Part 6 Semantics of SPARQL

Semantics of SPARQL

Werner Nutt

Semantic Technologies 1

Part 6 Semantics of SPARQL

Acknowledgment

These slides are essentially identical with those by
Sebastian Rudolph for his course on Semantic Web
Technologies at TU Dresden

Semantic Technologies 2

Part 6 Semantics of SPARQL

Output Formats
SPARQL Semantics
Transformation of Queries into Algebra Expressions

Evaluation of the SPARQL Algebra

Semantic Technologies 3

Part 6 Semantics of SPARQL

Output Formats
SPARQL Semantics
Transformation of Queries into Algebra Expressions

Evaluation of the SPARQL Algebra

Semantic Technologies 4

Output Format SELECT

So far all results have been tables (solution sequences):
Output format SELECT

Syntax:
« SELECT <VariableList>
« SELECT *

Advantage
« Simple sequential processing of the results

Disadvantage

« Structure/relationships is lost
between the expressions in the result

Output Format CONSTRUCT

CONSTRUCT creates an RDF graph for the results

PREFIX ex: <http://example.org/>
CONSTRUCT { ?person ex:mailbox “email .

?person ex:telephone “tel. }
WHERE ({

Yperson ex:email “email .
Yperson ex:tel “tel.

}

Advantage

« Structured result data with relationships between the elements
Disadvantage

« Sequential processing of the results is harder

* No treatment of unbound variables (triples are omitted)
S

CONSTRUCT Templates with Blank Nodes

Data
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
_:a foaf:firstname "Alice";
foaf:surname "I-Iacker" .
:b foaf:-firstname "Bob";

foaf:surname "Hacker" .

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX vecard: <http://www.w3.org/2001/vcard-rdf/3.0#>
CONSTRUCT {
X veard:N V.
v vecard:givenName “gname ;
vcard:familyName Yfname

} WHERE {
?X foaf:firstname “gname.
X foaf:surname ?fname }

Part 6 Semantics of SPARQL

CONSTRUCT Templates with Blank Nodes

Resuliing RDF Graph

@prefix vecard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
vl veard:N x1.
X1 veard:givenName "Alice" ;

vcard:familyName "Hacker" .
VR veard:N X2 .
X2 vecard:givenName "Bob" ;

vcard:familyName "Hacker" .

Semantic Technologies 8

Further Output Formats: ASK & DESCRIB]

&2

SPARQL supports two additional output formats:

« ASK only checks whether the query has at least one answer (true/
false result)

« DESCRIBE (informative) returns an RDF description for each
resulting URI (application dependent)

Sample Query ever DBpedia

PREFIX dbo:<http://dbpedia.org/ontology/>
PREFIX dbp:<http://dbpedia.org/property/>

DESCRIBE Yp WHERE {
P a dbo:Person .
?p dbp:nationality “n.
FILTER(REGEX(STR(%n),"ital","i"))
}

Output (just the beginning ...)

@prefix dbpprop: <http://dbpedia.org/property/> .
@prefix dbpedia: <http://dbpedia.org/resource/> .

dbpedia:Emanuela_Da,_Ros dbpprop:birthPlace dbpedia:Italy ;
dbpprop:placeOfBirth dbpedia:Italy .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

dbpedia:Emanuela_Da_Ros dbpedia-owl:birthPlace dbpedia:Italy .

dbpedia:European_route_EG6

dbpprop:countries dbpedia:ltaly .

<http.//d1f\v\nrq-;n An/nAacmniinnn/THaAani frnaara)N

A}\T\T\“I\T\onf\'! 11n+-rrr~r

The answer depends on the implementation
dopedia:t gnd is not defined by the standard

appedla-Oowl D1runriace

aopedla:ltaly .

dbpedia:Luigi_Cadorna dbpprop:deathPlace

dbpprop:placeOfBirth dbpedia:Italy ;
dbpprop:placeOfDeath dbpedia:Italy ;
dbpedia-owl:birthPlace dbpedia:Italy ;
dbpedia-owl:deathPlace dbpedia:Italy .
dbpedia:Matteo_Abbate dbpprop:birthPlace
dbpprop:placeOfBirth dbpedia:Italy ;
dbpedia-owl:birthPlace dbpedia:Italy .

dbpedia:Italy ;

dbpedia:Italy ;

Ahrnnandio.T+ ally ;

10

Part 6 Semantics of SPARQL

Output Formats
SPARQL Semantics
Transformation of Queries into Algebra Expressions

Evaluation of the SPARQL Algebra

Semantic Technologies 11

Semantics of Query Languages

So far only informal presentation of SPARQL features

« User: “Which answers can | expect for my query?”

* Developer: “Which behaviour is expected from my SPARQL
implementation?”

« Marketing: “Is our product already conformant with the
SPARQL standard?”

= Formal semantics should clarify these questions ...

12

Logic-based Semantics

Semantics of formal logics:
 Model-theoretic semantics: Which interpretations do
satisfy my given formulas?

* Proof-theoretic semantics: Which new formulas can be
derived from my given formulas?

13

Semantics of Programming Languages

* Axiomatic semantics:
Which logical statements hold for my program?

* Operational semantics:
What happens during the processing
of my program??

« Denotational semantics:
How can we describe the input/output function
of the program in an abstract way?

14

Semantics of Query Languages (1)

Query Entailment

Logical view of queries and databases
— Query as description of allowed results
— Data as set of logical assumptions (axiom set/theory)
— Results as logical entailment

« OWL DL and RDF(S) as query languages

* Also logic programming view ...

15

Semantics of Query Languages (2)

Query Algebra

Query as instruction for computing the results
* Queried data as input
* Results as output

=>» Relational algebra for SQL
= SPARQL algebra

See http://www.w3.0rg/2001/sw/DataAccess/rq23/rg24-algebra

16

Part 6 Semantics of SPARQL

Output Formats
SPARQL Semantics
Transformation of Queries into Algebra Expressions

Evaluation of the SPARQL Algebra

Semantic Technologies 17

Translation into SPARQL Algebra

{ ?book ex:price ?price .
FILTER (?price < 15)
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

}

Semantics of a SPARQL query:

@ Transformation of the query into an algebra expression

@ Evaluation of the algebra expression

18

Part 6 Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book ex:price ?price .
FILTER (?price < 15)
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

}

Attention: Filters apply to the whole group in which they occur

Semantic Technologies 19

Translation into SPARQL Algebra

{ ?book ex:price ?price .
OPTIONAL { ?book ex:title ?title }
{ ?book ex:author ex:Shakespeare } UNION
{ ?book ex:author ex:Marlowe }

FILTER (?price < 15)

}

@ Expand abbreviated IRIs

Semantic Technologies 20

Part 6 Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book <http://ex.org/price> ?price
OPTIONAL { ?book <http://ex.org/title> ?title }
{ ?book <http://ex.org/author>
<http://ex.org/Shakespeare> } UNION
{ ?book <http://ex.org/author>
<http://ex.org/Marlowe> }
FILTER (?price < 15)

}

Semantic Technologies 21

Semantics of SPARQL

Translation into SPARQL Algebra

{ ?book <http://ex.org/price> ?price
OPTIONAL { ?book <http://ex.org/title> ?title }

{ ?book <http://ex.org/author>
<http://ex.org/Shakespeare> } UNION

{ ?book <http://ex.org/author>
<http://ex.org/Marlowe> }

FILTER (?price < 15)
}

@ Replace triple patterns (= basic graph patterns)
with operator Bgp(-)

Semantic Technologies 22

Semantics of SPARQL

Translation into SPARQL Algebra

{Bgp (?book <http://ex
<http://ex

<http://ex
FILTER (?price < 15)

{ Bgp(?book <http://ex.org/price> ?price)
OPTIONAL {Bgp(?book <http://ex.org/title> ?title)}
.org/author>

.org/Shakespeare>)} UNION
{Bgp(?book <http://ex.

org/author>

.org/Marlowe>)}

Semantic Technologies

23

Semantics of SPARQL

Translation into SPARQL Algebra

{Bgp (?book <http://ex
<http://ex

<http://ex
FILTER (?price < 15)

{ Bgp(?book <http://ex.org/price> ?price)
OPTIONAL {Bgp(?book <http://ex.org/title> ?title)}
.org/author>

.org/Shakespeare>)} UNION
{Bgp(?book <http://ex.

org/author>

.org/Marlowe>)}

@ Introduce the LeftJoin(-) operator for optional parts

Semantic Technologies

24

Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> ?2title),
true)

{Bgp (?book <http://ex.org/author>
<http://ex.org/Shakespeare>)} UNION

{Bgp (?book <http://ex.org/author>
<http://ex.org/Marlowe>) }
FILTER (?price < 15)

}

@ Introduce the LeftJoin(-) operator for optional parts

Note: LeftdJoin(:, -, -) is a ternary operator

— 1stargument: mandatory part

— 2nd argument: Bgps of optional part

— 3" argument: the filters of the optional group

25

. Part6
Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

{Bgp (?book <http://ex.org/author>
<http://ex.org/Shakespeare>)} UNION

{Bgp (?book <http://ex.org/author>
<http://ex.org/Marlowe>)}
FILTER (?price < 15)
}

@ Combine alternative graph patterns with the Union(-, -) operator

= Refers to neighbouring patterns and has higher precedence
than conjunction (left associative)

26

Semantics of SPARQL

Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))
FILTER (?price < 15)

Semantic Technologies

27

Semantics of SPARQL

Translation into SPARQL Algebra

{LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true)

Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))
FILTER (?price < 15)
}

® Apply Join(-,-) operator to join non-filter elements

Semantic Technologies

28

Semantics of SPARQL

Translation into SPARQL Algebra

{Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe)))
FILTER (?price < 15)

}

Semantic Technologies

29

Translation into SPARQL Algebra

{Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>

http://ex.org/Marlowe)))
FILTER (?price < 15)

® Translate a group with filters with the Filter(-,-) operator

30

Translation into SPARQL Algebra

Filter(?price < 15 ,
Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))))

® Translate a group with filters with the Filter(-,-) operator

31

Translation into SPARQL Algebra

Filter(?price < 15 ,
Join(
LeftJoin (Bgp (?book <http://ex.org/price> ?price),
Bgp (?book <http://ex.org/title> 2title),
true) ,
Union (Bgp (?book <http://ex.org/author>
http://ex.org/Shakespeare),
Bgp (?book <http://ex.org/author>
http://ex.org/Marlowe))))

Online translation tool:

http://sparqgl.org/query-validator.html

32

Part 6 Semantics of SPARQL

Output Formats
SPARQL Semantics
Transformation of Queries into Algebra Expressions

Evaluation of the SPARQL Algebra

Semantic Technologies 33

Semantics of the SPARQL

Algebra Operations

Now we have an algebra expression,
but what do the algebra operations mean?

Algebra Operator Intuitive Semantics

Bgp(P) match/evaluate pattern P
Join(M,, M,) conjunctive join of solutions M, and M,
Union(M,, M,) union of solutions M, with M,

optional join of M, with M, with filter
constraint F (true if no filter given)

Filter(F, M) filter solutions M with constraint F

LeftJoin(M,, M., F)

Z empty pattern (identity for join)
Only Bgp(-) matches or evaluates graph fragments ...

Semantic Technologies 34

Semantics of the SPARQL
Algebra Operations

How can we define that more formally?

Output:
 “solution set” (formatting irrelevant)

Input:

* Queried (active) graph

« Partial results from previous evaluation steps

« Different parameters according to the operation

= How can we formally describe the “results™?

35

SPARQL Results

Intuition:

* Results are as for relational queries:
tables of variable assignments

Result:
List of solutions (solution sequence)

=» each solution corresponds to one table row

36

SPARQL Results

Formally:

"A solution is a partial function (also called “mapping”) with A
* Domain: relevant variables

\- Range: IRIs U blank nodes U RDF literals)

=» Unbound variables are those that have no assigned value
(partial function)

=>» Mappings are denoted by the greek letter u

37

Part 6

Evaluation of Basic Graph Patterns

Definition (Solution of a BGP)

/Let P be a basic graph pattern. \

A partial function/mapping u is a solution for Bgp(P)
over the queried (active) graph G if:

(D the domain of u is exactly the set of variables in P,

@ there exists an assignment o from blank nodes in P
to IRIs, blank nodes, or RDF literals such that:

@ the RDF graph u(o(P)) is a subgraph of G /

38

Remarks on the Definition

 If there were only variables, we would only talk about p.

« Since also the blank nodes need to be interpreted,
there is also o.

« ltis first o and then y because we want
— that o only binds blank nodes in P,
— not the blank nodes introduced by p.
* The result of evaluating Bgp(P) over G is written

[[Bgp(P)lls

* The result is a multiset of solutions p.

« The muiltiplicity of each solution uy corresponds
to the number of different assignments o

39

Multisets

Definition (Multi Set)

-

_

A mulitiset over a set S is a function M that assigns to
every element s of S

— a natural number M(s) such that
M(s) =2 0 or M(s) = « (infinity)
* M(s) is the multiplicity of s in M.

~

/

Alternative notation: {{ a, b, b }} corresponds to the multiset

M over {a, b, c} with M(a) = 1, M(b) = 2, and M(c) = 0.

40

Semantics of SPARQL

Solution Mappings: Example

ex:Werner ex:gives [
a ex:Lecture ;
ex:hasTopic "SPARQL"]
ex:Fariz ex:gives |

a ex:Lab ;

ex:hasTopic "Jena"]
Bgp(?who ex:gives :x . :xX ex:hasTopic ?what)
Question:

 What are the os and the ps?
« What are the solutions? And what is their multiplicity?

Hint: As a first step, write the data as a set of triples.

Semantic Technologies

41

Semantics of SPARQL

Solution Mappings: Exercise

ex:Fariz ex:gives |
a ex:Lab ;
ex:hasTopic "RDF"]
ex:Fariz ex:gives |

a ex:Lab ;

ex:hasTopic "Jena"]
Bgp(?who ex:gives :x . :xX ex:hasTopic ?what)
Question:

 What are the os and the ps?
« What are the solutions? And what is their multiplicity?

Hint: As a first step, write the data as a set of triples.

Semantic Technologies

42

Union of Solutions (1)

Definition (Compatibility)

N

Two solutions u, and u, are compatible if
U4(x) = u,(x) for all variables x,
for which u, and u, are defined

Exercise: Find examples of u, and u, that are compatible/
not compatible

43

Union of Solutions (2)

Definition (Union)

4 N

The union of two compatible solutions u, and p, is a/the u
such that

o u(x) =, (x)if xis in dom(u,)

SRl
|+ MO0 = 0 f xis in dom(u,) ,

Where does the compatibility play a role?

44

Semantics of SPARQL

Evaluation of Join(-,-) (1)

To define the evaluation of a join expression Join(E,,E,)
over a graph G we proceed in two steps:

M We define the join Join(M,,M,) of
two multisets of mappings

(@ We define the evaluation [[Join(E,,E,)]]; of a
join expression as
the join of the evaluations [[E,]]; and [[E,]]; of
the arguments

Semantic Technologies 45

Evaluation of Join(-,") (2)

For a mapping y and multisets of mappings M,, M, we define
the set of join combinations of y as

JW) = { (q, 1p) | My(uy) > 0, My(u,) > 0,
U, and u, are compatible and y =y, U u,}

That is, J(u) consists of all possible ways to obtain y as a
combination of mappings in M,, M,

46

Evaluation of Join(-,") (3)

For multisets of mappings M,, M, we define

Join(M;,My) = {(un) | n= 2 1 o conn (Ma(us) * My()) }

That is,

« Join(M,,M,) consists of all mappings u
that can be combined out of mappings in M, and M,

 If y can be combined out of y, and u,, and
U4 occurs n, times in M, and u, occurs n, times in M.,
then this combination contributes n, * n,
to the multiplicity of y in Join(M,,M,)

47

Semantics of SPARQL

Evaluation of Join(-,) (4)
Let E,, E, be algebra expressions and let G be a graph.
Then we define

[[Join(E 4, E))llg := Join([[Eqllg, [[Eolls)
In words: we evaluate the join of E; and E, by

« first evaluating E, and E, separately
« and then taking the join of the resulting multisets of mappings

Semantic Technologies

48

Exercise for Join(-,-)

We consider algebra expressions E,, E, and a graph G such that
[[E llc= M, and [[E,]]l; = M,. We want to compute Join(E,,E,) over G.
Suppose

M,={((u: ?x — ex:a, ?y — ex:b) ,2),
((uy: ?x — ex:a, 1) }

M, = { ((us: ?y— ex:b, ?2z—ex:c,3)}

What is Join(M,,M.)?
|.e., which are the elements of the join?
And what is their multiplicity?

49

Evaluation of Union (1)

We first define the union of two multisets of assignments,
and then the evaluation of a union expression.

Let M,, M, be multisets of mappings. Then

Union(My,M,) := { (u,n) | n = M,(u) + My(u) > 0 }

In words:
 the union contains the mappings that occur at least once in M, orM,

» the multiplicity of a mapping p in the union is the sum of the
multiplicities in M, and M,

50

Evaluation of Union (2)

Let E,, E, be algebra expressions and let G be a graph.
Then we define

[[Union(E;,E)llg := Union([[Eq]lg, [[E4llg)
In words: we evaluate the union of E; and E, by

« first evaluating E, and E, separately
« and then taking the union of the resulting multisets of mappings

51

Evaluation of Filter(-,-) (1)

To define the evaluation of a filter expression Filter(F,E)
over a graph G we proceed in two steps:

@ We define the filter operation Filter(F,M) of a filter

condition F
and a multiset of mappings M

@ We define the evaluation [[Filter(F,E)]]; of a

filter expression as
the filter operation by F on the evaluation [[E]]

Semantic Technologies 52

Evaluation of Filter(-) (2)

For a filter condition F and multiset of mappings M we define
Filter(F,M) .={ (u,n) | M(u)=n>0and u(F)=T}

Here, u(F) is the truth value (i.e., one of T, E, F) obtained
from evaluating F with respect to .

The definition says that

@ all mappings survive that satisfy the filter condition, and
@ they survive with the multiplicity they had in M

53

Semantics of SPARQL

Evaluation of Filter(-) (3)

Let E be an algebra expression, F a filter, and G a graph.
The we define

[Filter(F, E)]l; := Filter(F, [[E]ls)
In words,

« we first evaluate E and
 then apply the filter F

Semantic Technologies 54

Evaluation of Leftdoin(-) (1)

Again, to define the evaluation of a left join expression
Leftdoin(E,E,,F) over a graph G we proceed in two steps:

@M We define the left join LeftJoin(M,,M,,F) of
two multisets of mappings and a filter condition

@ We define the evaluation [[Join(E;, E,, F)]]; of a
left join expression as

the left join of the evaluations [[E,]]; and [[E,]]; of
the arguments with respect to F

55

Evaluation of Leftdoin(-) (2)

Let M,, M, be multisets of mappings and let F be a filter expression.

We define

LeftJoin(M,, M,, F)

Filter(F, Join(M,, M,)) U
{ (U, My(uy)) | for all u, with M, (u,) > 0: y, and y, are incompatible
or (uy U tp)(F) =T}
That is
« we join and filter as usual, and
* we keep those mappings from M, that
— either do not find a match in M., or
— for which none of the combinations with a match satisfies F

56

Part 6 Semantics of SPARQL

Evaluation of LeftdJoin(:) (3)

Let E,,E, be algebra expressions, F a filter, and G a graph.
Then we define

[Leftdoin(E,,E,,F)]l

= Leftdoin([[E/llg, [[Eollg, F)

Semantic Technologies 57

Example

@prefix ex:

<http://eg.org/>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

ex

ex
ex

ex

ex

:Hamlet ex:
ex:
:Macbeth ex:
:Tamburlaine ex:
ex
:DoctorFaustus ex:
ex

:RomeusJuliet

author
price

author
author

:price

author

tprice
ex:title "The Tragical History of Doctor Faustus"”
ex:author ex:Brooke ;
ex:

price

ex:Shakespeare ;
"10.50"""xsd:decimal
ex:Shakespeare
ex:Marlowe ;
"17"""xsd:integer
ex:Marlowe ;
"12"""xsd:integer ;

712" " "xsd:integer

.
14

{ ?book ex:price ?price .
OPTIONAL { ?book ex:title ?title . }
{ ?book ex:author ex:Shakespeare . } UNION

{ ?book ex:author ex:Marlowe

FILTER (?price < 15)

-}

58

Example

@prefix ex:

<http://eg.org/>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

ex

ex
ex

ex

ex

tHamlet ex:author ex:Shakespeare ;

ex:price "10.50"""xsd:decimal
:Macbeth ex:author ex:Shakespeare
:Tamburlaine ex:author ex:Marlowe ;

ex:price "17"""xsd:integer
:DoctorFaustus ex:author ex:Marlowe ;

ex:price "12"""xsd:integer ; ;

ex:title "The Tragical History of Doctor Faustus"”

:RomeusJuliet ex:author ex:Brooke ;

ex:price 712" " "xsd:integer

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?2title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

59

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Macbeth

ex:Hamlet

Semantic Technologies 60

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Tamburlaine

ex:DoctorFaustus

Semantic Technologies 61

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex :Macbeth
ex:Hamlet
ex:Tamburlaine

ex:DoctorFaustus

Semantic Technologies 62

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12
ex:RomeusJuliet 9

Semantic Technologies 63

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

| book ___lprice] book | title

ex:Hamlet 10.5 ex:DoctorFaustus "The Tragical History

ex:Tamburlain 17 of Doctor Faustus”
ex:DoctorFaustus 12
ex:RomeusJuliet 9

Semantic Technologies 64

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12 "The Tragical History of Doctor
Faustus”
ex:RomeusJuliet 9

Semantic Technologies 65

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5
ex:Tamburlain 17
ex:DoctorFaustus 12 "The Tragical History of Doctor

Faustus”

Semantic Technologies 66

Part 6 Semantics of SPARQL

Example Evaluation

Filter(?price < 15,
Join(LeftJoin(Bgp(?book ex:price ?price)
Bgp(?book ex:title ?title), true),
Union(Bgp(?book ex:author ex:Shakespeare),
Bgp(?book ex:author ex:Marlowe))))

_____book | price | title

ex:Hamlet 10.5

ex:DoctorFaustus 12 "The Tragical History of Doctor
Faustus”

Semantic Technologies 67

Formal Algebra Transformation

« During parsing of a query, a parse tree is constructed

 The parse tree contains expressions that correspond to the
grammar

* For the transformation, we traverse the parse tree and
recursively build the algebra expressions

« The query pattern is a GroupGraphPattern consisting of
the following elements:

— TriplesBlock

— Filter

— OptionalGraphPattern

— GroupOrUnionGraphPattern
— GraphGraphPattern

68

Part of the SPARQL Grammar

GroupGraphPattern .:="{’ TriplesBlock?
((GraphPatternNotTriples
| Filter) °.’ ? TriplesBlock?) *

’}’
GraphPatternNotTriples ::= OptionalGraphPattern

| GroupOrUnionGraphPattern

| GraphGraphPattern
OptionalGraphPattern ::="OPTIONAL’ GroupGraphPattern
GroupOrUnionGraphPattern ::= GroupGraphPattern (' UNION’

GroupGraphPattern)*

Filter ::="FILTER’ Constraint

69

Transformation Algorithm to Algebra

Algorithm 1 translate(G)

Input: a query pattern G
Output: a SPARQL algebra expression A

if G is a Triplesblock then
A = Bgp(G)
else if G is a GroupOrUnionGraphPattern then
A = trnslGroupOrUnionGP(G)
else if G is a GraphGraphPattern then
A = trnslGraphGP(G)
else if G is a GroupGraphPattern then
A = trnslGroupGP(G)
return A

©® N R W2

70

Transformation of

GroupOrUnionGraphPattern

Algorithm 2 trnsIGroupOrUnionGP(G)

Input: a GroupOrUnionGraphPattern G
with elements e,,...,e,

Output: a SPARQL algebra expression A

1. fori=1,...,ndo

2: if A is undefined then

3: A = translate(e))

4. else

S: A = Union(A, translate(e;))
6: return A

71

Transformation of

GraphGraphPattern

Algorithm 3 trnslGraphGP(G)

Input: a GraphGraphPattern G
Output: a SPARQL algebra expression A

1. if G has the form GRAPH IRI GroupGraphPattern then

2 A = Graph(IR1I, translate(GroupGraphPattern))

3. else if G has the form GRAPH Var GroupGraphPattern then
4 A = Graph(Var, translate(GroupGraphPattern))

5

. return A

72

Transformation of

GroupGraphPattern

Algorithm 4 trnslGroupGP(G)

Input: a GroupGraphPattern G = (ey,...,€,)
Output: a SPARQL algebra expression A

1. A:=Z [/ the empty pattern
2: F:=2 |[/the empty filter
3: fori=1,....ndo
if e; is of the form FILTER(f) then
F:=F U {f}
else if e, is of the form OPTIONAL { P } then
if translate(P) is of the form Filter(F',A") then
A = Leftdoin(A, A", F")
else

QO XN R

A = LeftJoin(A, translate(P), true)
S

73

Transformation of

GroupGraphPattern (cntd)

11: else

12: A = Join(A, translate(e))
13: if F !=2 then

14: A = Filter(A;cgf, A)

15: return A

Semantic Technologies 74

Simplification of Algebra

Expressions

« Groups with just one pattern (without filters)
result in Join(Z, A) and can be substituted by A
« The empty pattern is the identity for joins:
— Replace Join(Z, A) by A
— Replace Join(A, Z) by A

75

Semantics of SPARQL

Operators for Representing the Modifiers

ToList(M) Constructs from a multiset a sequence with
the same elements and multiplicity
(arbitrary order, duplicates not necessarily

adjacent)
OrderBy(M, comparators) sorts the solutions
Distinct(M) removes the duplicates
Reduced(M) may remove duplicates
Slice(M, o, |) cuts the solutions to a list of length / starting

from position o

Project(M, vars) projects out the mentioned variables

Semantic Technologies 76

Transformation of the Modifiers

Let g be a SPARQL query with pattern P and
corresponding algebra expression Ap.

We construct an algebra expression A, for g as follows:
@D A, = Tolist(Ap)
@ A, :=OrderBy(A,, (¢, . .., c,)) if

q contains an ORDER BY clause
with comparators c,, . . ., C,

@ A, = Project(A,, vars) if
the result format is SELECT with
vars the selected variables (* all variables in scope)

77

Transformation of the Modifiers

@ A, = Distinct(A,) if
the result format is SELECT and
q contains DISTINCT

@ A, := Reduced(A,) if
the result format is SELECT and
q contains REDUCED

@& A, = Slice(A,, start, length) if
the query contains OFFSET start or LIMIT length
where start defaults to 0 and
length defaults to (| [[A]l | — start)

78

Evaluation of the Modifiers

The algebra expressions for the modifiers
are recursively evaluated

« Evaluate the algebra expression of the operator

* Apply the operations for the solution modifiers to the
obtained solutions

79

