine ex:
ex
:DoctorFaustus ex:
ex

:RomeusJuliet

author
price

author
author

:price

author

tprice
ex:title "The Tragical History of Doctor Faustus"”
ex:author ex:Brooke ;
ex:

price

ex:Shakespeare ;
"10.50"""xsd:decimal
ex:Shakespeare
ex:Marlowe ;
"17"""xsd:integer
ex:Marlowe ;
"12"""xsd:integer ;

712" " "xsd:integer

.
14

{ ?book ex:price ?price .
OPTIONAL { ?book ex:title ?title . }
{ ?book ex:author ex:Shakespeare . } UNION

{ ?book ex:author ex:Marlowe

FILTER (?price < 15)

-}
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Example

@prefix ex:

<http://eg.org/>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

ex

ex
ex

ex

ex

tHamlet ex:author ex:Shakespeare ;

ex:price "10.50"""xsd:decimal
:Macbeth ex:author ex:Shakespeare
:Tamburlaine ex:author ex:Marlowe ;

ex:price "17"""xsd:integer
:DoctorFaustus ex:author ex:Marlowe ;

ex:price "12"""xsd:integer ; ;

ex:title "The Tragical History of Doctor Faustus"”

:RomeusJuliet ex:author ex:Brooke ;

ex:price 712" " "xsd:integer

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?2title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Macbeth

ex:Hamlet
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Tamburlaine

ex:DoctorFaustus
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex :Macbeth
ex:Hamlet
ex:Tamburlaine

ex:DoctorFaustus
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12
ex:RomeusJuliet 9
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

| book ___lprice]  book | title

ex:Hamlet 10.5 ex:DoctorFaustus "The Tragical History

ex:Tamburlain 17 of Doctor Faustus”
ex:DoctorFaustus 12
ex:RomeusJuliet 9
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12 "The Tragical History of Doctor
Faustus”
ex:RomeusJuliet 9

Semantic Technologies 65



Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12 "The Tragical History of Doctor

Faustus”
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Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5

ex:DoctorFaustus 12 "The Tragical History of Doctor
Faustus”
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Formal Algebra Transformation

« During parsing of a query, a parse tree is constructed

 The parse tree contains expressions that correspond to the
grammar

* For the transformation, we traverse the parse tree and
recursively build the algebra expressions

« The query pattern is a GroupGraphPattern consisting of
the following elements:

— TriplesBlock

— Filter

— OptionalGraphPattern

— GroupOrUnionGraphPattern
— GraphGraphPattern
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Part of the SPARQL Grammar

GroupGraphPattern .:="{’ TriplesBlock?
( ( GraphPatternNotTriples
| Filter ) °.’ ? TriplesBlock? ) *

’}’
GraphPatternNotTriples ::= OptionalGraphPattern

| GroupOrUnionGraphPattern

| GraphGraphPattern
OptionalGraphPattern ::="OPTIONAL’ GroupGraphPattern
GroupOrUnionGraphPattern ::= GroupGraphPattern (' UNION’

GroupGraphPattern )*

Filter ::="FILTER’ Constraint
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Transformation Algorithm to Algebra

Algorithm 1 translate(G)

Input: a query pattern G
Output: a SPARQL algebra expression A

if G is a Triplesblock then
A = Bgp(G)
else if G is a GroupOrUnionGraphPattern then
A = trnslGroupOrUnionGP(G)
else if G is a GraphGraphPattern then
A = trnslGraphGP(G)
else if G is a GroupGraphPattern then
A = trnslGroupGP(G)
return A

©® N R W2
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Transformation of

GroupOrUnionGraphPattern

Algorithm 2 trnsIGroupOrUnionGP(G)

Input: a GroupOrUnionGraphPattern G
with elements e,,...,e,

Output: a SPARQL algebra expression A

1. fori=1,...,ndo

2: if A is undefined then

3: A = translate(e))

4. else

S: A = Union(A, translate(e;))
6: return A
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Transformation of

GraphGraphPattern

Algorithm 3 trnslGraphGP(G)

Input: a GraphGraphPattern G
Output: a SPARQL algebra expression A

1. if G has the form GRAPH IRI GroupGraphPattern then

2 A = Graph(IR1I, translate(GroupGraphPattern))

3. else if G has the form GRAPH Var GroupGraphPattern then
4 A = Graph(Var, translate(GroupGraphPattern))

5

. return A
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Transformation of

GroupGraphPattern

Algorithm 4 trnslGroupGP(G)

Input: a GroupGraphPattern G = (ey,...,€,)
Output: a SPARQL algebra expression A

1. A:=Z [/ the empty pattern
2: F:=2 |[/the empty filter
3: fori=1,....ndo
if e; is of the form FILTER( f) then
F:=F U {f}
else if e, is of the form OPTIONAL { P } then
if translate(P) is of the form Filter(F',A") then
A = Leftdoin(A, A", F")
else

QO XN R

A = LeftJoin(A, translate(P), true)
S
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Transformation of

GroupGraphPattern (cntd)

11: else

12: A = Join(A, translate(e))
13: if F !=2 then

14: A = Filter(A;cgf, A)

15: return A
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Simplification of Algebra

Expressions

« Groups with just one pattern (without filters)
result in Join(Z, A) and can be substituted by A
« The empty pattern is the identity for joins:
— Replace Join(Z, A) by A
— Replace Join(A, Z) by A
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Semantics of SPARQL

Operators for Representing the Modifiers

ToList(M) Constructs from a multiset a sequence with
the same elements and multiplicity
(arbitrary order, duplicates not necessarily

adjacent)
OrderBy(M, comparators) sorts the solutions
Distinct(M) removes the duplicates
Reduced(M) may remove duplicates
Slice(M, o, |) cuts the solutions to a list of length / starting

from position o

Project(M, vars) projects out the mentioned variables
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Transformation of the Modifiers

Let g be a SPARQL query with pattern P and
corresponding algebra expression Ap.

We construct an algebra expression A, for g as follows:
@D A, = Tolist(Ap)
@ A, :=OrderBy(A,, (¢, . .., c,)) if

q contains an ORDER BY clause
with comparators c,, . . ., C,

@ A, = Project(A,, vars) if
the result format is SELECT with
vars the selected variables (* all variables in scope)
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Transformation of the Modifiers

@ A, = Distinct(A,) if
the result format is SELECT and
q contains DISTINCT

@ A, := Reduced(A,) if
the result format is SELECT and
q contains REDUCED

@& A, = Slice(A,, start, length) if
the query contains OFFSET start or LIMIT length
where start defaults to 0 and
length defaults to (| [[A ]l | — start)
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Evaluation of the Modifiers

The algebra expressions for the modifiers
are recursively evaluated

« Evaluate the algebra expression of the operator

* Apply the operations for the solution modifiers to the
obtained solutions
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