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Automation

by now: ad hoc arguments about satisfiability of DL axioms
a concept is satisfiable, if it has a model
; idea: constructive decision procedure that tries to build models
analog: truth tables in propositional logic

(p ∨ q)→ (¬p ∨ ¬q)

negation in front of complex expressions and non-atomic operators difficult
to handle, thus reformulate:

¬(p ∨ q) ∨ (¬p ∨ ¬q)

(¬p ∧ ¬q) ∨ (¬p ∨ ¬q)

(¬p ∧ ¬q) ∨ ¬p ∨ ¬q
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Simple Tableau

(¬p ∧ ¬q) ∨ ¬p ∨ ¬q

¬p ∧ ¬q ¬p ¬q
¬p
¬q

disjunctions lead to branches in the tableau
tableau: finite set of tableau branches
compare: truth table

I(p) I(q) I(¬p) I(¬q) I(p ∨ q) I(¬p ∨ ¬q) I((p ∨ q) → (¬p ∨ ¬q))
t t f f t f f
t f f t t t t
f t t f t t t
f f t t f t t
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Simple Tableau with Contradiction

(¬p ∨ q) ∧ p ∧ ¬q
¬p ∨ q

p
¬q

¬p q

⊥ ⊥

if a branch contains an atomic contradiction (clash), we call this branch
closed
a tableau is closed, if all its branches are
a complete tableau without open branches shows the formula’s
unsatisfiability
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Constructing a Model from the Tableau

(¬p ∧ ¬q) ∨ ¬p ∨ ¬q

¬p ∧ ¬q ¬p ¬q
¬p
¬q

given an open branch, we can construct a model
let I(p)=false and let I(q)=false
let I(p)=false (I(q) is irrelevant since not in the branch, default
assignment false)
let I(q)=false (I(p) is irrelevant since not in the branch, default
assignment false)
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Propositional Tableau

not always exponentially many combinations have to be checked (as
opposed to truth table method)
branches can be built one after the other ; only polynomial space
needed
if we care about satisfiability we can stop after constructing the first
complete open branch
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Construction with only one Branch in Memory

(¬p ∨ q) ∧ p ∧ q
¬p1a ∨ q1b

p
q

¬p1a

⊥1a

q1b

when encountering a disjunction we assign so-called choice points
all extensions of the branch based on such a choice are also marked
when encountering a contradiction caused by a choice, remove marked
formulae and try next choice
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From Propositional Tableau to Tableau for DLs

How can the tableaux be extended for checking satisfiability of ALC
concepts?
NB: initially, we assume no underlying knowledge base, thus unsatisfiability
means that the concept is contradictory “by itself”.

tableau represents an element of the domain (plus its “environment”)
tableau branch: finite set of propositions of the form C(a), r(a, b)

for existential quantifiers, new domain elements are introduced
universal quantifiers propagate formulae (=concept expressions) to
neighboring elements
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Propositional Logic – Some Logical Equivalences

We aim at negations being present only in front of atomic concepts

ϕ ∧ ψ ≡ ψ ∧ ϕ ϕ→ ψ ≡ ¬ϕ ∨ ψ
ϕ ∨ ψ ≡ ψ ∨ ϕ ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

ϕ ∧ (ψ ∧ ω) ≡ (ϕ ∧ ψ) ∧ ω ¬(ϕ ∧ ψ) ≡ ¬ϕ ∨ ¬ψ
ϕ ∨ (ψ ∨ ω) ≡ (ϕ ∨ ψ) ∨ ω ¬(ϕ ∨ ψ) ≡ ¬ϕ ∧ ¬ψ

ϕ ∧ ϕ ≡ ϕ ¬¬ϕ ≡ ϕ
ϕ ∨ ϕ ≡ ϕ

ϕ ∧ (ψ ∨ ϕ) ≡ ϕ ϕ ∨ (ψ ∧ ω) ≡ (ϕ ∨ ψ) ∧ (ϕ ∨ ω)

ϕ ∨ (ψ ∧ ϕ) ≡ ϕ ϕ ∧ (ψ ∨ ω) ≡ (ϕ ∧ ψ) ∨ (ϕ ∧ ω)
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Further Logical Equivalences

¬(C u D) ; ¬C t ¬D

¬(D t D) ; ¬C u ¬D

¬¬C ; C

¬(∀r.C) ; ∃r.(¬C)

¬(∃r.C) ; ∀r.(¬C)

¬(6 n s.C) ; > n + 1 s.C

¬(> n s.C) ; 6 n− 1 s.C, n ≥ 1
¬(> 0 s.C) ; ⊥

apply these rules iteratively until none can be applied any more
; equivalent concept in negation normal form
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NNF Transformation

recursive definition of an NNF transformation:

if C atomic:

NNF(C) := C NNF(¬C) := ¬C

otherwise:

NNF(¬¬C) := NNF(C)

NNF(C u D) := NNF(C) u NNF(D) NNF(¬(C u D)) := NNF(¬C) t NNF(¬D)

NNF(C t D) := NNF(C) t NNF(D) NNF(¬(C t D)) := NNF(¬C) u NNF(¬D)

NNF(∀r.C) := ∀r.(NNF(C)) NNF(¬(∀r.C)) := ∃r.(NNF(¬C))

NNF(∃r.C) := ∃r.(NNF(C)) NNF(¬(∃r.C)) := ∀r.(NNF(¬C))

NNF(6 n s.C) := 6 n s.(NNF(C)) NNF(¬(6 n s.C)) := > n + 1 s.(NNF(C))

NNF(> n s.C) := > n s.(NNF(C)) NNF(¬(> n s.C)) := 6 n− 1 s.(NNF(C))

if n ≥ 1

NNF(> 0 s.C) := > NNF(¬(> 0 s.C)) := ⊥ otherwise
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NNF Transformation – Example

NNF(¬(¬C u (¬D t E)))

= NNF(¬¬C) t NNF(¬(¬D t E))

= NNF(C) t NNF(¬(¬D t E))

= C t NNF(¬(¬D t E))

= C t (NNF(¬¬D) u NNF(¬E))

= C t (NNF(D) u NNF(¬E))

= C t (D u NNF(¬E))

= C t (D u ¬E)
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Tableau for ALC Concepts

tableau for a propositional formulal α: one element, labeled with
subformulae of α
tableau for an ALC concept C: graph (more precisely: tree) where the
nodes are labeled with subformulae of C

root labeled with C

represents model for C (if complete and clash-free)
non-root nodes are enforced by existential quantifiers

Definition

Let C be an ALC concept, SF(C) the set of all subformulae of C and Rol(C)
the set of all roles occurring in C. A tableau for C is a tree G = 〈V,E,L〉, with
nodes V, edges E ⊆ V × V and a labeling function L with L : V → 2SF(C) and
L : V × V → 2Rol(C).
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Properties of the ALC Tableau Algorithm

the algorithm is specified as a set of rules
every rule breaks down a complex concept into its parts
rules applicable in any order
the algorithm is non-deterministic (due to disjunction)
check for atomic contradictions

tableau algorithm for checking satisfiability of ALC concepts
Input: an ALC concept in NNF
Output: true if there is a clash-free tableau

where no more rules can be applied
false otherwise (tableau closed)
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Tableau Rules for ALC Concepts

u-rule: For an arbitrary v ∈ V mit C u D ∈ L(v) and
{C,D} 6⊆ L(v), let L(v) := L(v) ∪ {C,D}.

t-rule: For an arbitrary v ∈ V with C t D ∈ L(v) and
{C,D} ∩ L(v) = ∅, choose X ∈ {C,D} and let
L(v) := L(v) ∪ {X}.

∃-rule: For an arbitrary v ∈ V with ∃r.C ∈ L(v) such that
there is no r-successor v′ of v with C ∈ L(v′),
let V = V ∪ {v′}, E = E ∪ {〈v, v′〉}, L(v′) := {C} and
L(v, v′) := {r} for v′ a new node.

∀-rule: For arbitrary v, v′ ∈ V, v′ r-neighbor of v,
∀r.C ∈ L(v) and C /∈ L(v′), let L(v′) := L(v′) ∪ {C}.

a node v′ is an r-neighbor of a node v if 〈v, v′〉 ∈ E and r ∈ L(v, v′)

rule application order: “don’t care” non-determinism
choice of disjunction: “don’t know” non-determinism
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Tableau Algorithmus Example

C = ∃r.(A t ∃r.B) u ∃r.¬A u ∀r.(¬A u ∀r.(¬B t A))

u

v w

x

r r

r

L(u) = {C}, ∃r.(A t ∃r.B),

∃r.¬A,∀r.(¬A u ∀r.(¬B t A))}
L(v) = {A t ∃r.B},¬A, ∀r.(¬B t A)},A}, ∃r.B}
L(w) = {¬A}, ∀r.(¬B t A)}
L(x) = {B},¬B t A},¬B},A}
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Tableau Algorithm Example

the model I constructed by the algorithm is the following:

∆I ={u, v,w, x}
AI ={x}
BI ={x}
rI ={〈u, v〉, 〈u,w〉, 〈v, x〉}

Check that indeed CI = {u}, given the defined semantics of ALC
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Tableau Algorithm Properties

1 the model is finite: only finitely many elements in the domain
2 the model is tree-shaped: the tableau is a labeled tree

the algorithm will always construct finite trees
from a clash-free tableau, we can construct a finite model
if there is no clash-free tableau, there is no model
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Tableau Properties

the depth (number of nested quantifiers) decreases in every node
every node is labeled only with subformulae of C

C has only polynomially many subformulae
if the ouput is true we can build a model out of the constructed tableau
on the other hand, we can use a model of a satisfiable concept to
construct a clash-free tableau for this concept
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Tableau Algorithm for ALC Concepts

Theorem
1 the algorithm terminates for every input
2 if the output is true, then the input concept is satisfiable
3 if the input concept is satisfiable, then the output is true.

Corollary

Every ALC concept C has the following properties:
1 finite model property: If C has a model, then it has a finite one.
2 tree model property If C has a model, then it has a tree-shaped one.
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Summary

we now have a constructive method for building model abstractions
satisfiable ALC concepts always have a finite model that we can
construct
the algorithm is correct, complete and terminating
serves as basis for practically implemented algorithms
next: extension to knowledge bases
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